# トップPDF KKY Slide201311 最近の更新履歴 yyasuda's website

### KKY Slide201311 最近の更新履歴 yyasuda's website

Offers by student s x s ⊂ C, x S = ( x s ) s∈S Offers by college c x c ⊂ S, x C = ( x c ) c∈C Hatfield-Milgrom mapping x C ’ = HM C ( x S ) = ( S – R c ( {s | c∈ x s } ) ) c∈C x S ’ = HM S ( x C ) = ( C – R s ( {c | s∈ x c } ) ) s∈S

44 さらに読み込む

### Lec3 最近の更新履歴 yyasuda's website

payoff) while M gives 1 irrespective of player 1’s strategy.   Therefore, M is eliminated by mixing L and R .   After eliminating M , we can further eliminate D (step 2) and L (step 3), eventually picks up ( U , R ) as a unique outcome.

20 さらに読み込む

### Lec1 最近の更新履歴 yyasuda's website

Prisoners’ Dilemma: Analysis (3)    (Silent, Silent) looks mutually beneficial outcomes, though    Playing Confess is optimal regardless of other player’s choice!   Acting optimally ( Confess , Confess ) rends up realizing!!

27 さらに読み込む

### Lec2 最近の更新履歴 yyasuda's website

Prisoners’ Dilemma: Analysis     ( Silent , Silent ) looks mutually beneficial outcomes, though    Playing Confess is optimal regardless of other player’s choice!    Acting optimally ( Confess , Confess ) rends up realizing!!

27 さらに読み込む

### Lec9 最近の更新履歴 yyasuda's website

3(a - e)/4, is greater than aggregate quantity in the Nash equilib- rium of the Cournot game, 2(a - e)/3, so the market-clearing price is lower in the Stackelberg game.. Thus, i[r]

17 さらに読み込む

### Lec10 最近の更新履歴 yyasuda's website

   If the stage game has a unique NE, then for any T , the finitely repeated game has a unique SPNE: the NE of the stage game is played in every stage irrespective of the histor[r]

20 さらに読み込む

### Midterm2 最近の更新履歴 yyasuda's website

(a) If an agent is risk averse, her risk premium is ALWAYS positive. (b) When every player has a (strictly) dominant strategy, the strategy profile that consists of each player’s dominant strategy MUST be a Nash equilibrium. (c) If there are two Nash equilibria in pure-strategy, they can ALWAYS be Pareto

### PS3 最近の更新履歴 yyasuda's website

(c) Solve for the total saving S by all types who save and the total borrowing B.. by all types who borrow.[r]

### Final14 最近の更新履歴 yyasuda's website

5. Bayesian Nash Equilibrium (12 points)  There are three different bills, \$5, \$10, and \$20. Two individuals randomly receive one  bill each. The (ex ante) probability of an individual receiving each bill is therefore 1/3.  Each  individual  knows  only  her  own  bill,  and  is  simultaneously  given  the  option  of  exchanging her bill for the other individual’s bill. The bills will be exchanged if and only  if  both  individuals  wish  to  do  so;  otherwise  no  exchange  occurs.  That  is,  each  individuals can choose either exchange (E) or not (N), and exchange occurs only when  both  choose  E.  We  assume  that  individuals’  objective  is  to  maximize  their  expected  monetary payoff (\$).
さらに見せる

### Midterm14 最近の更新履歴 yyasuda's website

Find (all) pure‐strategy Nash equilibrium if it exists.  iii.[r]

### Final1 最近の更新履歴 yyasuda's website

e z . The prices of the three goods are given by (p, q, 1) and the consumer’s wealth is given by ω. (a) Formulate the utility maximization problem of this consumer. (b) Note that this consumer’s preference can be expressed in the form of U (x, y, z) = V (x, y) + z. Derive V (x, y).

### Slide1 最近の更新履歴 yyasuda's website

Combination of dominant strategies is Nash equilibrium. There are many games where no dominant strategy exists[r]

20 さらに読み込む

### Slide2 最近の更新履歴 yyasuda's website

elimination of strictly dominated strategies can never be selected (with positive probability) in a mixed-strategy Nash equilibrium.[r]

16 さらに読み込む

### PS2 最近の更新履歴 yyasuda's website

Prove that if a firm exhibits increasing returns to scale then average cost must strictly decrease with output. 4.[r]

### PS1 最近の更新履歴 yyasuda's website

(a) The intersection of any pair of open sets is an open set. (b) The union of any (possibly infinite) collection of open sets is open. (c) The intersection of any (possibly infinite) collection of closed sets is closed. (You can use (b) and De Morgan’s Law without proofs.)

### EX3 最近の更新履歴 yyasuda's website

Solve the following problems in Snyder and Nicholson (11th):. 1.[r]

### EX2 最近の更新履歴 yyasuda's website

Solve the following problems in Snyder and Nicholson (11th):. 1.[r]

### EX1 最近の更新履歴 yyasuda's website

Solve the following problems in Snyder and Nicholson (11th):. 1.[r]

### Lec8 最近の更新履歴 yyasuda's website

  A tree starts with the initial node and ends at2. terminal nodes where payoffs are specified..[r]

23 さらに読み込む

### Lec6 最近の更新履歴 yyasuda's website

  A strategy in dynamic games is a complete action plan which prescribes how the player will act in each possible.. contingencies in future..[r]

16 さらに読み込む