incomplete information into a Bayesian game whose Nash equilibrium is called Bayesian Nash equilibrium... Formulation of Bayesian Games.[r]

14 さらに読み込む

3(a - e)/4, is greater than aggregate quantity in the Nash equilib- rium of the Cournot game, 2(a - e)/3, so the market-clearing price is lower in the Stackelberg game.. Thus, i[r]

17 さらに読み込む

(b) Let p be a probability that player 2 would choose Rock, and q be a probability that she chooses Paper. Note that her probability of choosing Scissors is written as 1 p q. Under mixed strategy Nash equilibrium, player 1 must be indi¤erent amongst choosing Rock, Paper and Scissors, which implies that these three actions must give him the same expected payo¤**s**. Let u R ; u P ; u S be his expected payo¤**s** by selecting

2 さらに読み込む

Ann and Bob are in an Italian restaurant, and the owner offers them a free 3- slice pizza under the following condition. Ann and Bob must simultaneously and independently announce how many slice(**s**) she/he would like: Let a and b be the amount of pizza requested by Ann and Bob, respectively (you can assume that a and b are integer numbers between 1 and 3). If a + b ≤ 3, then each player gets her/his requested demands (and the owner eats any leftover slices). If a + b > 3, then both players get nothing. Assume that each players payoff is equal to the number of slices of pizza; that is, the more the better.

さらに見せる
2 さらに読み込む

Introduction to Market Design and its Applications to School Choice.. Yosuke YASUDA.[r]

84 さらに読み込む

2 units of the firm 1’**s** good and A − p 2 + p 1
2 units of the firm 2’**s** good. Assume that the firms have identical (and constant) marginal costs c(< A), and the payoff for each firm is equal to the firm’**s** profit, denoted by π 1 and π 2 .

2 さらに読み込む

Q = K 1 =4
L 1 =8 Then, answer the following questions.
(a) In the short run, the …rm is committed to hire a …xed amount of capital K(+1), and can vary its output Q only by employing an appropriate amount of labor L . Derive the …rm’**s** short-run total, average, and marginal cost functions. (b) In the long run, the …rm can vary both capital and labor. Derive the …rm’**s**

3 さらに読み込む

(b) If consumer’**s** choice satis…es the weak axiom of revealed preferences, we can always construct a utility function which is consistent with such choice behav- iour.
(c) If a consumer problem has a solution, then it must be unique whenever the consumer’**s** preference relation is convex.

2 さらに読み込む

安田予想で未受賞**の**候補者たち
Robert Barro (1944-, マクロ、成長理論) → イチオシ！
Elhanan Helpman (1946-, 国際貿易、成長) → 誰ともらう**の**か？
Paul Milgrom (1948-, 組織**の**経済学、オークション) → 今年は厳しい… Ariel Rubinstein (1951-, ゲーム理論) → 今年は厳しそう…

21 さらに読み込む

Exist exactly one for ANY exchange problem. Always Pareto efficient and individually rational[r]

49 さらに読み込む

If the stage game has a unique NE, then for any T , the finitely repeated game has a unique SPNE: the NE of the stage game is played in every stage irrespective of the histor[r]

20 さらに読み込む

A tree starts with the initial node and ends at.. terminal nodes where payoffs are specified..[r]

23 さらに読み込む

The main theorem shows that the condition that a schools’ priority profile ≻ C
has a common priority order for every type t ∈ T is sufficient for the existence of feasible assignments which are both fair and non-wasteful. This condition may be strong and hard to be satisfied when the classification of types is coarse. For instance, if the type set is {high income, low income} and there is a priority for students who live in each school’**s** walk zone, priority orders for high income students will differ across schools in general. However, this can be modified by making a finer type classification, {high income, low income} × {c 1 ’**s** walk zone, c 2 ’**s** walk zone,...}.

さらに見せる
14 さらに読み込む

A strategy in dynamic games is a complete action plan which prescribes how the player will act in each possible.. contingencies in future..[r]

16 さらに読み込む

elimination of strictly dominated strategies can never be selected (with positive probability) in a mixed-strategy Nash equilibrium.[r]

18 さらに読み込む

Both the Bertrand and Cournot models are particular cases of a more general model of oligopoly competition where firms choose prices and quantities (or capacities.). Ber[r]

16 さらに読み込む

payoff) while M gives 1 irrespective of player 1’**s** strategy.
Therefore, M is eliminated by mixing L and R .
After eliminating M , we can further eliminate D (step 2) and L
(step 3), eventually picks up ( U , R ) as a unique outcome.

20 さらに読み込む

Prisoners’ Dilemma: Analysis (3)
(Silent, Silent) looks mutually beneficial outcomes, though
Playing Confess is optimal regardless of other player’**s** choice!
Acting optimally ( Confess , Confess ) rends up realizing!!

27 さらに読み込む

Prisoners’ Dilemma: Analysis
( Silent , Silent ) looks mutually beneficial outcomes, though
Playing Confess is optimal regardless of other player’**s** choice! Acting optimally ( Confess , Confess ) rends up realizing!!

27 さらに読み込む

3(a - e)/4, is greater than aggregate quantity in the Nash equilib- rium of the Cournot game, 2(a - e)/3, so the market-clearing price is lower in the Stackelberg game.. Thus, i[r]

17 さらに読み込む