. .
.. .
.
.
Casson invariant and
structure of the mapping class group
Shigeyuki MORITA
January 25, 2017
Shigeyuki MORITA Casson invariant and structure of the mapping class group
.
Contents
.
.
.1 Homology3-spheres and the Torelli group
.
.
.2 Casson invariant and the first MMM class
.
.
.
3 Difference between two filtrations of the Torelli group
.
.
.
4 Finite type invariants and the Torelli group
.
.
.
5 Open problems
.
.
.
6 Extending the above picture to a wider context
based on joint work with T. Sakasai and M. Suzuki
.
.
.
7 Prospect
Shigeyuki MORITA Casson invariant and structure of the mapping class group
.
.
Homology3-spheres and the Torelli group (1)
M(3) ={closed oriented3-manifold}/ori. pres. diffeo.
∪
H(3) ={closed orientedhomology3-sphere}/ori. pres. diffeo.
Heegaard decomposition:
M(3)3∀[M], M =Hg∪ϕ−Hg (Hg :handlebody, ϕ∈ Mg) Mg :mapping class group S3 =Hg∪ιg −Hg (ιg ∈ Mg : 90◦-rotation on each handle)
⇒ Mg3[ϕ]7−→[Mϕ=Hg∪ϕ−Hg]∈M(3)
Shigeyuki MORITA Casson invariant and structure of the mapping class group
.
Homology3-spheres and the Torelli group (2)
.
Theorem (Reidemeister-Singer)
.
.
.
.. .
.
.
(a
g
Mg
)
/R.S. stabilization=M(3)
alternative description:
fix a Heegaard embeddingΣg⊂S3=Hg∪Σg −Hg
Ng ={ϕ∈ Mg;ϕextends to diffeo. ofHg} (⊂ Mg) N0g ={ϕ∈ Mg;ϕextends to diffeo. of−Hg} (⊂ Mg)
M(3) = lim
g→∞N0g\Mg/Ng
.
.
Homology3-spheres and the Torelli group (3) restriction to the Torelli group :
Ig= Ker(Mg →Sp(2g,Z))
.
Proposition
.
.
.
.. .
.
.
limg→∞Ig/∼=H(3) (Ig3ϕ7−→Wϕ =Hg∪ιgϕ−Hg∈H(3)) where ϕ∼ψ⇔ιgϕ=ιgψ∈N0g\Mg/Ng
two filtrations ofIg:
Ig =Mg(1)⊃ Mg(2)⊃ · · · (Johnson filtration)
Ig =Ig(1)⊃ Ig(2) = [Ig(1),Ig(1)]⊃ · · · (lower central series) Ig(k)⊂ Mg(k) for anyk
Shigeyuki MORITA Casson invariant and structure of the mapping class group
.
Homology3-spheres and the Torelli group (4)
Mg(2) = Ker(τ1 :Ig
first Johnson hom.
→ ∧3H/H) (H =H1(Σg;Z)) Mg(k+ 1) = Ker(τk :Mg(k)Johnson hom.
→ hg(k))
.
Theorem (Johnson)
.
.
.
. .
Ig(2)finite index
⊂ Mg(2) =Kg =hDehn twists on BSCCi Ig(1)/Ig(2) =H1(Ig)∼=∧3H/H⊕2-torsion
BCSS=bounding simple closed curve
Shigeyuki MORITA Casson invariant and structure of the mapping class group
.
.
Homology3-spheres and the Torelli group (5)
Two filtrations ofIg induces those ofH(3)andQH(3):
H(3) =H(3)1 ⊃H(3)2⊃H(3)3 ⊃ · · · H(3) =H(3)1 ⊃H(3)2⊃H(3)3 ⊃ · · ·
QH(3) =QH(3)1 ⊃QH(3)2 ⊃QH(3)3⊃ · · · QH(3) =QH(3)1 ⊃QH(3)2 ⊃QH(3)3⊃ · · · where
H(3)k= lim
g→∞Mg(k)/∼ ⊃ H(3)k = lim
g→∞Ig(k)/∼
Shigeyuki MORITA Casson invariant and structure of the mapping class group
.
