Problem Set **6**: Due on July 30
Advanced Microeconomics II (Spring, 2nd, 2012)
1. Question 1 (7 points) Suppose a government auctions one block of radio spectrum to two risk neutral mobile phone companies, i = 1, 2. The companies submit bids simultaneously, and the company with higher bid receives a spectrum block. The loser pays nothing while the winner pays a weighted average of the two bids:

3 さらに読み込む

A strategy in dynamic games is a complete action plan which prescribes how the player will act in each possible.. contingencies in future..[r]

16 さらに読み込む

If the stage game has a unique NE, then for any T , the finitely repeated game has a unique SPNE: the NE of the stage game is played in every stage irrespective of the histor[r]

20 さらに読み込む

Both the Bertrand and Cournot models are particular cases of a more general model of oligopoly competition where firms choose prices and quantities (or capacities.). Ber[r]

16 さらに読み込む

elimination of strictly dominated strategies can never be selected (with positive probability) in a mixed-strategy Nash equilibrium.[r]

18 さらに読み込む

A strategy in dynamic games is a complete action plan which prescribes how the player will act in each possible.. contingencies in future..[r]

16 さらに読み込む

A tree starts with the initial node and ends at.. terminal nodes where payoffs are specified..[r]

23 さらに読み込む

3(a - e)/4, is greater than aggregate quantity in the Nash equilib- rium of the Cournot game, 2(a - e)/3, so the market-clearing price is lower in the Stackelberg game.. Thus, i[r]

17 さらに読み込む

Paul Romer (1955-, 内生的成長理論) → 学界から消えた！？
Ben Bernanke (1953-, マクロ、金融) → FRB議長を辞めた**の**は好材料？ Douglas Diamond (1953-, 銀行取付) → 金融は無い？
清滝信宏 (1955-, マクロ、金融) → まだ早い

21 さらに読み込む

Exist exactly one for ANY exchange problem. Always Pareto efficient and individually rational[r]

49 さらに読み込む

Prisoners’ Dilemma: Analysis (3)
(Silent, Silent) looks mutually beneficial outcomes, though
Playing Confess is optimal regardless of other player’**s** choice!
Acting optimally ( Confess , Confess ) rends up realizing!!

27 さらに読み込む

Consider a consumer problem. Suppose that a choice function x(p; !) satis…es Walras’**s** law and WA. Then, show that x(p; !) is homogeneous of degree zero. **6**. Lagrange’**s** Method
You have two …nal exams upcoming, Mathematics (M) and Japanese (J), and have to decide how to allocate your time to study each subject. After eating, sleeping, exercising, and maintaining some human contact, you will have T hours each day in which to study for your exams. You have …gured out that your grade point average (G) from your two courses takes the form

2 さらに読み込む

payoff) while M gives 1 irrespective of player 1’**s** strategy.
Therefore, M is eliminated by mixing L and R .
After eliminating M , we can further eliminate D (step 2) and L
(step 3), eventually picks up ( U , R ) as a unique outcome.

20 さらに読み込む

3(a - e)/4, is greater than aggregate quantity in the Nash equilib- rium of the Cournot game, 2(a - e)/3, so the market-clearing price is lower in the Stackelberg game.. Thus, i[r]

17 さらに読み込む

Prisoners’ Dilemma: Analysis
( Silent , Silent ) looks mutually beneficial outcomes, though
Playing Confess is optimal regardless of other player’**s** choice! Acting optimally ( Confess , Confess ) rends up realizing!!

27 さらに読み込む

3 さらに読み込む

If the stage game has a unique NE, then for any T , the finitely repeated game has a unique SPNE: the NE of the stage game is played in every stage irrespective of the histor[r]

20 さらに読み込む

(a) If an agent is risk averse, her risk premium is ALWAYS positive.
(b) When every player has a (strictly) dominant strategy, the strategy profile that consists of each player’**s** dominant strategy MUST be a Nash equilibrium. (c) If there are two Nash equilibria in pure-strategy, they can ALWAYS be Pareto

3 さらに読み込む

(c) Solve for the total saving S by all types who save and the total borrowing B.. by all types who borrow.[r]

2 さらに読み込む

5. Bayesian Nash Equilibrium (12 points)
There are three different bills, $5, $10, and $20. Two individuals randomly receive one bill each. The (ex ante) probability of an individual receiving each bill is therefore 1/3. Each individual knows only her own bill, and is simultaneously given the option of exchanging her bill for the other individual’**s** bill. The bills will be exchanged if and only if both individuals wish to do so; otherwise no exchange occurs. That is, each individuals can choose either exchange (E) or not (N), and exchange occurs only when both choose E. We assume that individuals’ objective is to maximize their expected monetary payoff ($).

さらに見せる
3 さらに読み込む