トップPDF Game2013 最近の更新履歴 yyasuda's website

Game2013 最近の更新履歴  yyasuda's website

Game2013 最近の更新履歴 yyasuda's website

Introduction to Market Design with Practical Matching Mechanisms.. (Lecture 14 in Game Theory).[r]

58 さらに読み込む

syllabus game15 最近の更新履歴  yyasuda's website

syllabus game15 最近の更新履歴 yyasuda's website

  1. Course Description    This  is  an  introductory  course  in  game  theory,  which  will  provide  you  with  mathematical  tools  for  analyzing  strategic  situations  ‐  your  optimal  decision  depends  on what other people will do. In particular, we will study central solution concepts in  game  theory  such  as  Nash  equilibrium,  subgame  perfect  equilibrium,  and  Bayesian  equilibrium. Game theory has been widely recognized as an important analytical tool  in such fields as economics, management, political science, phycology and biology. To  illustrate  its  analytical  value,  we  will  cover  a  variety  of  applications  that  include  international relations, development, business competition, auctions, marriage market,  and  so  forth.  There  is  no  prerequisite  for  this  course,  although  some  background  on  microeconomics and familiarity of probabilistic thinking would be helpful. 
さらに見せる

2 さらに読み込む

Lec10 最近の更新履歴  yyasuda's website

Lec10 最近の更新履歴 yyasuda's website

   If the stage game has a unique NE, then for any T , the finitely repeated game has a unique SPNE: the NE of the stage game is played in every stage irrespective of the histor[r]

20 さらに読み込む

MarketDesign en 最近の更新履歴  yyasuda's website

MarketDesign en 最近の更新履歴 yyasuda's website

  Exist exactly one for ANY exchange problem.   Always Pareto efficient and individually rational[r]

49 さらに読み込む

Lec10 最近の更新履歴  yyasuda's website

Lec10 最近の更新履歴 yyasuda's website

   If the stage game has a unique NE, then for any T , the finitely repeated game has a unique SPNE: the NE of the stage game is played in every stage irrespective of the histor[r]

20 さらに読み込む

Lec9 最近の更新履歴  yyasuda's website

Lec9 最近の更新履歴 yyasuda's website

3(a - e)/4, is greater than aggregate quantity in the Nash equilib- rium of the Cournot game, 2(a - e)/3, so the market-clearing price is lower in the Stackelberg game.. Thus, i[r]

17 さらに読み込む

Lec8 最近の更新履歴  yyasuda's website

Lec8 最近の更新履歴 yyasuda's website

  A tree starts with the initial node and ends at.. terminal nodes where payoffs are specified..[r]

23 さらに読み込む

Lec7 最近の更新履歴  yyasuda's website

Lec7 最近の更新履歴 yyasuda's website

Strategy and Outcome     Strategy in dynamic game = Complete plan of actions   What each player will do in every possible chance of move.   Even if some actions will not be taken in the actual play, players specify all contingent action plan.

16 さらに読み込む

Lec5 最近の更新履歴  yyasuda's website

Lec5 最近の更新履歴 yyasuda's website

elimination of strictly dominated strategies can never be selected (with positive probability) in a mixed-strategy Nash equilibrium.[r]

18 さらに読み込む

Lec4 最近の更新履歴  yyasuda's website

Lec4 最近の更新履歴 yyasuda's website

   Both the Bertrand and Cournot models are particular cases of a more general model of oligopoly competition where firms choose prices and quantities (or capacities.).   Ber[r]

16 さらに読み込む

Lec3 最近の更新履歴  yyasuda's website

Lec3 最近の更新履歴 yyasuda's website

1. Rationality    Players can reach Nash equilibrium only by rational reasoning in some games, e.g., Prisoners’ dilemma.    However, rationality alone is often insufficient to lead to NE. (see Battle of the sexes, Chicken game, etc.)    A correct belief about players’ future strategies

20 さらに読み込む

Lec1 最近の更新履歴  yyasuda's website

Lec1 最近の更新履歴 yyasuda's website

Prisoners’ Dilemma: Analysis (3)    (Silent, Silent) looks mutually beneficial outcomes, though    Playing Confess is optimal regardless of other player’s choice!   Acting optimally ( Confess , Confess ) rends up realizing!!

27 さらに読み込む

Lec2 最近の更新履歴  yyasuda's website

Lec2 最近の更新履歴 yyasuda's website

Prisoners’ Dilemma: Analysis     ( Silent , Silent ) looks mutually beneficial outcomes, though    Playing Confess is optimal regardless of other player’s choice!    Acting optimally ( Confess , Confess ) rends up realizing!!

27 さらに読み込む

Lec9 最近の更新履歴  yyasuda's website

Lec9 最近の更新履歴 yyasuda's website

3(a - e)/4, is greater than aggregate quantity in the Nash equilib- rium of the Cournot game, 2(a - e)/3, so the market-clearing price is lower in the Stackelberg game.. Thus, i[r]

17 さらに読み込む

Midterm2 最近の更新履歴  yyasuda's website

Midterm2 最近の更新履歴 yyasuda's website

(a) If an agent is risk averse, her risk premium is ALWAYS positive. (b) When every player has a (strictly) dominant strategy, the strategy profile that consists of each player’s dominant strategy MUST be a Nash equilibrium. (c) If there are two Nash equilibria in pure-strategy, they can ALWAYS be Pareto

3 さらに読み込む

Nobel2015 最近の更新履歴  yyasuda's website

Nobel2015 最近の更新履歴 yyasuda's website

  Michael Jensen (1939-, 企業金融) → 金融は無い?   Jerry Hausman (1946?-, 計量) → もはやチャンス無し?   Oliver Hart (1948-, 組織経済学、契約理論) → しばらく難しい? Bengt Holmstrom (1949-, 契約理論) → しばらく難しい?

21 さらに読み込む

PS3 最近の更新履歴  yyasuda's website

PS3 最近の更新履歴 yyasuda's website

(c) Solve for the total saving S by all types who save and the total borrowing B.. by all types who borrow.[r]

2 さらに読み込む

Final14 最近の更新履歴  yyasuda's website

Final14 最近の更新履歴 yyasuda's website

    5. Bayesian Nash Equilibrium (12 points)  There are three different bills, $5, $10, and $20. Two individuals randomly receive one  bill each. The (ex ante) probability of an individual receiving each bill is therefore 1/3.  Each  individual  knows  only  her  own  bill,  and  is  simultaneously  given  the  option  of  exchanging her bill for the other individual’s bill. The bills will be exchanged if and only  if  both  individuals  wish  to  do  so;  otherwise  no  exchange  occurs.  That  is,  each  individuals can choose either exchange (E) or not (N), and exchange occurs only when  both  choose  E.  We  assume  that  individuals’  objective  is  to  maximize  their  expected  monetary payoff ($). 
さらに見せる

3 さらに読み込む

Midterm14 最近の更新履歴  yyasuda's website

Midterm14 最近の更新履歴 yyasuda's website

Find (all) pure‐strategy Nash equilibrium if it exists.  iii.[r]

2 さらに読み込む

Final1 最近の更新履歴  yyasuda's website

Final1 最近の更新履歴 yyasuda's website

e z . The prices of the three goods are given by (p, q, 1) and the consumer’s wealth is given by ω. (a) Formulate the utility maximization problem of this consumer. (b) Note that this consumer’s preference can be expressed in the form of U (x, y, z) = V (x, y) + z. Derive V (x, y).

2 さらに読み込む

Show all 10000 documents...