Casson invariant and the first MMM class (1)
Casson invariant (1985):
λ:H(3)→Z
(i)λ≡ Rohlin homomorphism:H(3)→Z/2 (mod2) (ii)λ= 1
2 “alg. number” of{irred. rep.:π1W →SU(2)}/conj.
(iii)λ(−W) =−λ(W), additive w.r.t. connected sum (iv)W ⊃K (knot)⇒λ(W1/n(K)) =λ(W) +n1
2∆¯00K(1)
Extensions by Walker (to rational homology3-spheres) and Lescop (to all3-manifolds)
.
.
Casson invariant and the first MMM class (2)
Consider the mapping
λ∗ :Ig→Z defined byλ∗(ϕ) =λ(Wϕ) NOT a homomorphism, but its restriction toKg
λ∗:Kg→Z can be shown to be a homomorphism!
What is it?
Answer: secondary class associated to the fact: the first MMM-class vanishes in the Torelli group e1 = 0∈H2(Ig;Q)
Shigeyuki MORITA Casson invariant and structure of the mapping class group
.
Casson invariant and the first MMM class (3)
e1 ∈H2(Mg;Z)
geometric meaning: signature of surface bundles over surfaces
⇒ e1= 0∈H2(Ig;Q)because signature of any fiber bundle F →E→B vanishes ifπ1B acts onH∗(F;Q)trivially (Chern-Hirzebruch-Serre)
There aretwocanonical cocycles representinge1: pull back of −3c1 ∈Z2(Sp(2g,Z);Q)
image of ∧2(∧3HQ/HQ)Sp∼=Q→ ∧2˜k∈Z2(Mg;Q) under (˜k, ρ0) :Mg → ∧3HQ/HQoSp(2g,Z)
.
.
Casson invariant and the first MMM class (4)
⇒3c1+∧2˜k=d∃u1, u1 ∈C1(Mg;Q) {
c1|Ig = 0
∧2k˜|Kg = 0 ⇒d(u1|Kg) = 0
.
Theorem (M.)
.
.
.
.. .
.
.
H1(Kg;Q)Mg ∼=Q(g≥2)generated byd1:= [u1|Kg] Furthermored1(BSCC map of type(h, g−h)) =ct. h(g−h)
Shigeyuki MORITA Casson invariant and structure of the mapping class group
.
Casson invariant and the first MMM class (5)
.
Theorem (M.)
.
.
.
.. .
.
.
λ∗= 1
24d1+ ¯τ2 : Kg →Q
where
¯ τ2 =Kg
τ2
→hg(2)certain quotient
→ Q
Furthermore
λ∗ = 1
24d1 onMg(3)
so that we may say thatd1 is thecoreof the Casson invariant
.
.
Difference between two filtrations of the Torelli group (1) (recall) two filtrations ofIg:
Ig =Mg(1)⊃ Mg(2) =Kg ⊃ Mg(3)· · · (Johnson filtration)
Ig =Ig(1)⊃ Ig(2) = [Ig(1),Ig(1)]⊃ Ig(3)· · · (lower central series) Ig(k)⊂ Mg(k)for anyk
Johnson showedMg(2)/Ig(2)⊗Q= 0and he asked [Mg(k) :Ig(k)]<∞?
.
Theorem (M. 1988)
.
.
.
.. .
.
.
The index ofIg(3) = [[Ig,Ig],Ig]inMg(3)is infinite This was proved by showing that
d16= 0 onMg(3)whereasd1 = 0onIg(3)
Shigeyuki MORITA Casson invariant and structure of the mapping class group
.
Difference between two filtrations of the Torelli group (2)
alternatively
τ1 :Ig → ∧3H/H
over∼=Q(Ig/Ig(2))⊗Q
τ1∗ :H2(∧3HQ/HQ)Sp ∼=Q→H2(Ig;Q)
is trivial because the image ise1which vanishes on the Torelli group. Then by considering the Sullivan1-minimal model ofIg
and by taking its dual, we can conclude(Ig(2)/Ig(3))Sp 6= 0 whereas we know that(Mg(2)/Mg(3))Sp= 0
Hain determinedτ1∗completely and obtained
.
Theorem (Hain 1997)
.
.
.
.
.
