• 検索結果がありません。

Casson invariant and structure of the mapping class group

N/A
N/A
Protected

Academic year: 2022

シェア "Casson invariant and structure of the mapping class group"

Copied!
33
0
0

読み込み中.... (全文を見る)

全文

(1)

. .

.. .

.

.

Casson invariant and

structure of the mapping class group

Shigeyuki MORITA

January 25, 2017

Shigeyuki MORITA Casson invariant and structure of the mapping class group

(2)

.

Contents

.

.

.

1 Homology3-spheres and the Torelli group

.

.

.

2 Casson invariant and the first MMM class

.

.

.

3 Difference between two filtrations of the Torelli group

.

.

.

4 Finite type invariants and the Torelli group

.

.

.

5 Open problems

.

.

.

6 Extending the above picture to a wider context

based on joint work with T. Sakasai and M. Suzuki

.

.

.

7 Prospect

Shigeyuki MORITA Casson invariant and structure of the mapping class group

(3)

.

.

Homology3-spheres and the Torelli group (1)

M(3) ={closed oriented3-manifold}/ori. pres. diffeo.

H(3) ={closed orientedhomology3-sphere}/ori. pres. diffeo.

Heegaard decomposition:

M(3)3[M], M =Hgϕ−Hg (Hg :handlebody, ϕ∈ Mg) Mg :mapping class group S3 =Hgιg −Hgg ∈ Mg : 90-rotation on each handle)

⇒ Mg3[ϕ]7−→[Mϕ=Hgϕ−Hg]M(3)

Shigeyuki MORITA Casson invariant and structure of the mapping class group

(4)

.

Homology3-spheres and the Torelli group (2)

.

Theorem (Reidemeister-Singer)

.

.

.

.. .

.

.

(a

g

Mg

)

/R.S. stabilization=M(3)

alternative description:

fix a Heegaard embeddingΣg⊂S3=HgΣg −Hg

Ng ={ϕ∈ Mg;ϕextends to diffeo. ofHg} (⊂ Mg) N0g ={ϕ∈ Mg;ϕextends to diffeo. of−Hg} (⊂ Mg)

M(3) = lim

g→∞N0g\Mg/Ng

(5)

.

.

Homology3-spheres and the Torelli group (3) restriction to the Torelli group :

Ig= Ker(Mg Sp(2g,Z))

.

Proposition

.

.

.

.. .

.

.

limg→∞Ig/∼=H(3) (Ig3ϕ7−→Wϕ =Hgιgϕ−HgH(3)) where ϕ∼ψ⇔ιgϕ=ιgψ∈N0g\Mg/Ng

two filtrations ofIg:

Ig =Mg(1)⊃ Mg(2)⊃ · · · (Johnson filtration)

Ig =Ig(1)⊃ Ig(2) = [Ig(1),Ig(1)]⊃ · · · (lower central series) Ig(k)⊂ Mg(k) for anyk

Shigeyuki MORITA Casson invariant and structure of the mapping class group

(6)

.

Homology3-spheres and the Torelli group (4)

Mg(2) = Ker(τ1 :Ig

first Johnson hom.

3H/H) (H =H1g;Z)) Mg(k+ 1) = Ker(τk :Mg(k)Johnson hom.

hg(k))

.

Theorem (Johnson)

.

.

.

. .

Ig(2)finite index

Mg(2) =Kg =hDehn twists on BSCCi Ig(1)/Ig(2) =H1(Ig)=3H/H⊕2-torsion

BCSS=bounding simple closed curve

Shigeyuki MORITA Casson invariant and structure of the mapping class group

(7)

.

.

Homology3-spheres and the Torelli group (5)

Two filtrations ofIg induces those ofH(3)andQH(3):

H(3) =H(3)1 H(3)2H(3)3 ⊃ · · · H(3) =H(3)1 H(3)2H(3)3 ⊃ · · ·

QH(3) =QH(3)1 QH(3)2 QH(3)3⊃ · · · QH(3) =QH(3)1 QH(3)2 QH(3)3⊃ · · · where

H(3)k= lim

g→∞Mg(k)/∼ ⊃ H(3)k = lim

g→∞Ig(k)/

Shigeyuki MORITA Casson invariant and structure of the mapping class group

(8)

.

Casson invariant and the first MMM class (1)

Casson invariant (1985):

λ:H(3)Z

(i)λ≡ Rohlin homomorphism:H(3)Z/2 (mod2) (ii)λ= 1

2 “alg. number” of{irred. rep.:π1W SU(2)}/conj.

(iii)λ(−W) =−λ(W), additive w.r.t. connected sum (iv)W ⊃K (knot)⇒λ(W1/n(K)) =λ(W) +n1

2∆¯00K(1)

Extensions by Walker (to rational homology3-spheres) and Lescop (to all3-manifolds)

(9)

.

.

Casson invariant and the first MMM class (2)

Consider the mapping

λ :IgZ defined byλ(ϕ) =λ(Wϕ) NOT a homomorphism, but its restriction toKg

λ:KgZ can be shown to be a homomorphism!

What is it?

Answer: secondary class associated to the fact: the first MMM-class vanishes in the Torelli group e1 = 0∈H2(Ig;Q)

Shigeyuki MORITA Casson invariant and structure of the mapping class group

(10)

.

Casson invariant and the first MMM class (3)

e1 ∈H2(Mg;Z)

geometric meaning: signature of surface bundles over surfaces

e1= 0∈H2(Ig;Q)because signature of any fiber bundle F →E→B vanishes ifπ1B acts onH(F;Q)trivially (Chern-Hirzebruch-Serre)

There aretwocanonical cocycles representinge1: pull back of 3c1 ∈Z2(Sp(2g,Z);Q)

image of 2(3HQ/HQ)Sp=Q→ ∧2˜k∈Z2(Mg;Q) under (˜k, ρ0) :Mg → ∧3HQ/HQoSp(2g,Z)

(11)

.

.

Casson invariant and the first MMM class (4)

3c1+2˜k=du1, u1 ∈C1(Mg;Q) {

c1|Ig = 0

2k˜|Kg = 0 ⇒d(u1|Kg) = 0

.

Theorem (M.)

.

.

.

.. .

.

.

H1(Kg;Q)Mg =Q(g2)generated byd1:= [u1|Kg] Furthermored1(BSCC map of type(h, g−h)) =ct. h(g−h)

Shigeyuki MORITA Casson invariant and structure of the mapping class group

(12)

.

Casson invariant and the first MMM class (5)

.

Theorem (M.)

.

.

.

.. .

.

.

λ= 1

24d1+ ¯τ2 : Kg Q

where

¯ τ2 =Kg

τ2

hg(2)certain quotient

Q

Furthermore

λ = 1

24d1 onMg(3)

so that we may say thatd1 is thecoreof the Casson invariant

(13)

.

.

Difference between two filtrations of the Torelli group (1) (recall) two filtrations ofIg:

Ig =Mg(1)⊃ Mg(2) =Kg ⊃ Mg(3)· · · (Johnson filtration)

Ig =Ig(1)⊃ Ig(2) = [Ig(1),Ig(1)]⊃ Ig(3)· · · (lower central series) Ig(k)⊂ Mg(k)for anyk

Johnson showedMg(2)/Ig(2)Q= 0and he asked [Mg(k) :Ig(k)]<∞?

.

Theorem (M. 1988)

.

.

.

.. .

.

.

The index ofIg(3) = [[Ig,Ig],Ig]inMg(3)is infinite This was proved by showing that

d16= 0 onMg(3)whereasd1 = 0onIg(3)

Shigeyuki MORITA Casson invariant and structure of the mapping class group

(14)

.

Difference between two filtrations of the Torelli group (2)

alternatively

τ1 :Ig → ∧3H/H

over=Q(Ig/Ig(2))Q

τ1 :H2(3HQ/HQ)Sp =Q→H2(Ig;Q)

is trivial because the image ise1which vanishes on the Torelli group. Then by considering the Sullivan1-minimal model ofIg

and by taking its dual, we can conclude(Ig(2)/Ig(3))Sp 6= 0 whereas we know that(Mg(2)/Mg(3))Sp= 0

Hain determinedτ1completely and obtained

.

Theorem (Hain 1997)

.

.

.

.

.

k=1(Ig(k)/Ig(k+ 1))Q=Free Lieh∧3H/Hi/quad. relation

Shigeyuki MORITA Casson invariant and structure of the mapping class group

(15)

.

.

Difference between two filtrations of the Torelli group (3)

.

Theorem (Hain)

.