⊕∞
k=1(Ig(k)/Ig(k+ 1))⊗Q∼=Free Lieh∧3H/Hi/quad. relation
Shigeyuki MORITA Casson invariant and structure of the mapping class group
.
.
Difference between two filtrations of the Torelli group (3)
.
Theorem (Hain)
.
.
.
.. .
.
.
⊕∞
k=1(Ig(k)/Ig(k+ 1))⊗Q→⊕∞
k=1(Mg(k)/Mg(k+ 1))⊗Qis surjective so that the latter is generated by the degree1part It is a mystery whether an analogue of the above difference would appear forAutFnor not, namely comparison of
Andreadakis filtration vs l.c.s. filtration ofIAn Andreadakis Conjecture(overQ)
works of Satoh, recently Bartholdi, Massuyeau-Sakasai
Shigeyuki MORITA Casson invariant and structure of the mapping class group
.
Finite type invariants and the Torelli group (1)
Ohtsuki’s (finite type) invariants:
λk:H(3)→Q (k= 1,2, . . .) and Ohtsuki filtration based on the LMO-invariant
QH(3) =QH(3)(3)⊃QH(3)(6) ⊃QH(3)(9) ⊃ · · ·
.
.
Finite type invariants and the Torelli group (2)
A(∅) =commutative algebra generated by vertex oriented connected trivalent graphs/AS+IHX
degree=half the number of vertices
.
Theorem (Garoufalidis-Ohtsuki+Le-Murakami-Ohtsuki)
.
.
.
.. .
. .
There exists an isomorphism
GrmA(∅)∼=QH(3)(3m)/QH(3)(3m+1)
.
Theorem (Garoufalidis-Levine)
.
.
.
.. .
.
.
There exists a mapping
Ig(2m)/Ig(2m+ 1)⊗Q→GrmAconn(∅) which is surjective forg≥5m+ 1
Shigeyuki MORITA Casson invariant and structure of the mapping class group
.
Finite type invariants and the Torelli group (3)
In particular
(Ig(2m)/Ig(2m+ 1))Sp⊗Q gives rise to invariants for
QH(3)(3m)/QH(3)(3m+1) The casem= 1:
Gr1A(∅)∼=QH(3)(3)/QH(3)(4) ∼=Q (Ig(2)/Ig(3))Sp⊗Q∼= Gr1Aconn(∅)∼=Q given by
theta graph, Casson invariantλandd1:Kg →Q
.
.
Open problems (1)
.
Problem (Hain)
.
.
.
.. .
.
.
Is the following sequence exact?
Q→
⊕∞ k=1
(Ig(k)/Ig(k+ 1))⊗Q
⊕∞ k=1
(Mg(k)/Mg(k+ 1))⊗Q
In other words, the difference (overQ) between Johnson and l.c.s filtrations ofIg is only theCassoninvariant?
How about Ohtsuki invariants?
Shigeyuki MORITA Casson invariant and structure of the mapping class group
.
Open problems (2)
.
Problem
.
.
.
.. .
.
.
Compare the following three filtrations ofQH(3)
QH(3) =QH(3)1 ⊃QH(3)2 ⊃QH(3)3⊃ · · · (Mg(k)/∼) QH(3) =QH(3)1 ⊃QH(3)2 ⊃QH(3)3⊃ · · · (Ig(k)/∼) QH(3) =QH(3)(3)⊃QH(3)(6)⊃QH(3)(9) ⊃ · · · (Ohtsuki) M.:QH(3) =QH(3)2
any homology3-sphere can be obtained by pastingKg
Pitsch:QH(3) =QH(3)3
any homology3-sphere can be obtained by pastingMg(3)
.
.
Open problems (3)
Casson invariant appears in
QH(3)2/QH(3)3 andQH(3)(3)/QH(3)(6)
The following two problems are modified ones from the original after comments by M. Sato and S. Tsuji
.
Problem
.
.
.
.. .
. .
Determine whether the Ohtsuki invariant
λk:H(3)∼=Ig/∼(=Kg/∼=Mg(3)/∼)→Q can be described explicitly in terms ofd1and Johnson homomorphisms. If so, give the formula. In particular determine whether its restriction to some deep subgroup Mg(mk)(depending onk) becomes ahomomorphismor not
Shigeyuki MORITA Casson invariant and structure of the mapping class group
.