.

.

.. .

.

.

k=1(Ig(k)/Ig(k+ 1))Q

k=1(Mg(k)/Mg(k+ 1))Qis surjective so that the latter is generated by the degree1part It is a mystery whether an analogue of the above difference would appear forAutFnor not, namely comparison of

Andreadakis filtration vs l.c.s. filtration ofIAn Andreadakis Conjecture(overQ)

works of Satoh, recently Bartholdi, Massuyeau-Sakasai

Shigeyuki MORITA Casson invariant and structure of the mapping class group

(16)

.

Finite type invariants and the Torelli group (1)

Ohtsuki’s (finite type) invariants:

λk:H(3)Q (k= 1,2, . . .) and Ohtsuki filtration based on the LMO-invariant

QH(3) =QH(3)(3)QH(3)(6) QH(3)(9) ⊃ · · ·

(17)

.

.

Finite type invariants and the Torelli group (2)

A(∅) =commutative algebra generated by vertex oriented connected trivalent graphs/AS+IHX

degree=half the number of vertices

.

Theorem (Garoufalidis-Ohtsuki+Le-Murakami-Ohtsuki)

.

.

.

.. .

. .

There exists an isomorphism

GrmA()=QH(3)(3m)/QH(3)(3m+1)

.

Theorem (Garoufalidis-Levine)

.

.

.

.. .

.

.

There exists a mapping

Ig(2m)/Ig(2m+ 1)QGrmAconn() which is surjective forg≥5m+ 1

Shigeyuki MORITA Casson invariant and structure of the mapping class group

(18)

.

Finite type invariants and the Torelli group (3)

In particular

(Ig(2m)/Ig(2m+ 1))SpQ gives rise to invariants for

QH(3)(3m)/QH(3)(3m+1) The casem= 1:

Gr1A(∅)∼=QH(3)(3)/QH(3)(4) =Q (Ig(2)/Ig(3))SpQ= Gr1Aconn()=Q given by

theta graph, Casson invariantλandd1:Kg Q

(19)

.

.

Open problems (1)

.

Problem (Hain)

.

.

.

.. .

.

.

Is the following sequence exact?

Q

k=1

(Ig(k)/Ig(k+ 1))Q

k=1

(Mg(k)/Mg(k+ 1))Q

In other words, the difference (overQ) between Johnson and l.c.s filtrations ofIg is only theCassoninvariant?

How about Ohtsuki invariants?

Shigeyuki MORITA Casson invariant and structure of the mapping class group

(20)

.

Open problems (2)

.

Problem

.

.

.

.. .

.

.

Compare the following three filtrations ofQH(3)

QH(3) =QH(3)1 QH(3)2 QH(3)3⊃ · · · (Mg(k)/) QH(3) =QH(3)1 QH(3)2 QH(3)3⊃ · · · (Ig(k)/) QH(3) =QH(3)(3)QH(3)(6)QH(3)(9) ⊃ · · · (Ohtsuki) M.:QH(3) =QH(3)2

any homology3-sphere can be obtained by pastingKg

Pitsch:QH(3) =QH(3)3

any homology3-sphere can be obtained by pastingMg(3)

(21)

.

.

Open problems (3)

Casson invariant appears in

QH(3)2/QH(3)3 andQH(3)(3)/QH(3)(6)

The following two problems are modified ones from the original after comments by M. Sato and S. Tsuji

.

Problem

.

.

.

.. .

. .

Determine whether the Ohtsuki invariant

λk:H(3)=Ig/∼(=Kg/∼=Mg(3)/)Q can be described explicitly in terms ofd1and Johnson homomorphisms. If so, give the formula. In particular determine whether its restriction to some deep subgroup Mg(mk)(depending onk) becomes ahomomorphismor not

Shigeyuki MORITA Casson invariant and structure of the mapping class group

(22)

.

Open problems (4) k= 1(Casson invariant):

λ1 is a homomorphism onKg but NOT onMg(1) =Ig

.

Problem (special case of Hain’s problem)

.

.

.

.

.

By Garoufalidis-Levine, the Ohtsuki invariantλkrestricted to Ig(2k)gives a homomorphism

λk:Ig(2k)/Ig(2k+ 1)Q

For eachk≥2, determine whether it is described as a quotient of the higher Johnson homomorphism

Ig(2k)/Ig(2k+ 1)⊗Q Mg(2k)/Mg(2k+ 1)τg(2k)hg(2k) or not

Shigeyuki MORITA Casson invariant and structure of the mapping class group

(23)

.