Open problems (4) k= 1(Casson invariant):
λ1 is a homomorphism onKg but NOT onMg(1) =Ig
.
Problem (special case of Hain’s problem)
.
.
.
.
.
By Garoufalidis-Levine, the Ohtsuki invariantλkrestricted to Ig(2k)gives a homomorphism
λk:Ig(2k)/Ig(2k+ 1)→Q
For eachk≥2, determine whether it is described as a quotient of the higher Johnson homomorphism
Ig(2k)/Ig(2k+ 1)⊗Q Mg(2k)/Mg(2k+ 1)τg⊂(2k)hg(2k) or not
Shigeyuki MORITA Casson invariant and structure of the mapping class group
.
.
Extending the above picture to a wider context (1)
H2(Mg;Q)3e17→0∈H2(Ig;Q) ⇒ λ:H(3)→Z More precisely
Kg → Mg→ Mg/Kg
∼Q
=UQoSp(2g,Z) (U =∧3H/H)
H1(Mg;Q) = 0→H1(Kg;Q)Mg ∼=Q→
H2(UQoSp(2g,Z);Q)∼=Q2→H2(Mg;Q)∼=Q
the difference of two natural cocycles fore1 ⇒ H1(Kg;Q)Mg ∼=Q ⇒ Casson invariant
Shigeyuki MORITA Casson invariant and structure of the mapping class group
.
Extending the above picture to a wider context (2)
extendingMg ⇒ Hg,1 ande1 ⇒˜t2k+1, ultimate goal:
H2(Htopg,1;Q)3˜t2k+1 7→0∈H2(Hsmoothg,1 ;Q) ⇒ νk:Θ3 →Q
Garoufalidis-Levine (based on Goussarov and Habiro)
Hsmoothg,1 ={homology cylinder overΣg,1}/smooth H-cobordism Hsmooth0,1 =Θ3 =H(3)/smooth H-cobordism central⊂ Hsmoothg,1
Θ3→ Hsmoothg,1 → Hg,1 =Hsmoothg,1 /Θ3 (central extension)
.
.
Extending the above picture to a wider context (3) exact sequence:
0→H1(Hg,1;Q)→H1(Hsmoothg,1 ;Q)→H1(Θ3;Q)
∼= Hom(Θ3,Q)∼=QN→H2(Hg,1;Q)→H2(Hsmoothg,1 ;Q)
.
Theorem (Furuta, Fintushel-Stern)
.
.
.
.. .
. .
Θ3 has infinite rank
⇒Θ3/torsion⊂Q∞(becauseΘ3 is countable)
⇒Hom(Θ3,Q)∼=QN(direct product of countably manyQ) so there exist (uncountably) many homomorphisms
Θ3→Q
but explicitly known one(s): Frφyshov and Ozsv ´ath-Szab ´o
Shigeyuki MORITA Casson invariant and structure of the mapping class group
.
Extending the above picture to a wider context (4)
.
Problem
.
.
.
.. .
.
.
How is the huge groupH1(Θ3;Q)∼=QNdivided into Coker
(
H1(Hg,1;Q)→H1(Hsmoothg,1 ;Q) )
and Ker
(
H2(Hg,1;Q)→H2(Hsmoothg,1 ;Q) )
?
Cokeris non-trivial⇔
∃homomorphismΘ3 →Q(6= 0)which extends toHsmoothg,1 →Q many works onHg,1by
Sakasai, Habiro, Massuyeau, Cha-Friedl-Kim,...
.
.
Extending the above picture to a wider context (5) Mal’cev completion ofπ1Σg,1: · · · →Nd→ · · · →N1 =HQ
.
Theorem (Garoufalidis-Levine )
.
.
.
.. .
.
.