.

Extending the above picture to a wider context (1)

H2(Mg;Q)3e17→0∈H2(Ig;Q) λ:H(3)Z More precisely

Kg → Mg→ Mg/Kg

Q

=UQoSp(2g,Z) (U =3H/H)

H1(Mg;Q) = 0→H1(Kg;Q)Mg =Q

H2(UQoSp(2g,Z);Q)=Q2→H2(Mg;Q)=Q

the difference of two natural cocycles fore1 H1(Kg;Q)Mg =Q Casson invariant

Shigeyuki MORITA Casson invariant and structure of the mapping class group

(24)

.

Extending the above picture to a wider context (2)

extendingMg ⇒ Hg,1 ande1 ˜t2k+1, ultimate goal:

H2(Htopg,1;Q)3˜t2k+1 7→0∈H2(Hsmoothg,1 ;Q) νk:Θ3 Q

Garoufalidis-Levine (based on Goussarov and Habiro)

Hsmoothg,1 ={homology cylinder overΣg,1}/smooth H-cobordism Hsmooth0,1 =Θ3 =H(3)/smooth H-cobordism central⊂ Hsmoothg,1

Θ3→ Hsmoothg,1 → Hg,1 =Hsmoothg,1 3 (central extension)

(25)

.

.

Extending the above picture to a wider context (3) exact sequence:

0→H1(Hg,1;Q)→H1(Hsmoothg,1 ;Q)→H13;Q)

= Hom(Θ3,Q)=QN→H2(Hg,1;Q)→H2(Hsmoothg,1 ;Q)

.

Theorem (Furuta, Fintushel-Stern)

.

.

.

.. .

. .

Θ3 has infinite rank

Θ3/torsion⊂Q(becauseΘ3 is countable)

Hom(Θ3,Q)=QN(direct product of countably manyQ) so there exist (uncountably) many homomorphisms

Θ3Q

but explicitly known one(s): Frφyshov and Ozsv ´ath-Szab ´o

Shigeyuki MORITA Casson invariant and structure of the mapping class group

(26)

.

Extending the above picture to a wider context (4)

.

Problem

.

.

.

.. .

.

.

How is the huge groupH13;Q)=QNdivided into Coker

(

H1(Hg,1;Q)→H1(Hsmoothg,1 ;Q) )

and Ker

(

H2(Hg,1;Q)→H2(Hsmoothg,1 ;Q) )

?

Cokeris non-trivial

homomorphismΘ3 Q(6= 0)which extends toHsmoothg,1 Q many works onHg,1by

Sakasai, Habiro, Massuyeau, Cha-Friedl-Kim,...

(27)

.

.

Extending the above picture to a wider context (5) Mal’cev completion ofπ1Σg,1: · · · →Nd→ · · · →N1 =HQ

.

Theorem (Garoufalidis-Levine )

.

.

.

.. .

.

.

ρ˜:Hsmoothg,1 lim←−d→∞Aut0Nd (symplectic auto. groups) each factorρ˜d:Hsmoothg,1 Aut0Ndis surjective overZ

candidates forKer: constructed a homomorphism

˜

ρ:Hg,1 (

3HQ

k=1

S2k+1HQ )

oSp(2g,Z)

and defined

(2S2k+1HQ)Sp=Q317→˜t2k+1 ∈H2(Hg,1;Q)

Shigeyuki MORITA Casson invariant and structure of the mapping class group

(28)

.

Extending the above picture to a wider context (6) replacingHg,1 with more geometric object

(2008, after a comment by Orr):

Htopg,1 ={homology cylinder overΣg,1}/topological H-cobordism

.

Theorem (Freedman)

.

.

.

.. .

.

.

Any homology3-sphere bounds acontractibletopological4-mfd

It follows that Hsmoothg,1 → Htopg,1 factors throughHg,1

Θ3 → Hsmoothg,1 → Hg,1 → Htopg,1

and the homomorphismsρ˜˜are actually defined onHtopg,1

˜t2k+1∈H2(Htopg,1;Q)

(29)

.

.