∃ρ˜∞:Hsmoothg,1 →lim←−d→∞Aut0Nd (symplectic auto. groups) each factorρ˜d:Hsmoothg,1 →Aut0Ndis surjective overZ
candidates forKer: constructed a homomorphism
˜
ρ:Hg,1 → (
∧3HQ⊕∏∞
k=1
S2k+1HQ )
oSp(2g,Z)
and defined
(∧2S2k+1HQ)Sp∼=Q317→˜t2k+1 ∈H2(Hg,1;Q)
Shigeyuki MORITA Casson invariant and structure of the mapping class group
.
Extending the above picture to a wider context (6) replacingHg,1 with more geometric object
(2008, after a comment by Orr):
Htopg,1 ={homology cylinder overΣg,1}/topological H-cobordism
.
Theorem (Freedman)
.
.
.
.. .
.
.
Any homology3-sphere bounds acontractibletopological4-mfd
It follows that Hsmoothg,1 → Htopg,1 factors throughHg,1
Θ3 → Hsmoothg,1 → Hg,1 → Htopg,1
and the homomorphismsρ˜∞,ρ˜are actually defined onHtopg,1
⇒ ˜t2k+1∈H2(Htopg,1;Q)
.
.
Extending the above picture to a wider context (7) how aboutCoker?
hg,1 =symplectic derivation Lie algebra ofL(HQ) extremely rich and mysterious structure
.
Theorem (Massuyeau-Sakasai)
.
.
.
.. .
.
.
(i) Hg,1 homo.
→ Hˆ1(h+g,1)oSp(2g,Z)with dense image
(ii)H1(Hg,1;Q)⊃Q(sharp contrast:Mgis perfect (g≥3))
⇒Hˆc1(ˆhg,1)⊂H1(Hsmoothg,1 ;Q)but this part comes from H1(Htopg,1;Q)so that it vanishes in theCoker
At present, there is no information about Coker
(
H1(Hg,1;Q)→H1(Hsmoothg,1 ;Q) )
Shigeyuki MORITA Casson invariant and structure of the mapping class group
.
Extending the above picture (8)
back toKer
.
Theorem (Sakasai-Suzuki-M.)
.
.
.
.. .
.
.
∃ρ˜∗∞:Hc∗(ˆh+∞,1)Sp⊗H∗(Sp(2∞,Z))→H∗(Htopg,1;Q)
⇒ Hc2(ˆh∞,1)→H2(Htopg,1;Q)→H2(Hg,1;Q)
Hc2(ˆh∞,1)3t2k+1 (Lie algebra version)7→˜t2k+1 ∈H2(Hg,1;Q) Conant-Kassabov-Vogtmann defined more classes on the LHS, but, at present, onlyt3,t5,t7 are known to be non-trivial...
.
.
Prospect (1)
only known homomorphism(s) (Frφyshov and Ozsv ´ath-Szab ´o) Θ3→Z
candidate: Neumann-Siebenmann, Fukumoto-Furuta-Ue, Saveliev
ν :=
∑7 i=0
(−1)i(i+1)2 rankHFi (instanton Floer homology) recall:
.
Theorem (Taubes)
.
.
.
.. .
.
.
∑7
i=0(−1)irankHFi= 2λ (Casson invariant)
.
Theorem (Manolescu)
.
.
.
.. .
.
.
The Rohlin homomorphismΘ3 →Z/2does not split
Shigeyuki MORITA Casson invariant and structure of the mapping class group
.
Prospect (2)
geometric meaning of the classes˜t2k+1∈H2(Htopg,1;Q):
Intersection numbersof higher and higherMasseyproducts (using works of Kitano, Garoufalidis-Levine)
.
Conjecture
.
.
.
. .
The homomorphismH1(Θ3;Q)∼=QN→H2(Hg,1;Q)induced by
0→Θ3 → Hsmoothg,1 → Hg,1→1
is highly non-trivial (possibly injective) and its image contains the classes˜t2k+1∈H2(Hg,1;Q) ⇒
˜t2k+16= 0∈H2(Htopg,1;Q) and
˜t2k+1= 0∈H2(Hsmoothg,1 ;Q)
Shigeyuki MORITA Casson invariant and structure of the mapping class group
.
.
Prospect (3)
If Conjecture is true⇒obtain homomorphisms
νk:Θ3→Q (k= 1,2, . . .) homology cobordism invariants
Shigeyuki MORITA Casson invariant and structure of the mapping class group