Extending the above picture to a wider context (7) how aboutCoker?

hg,1 =symplectic derivation Lie algebra ofL(HQ) extremely rich and mysterious structure

.

Theorem (Massuyeau-Sakasai)

.

.

.

.. .

.

.

(i) Hg,1 homo.

Hˆ1(h+g,1)oSp(2g,Z)with dense image

(ii)H1(Hg,1;Q)Q(sharp contrast:Mgis perfect (g≥3))

⇒Hˆc1(ˆhg,1)⊂H1(Hsmoothg,1 ;Q)but this part comes from H1(Htopg,1;Q)so that it vanishes in theCoker

At present, there is no information about Coker

(

H1(Hg,1;Q)→H1(Hsmoothg,1 ;Q) )

Shigeyuki MORITA Casson invariant and structure of the mapping class group

(30)

.

Extending the above picture (8)

back toKer

.

Theorem (Sakasai-Suzuki-M.)

.

.

.

.. .

.

.

∃ρ˜:Hc(ˆh+,1)Sp⊗H(Sp(2∞,Z))→H(Htopg,1;Q)

Hc2(ˆh,1)→H2(Htopg,1;Q)→H2(Hg,1;Q)

Hc2(ˆh,1)3t2k+1 (Lie algebra version)7→˜t2k+1 ∈H2(Hg,1;Q) Conant-Kassabov-Vogtmann defined more classes on the LHS, but, at present, onlyt3,t5,t7 are known to be non-trivial...

(31)

.

.

Prospect (1)

only known homomorphism(s) (Frφyshov and Ozsv ´ath-Szab ´o) Θ3Z

candidate: Neumann-Siebenmann, Fukumoto-Furuta-Ue, Saveliev

ν :=

7 i=0

(1)i(i+1)2 rankHFi (instanton Floer homology) recall:

.

Theorem (Taubes)

.

.

.

.. .

.

.

7

i=0(1)irankHFi= 2λ (Casson invariant)

.

Theorem (Manolescu)

.

.

.

.. .

.

.

The Rohlin homomorphismΘ3 Z/2does not split

Shigeyuki MORITA Casson invariant and structure of the mapping class group

(32)

.

Prospect (2)

geometric meaning of the classes˜t2k+1∈H2(Htopg,1;Q):

Intersection numbersof higher and higherMasseyproducts (using works of Kitano, Garoufalidis-Levine)

.

Conjecture

.

.

.

. .

The homomorphismH13;Q)=QN→H2(Hg,1;Q)induced by

0Θ3 → Hsmoothg,1 → Hg,11

is highly non-trivial (possibly injective) and its image contains the classes˜t2k+1∈H2(Hg,1;Q)

˜t2k+16= 0∈H2(Htopg,1;Q) and

˜t2k+1= 0∈H2(Hsmoothg,1 ;Q)

Shigeyuki MORITA Casson invariant and structure of the mapping class group

(33)

.

.

Prospect (3)

If Conjecture is trueobtain homomorphisms

νk:Θ3Q (k= 1,2, . . .) homology cobordism invariants

Shigeyuki MORITA Casson invariant and structure of the mapping class group

参照

関連したドキュメント

Answering a question of de la Harpe and Bridson in the Kourovka Notebook, we build the explicit embeddings of the additive group of rational numbers Q in a finitely generated group

On the way to solving this problem, we prove an angle distortion theorem for starlike and spirallike functions with respect to interior and boundary points... Let D be a

[19, 20], and it seems to be commonly adopted now.The general background for these geometries goes back to Klein’s definition of geometry as the study of homogeneous spaces, which

In this context, the Fundamental Theorem of the Invariant Theory is proved, a notion of basis of the rings of invariants is introduced, and a generalization of Hilbert’s

The proof uses a set up of Seiberg Witten theory that replaces generic metrics by the construction of a localised Euler class of an infinite dimensional bundle with a Fredholm

We study the classical invariant theory of the B´ ezoutiant R(A, B) of a pair of binary forms A, B.. We also describe a ‘generic reduc- tion formula’ which recovers B from R(A, B)

Key words and phrases: Quasianalytic ultradistributions; Convolution of ultradistributions; Translation-invariant Banach space of ultradistribu- tions; Tempered

Given a principal fibre bundle with structure group S, and a fibre transitive Lie group G of automorphisms thereon, Wang’s theorem identifies the invariant connections with