• 検索結果がありません。

On the Casson-Walker invariant and a quantum representation of the mapping class group through the LMO invariant for genus one open books Atsushi MOCHIZUKI

N/A
N/A
Protected

Academic year: 2022

シェア "On the Casson-Walker invariant and a quantum representation of the mapping class group through the LMO invariant for genus one open books Atsushi MOCHIZUKI"

Copied!
34
0
0

読み込み中.... (全文を見る)

全文

(1)

On the Casson-Walker invariant and a quantum representation of the mapping class group through

the LMO invariant for genus one open books

Atsushi MOCHIZUKI

RIMS, Kyoto University. D3 revised on 22th February, 2017

(2)

A table of contents

Introduction

Backgrounds

Motivations

Def (Open book decomp) and Prop (Surgery presentation)

Results Part A

Def (Surgery) and Explanation (Surgery presentation)

Idea of Proof of Thm A

Definitions (Jacobi diag, Kontsevich inv, LMO inv)

Proof of Thm A Part B

Definitions (Kirby moves, Space of Jacobi diags, Product)

Construction of Representation

Proof of Thm B

2 / 34

(3)

Backgrounds

Casson-Walker invλ(M)Q

for aZ::::HSM (Casson, 1980s) H(M;Z)=H(S3;Z)

for aQ::::HSM (Walker, 1992) H(M;Q)=H(S3;Q)

Construction in terms of mapping class groups with regard toHeegaard splittings

Morita (1980s)

Cheptea, Habiro, Massuyeau (2008) etc.

⇝How about the case of open book decompositions

(4)

Motivation A

g= 1 Heegaard splitting lens spacesL(p, q)

λ(L(p, q)) =−1 2s(q, p) (s(q, p) : Dedekind sum)

g= 1open book decomposition g= 1open books Mφ

(φ: homeo ofΣ1,1)

λ(Mφ) =?

Aim A

Calculate the Casson-Walker invariant for 3-manifolds admitting a genus one open book decomposition.

4 / 34

(5)

Motivation B

quantum inv. of links

quantum rep. of a braid group ψn:BnEnd(Vn)

quantum inv. of 3-manifolds quantum rep. of a mapping class group

ρ:M1,1 End( ˆA( ))

· · ·

· · ·

· · ·

σ

σ∈Bn,L= ˆσ Jones poly.

trace(hn·ψn(σ))

T

T M1,1,M =S3ˆ

T

Casson inv.

?

Aim B

Construct the representation of the mapping class group MCG(Σ1,1) and present the Casson-Walker invariant ofg= 1 open books

(6)

Open book decompositions

Anopen book decompositions (genus 1, 1 boundary comp) of a 3-manifoldM

M = Σ1,1×[0,1] ϕ

D2×S1

whereφ: a homeo ofΣ1,1 s.t. φ|∂Σ1,1 = id∂Σ1,1

6 / 34

(7)

Surgery presentation

Fact : A 3-mfd with genus one open book decomp has the following surgery presentation.

Ln1,···,nN;m

nN

n3

n2 n1

nN−1

mhalf twists

half twist

S3 M

n1,···,nN;m surgery alongLn1,···,nN;m

(8)

Result A

Mn1,···,nN;m : 3-mfd with genus one open book decomp obtained by surgery along a linkLn1,···,nN;m Suppose thatMn1,···,nN;m is a QHS,

Theorem A [M.]

λ(Mn1,···,nN;m) = 1 24(∑

i

ni3σ)

(−1)m+σ+ 24|H1| (2∑

i

ni+ 6N12m) whereσ : signature of linking matrix ofLn1,···,nN;m

σ+: posi. eigenvalues of linking mat.

|H1|: order ofH1(Mn1,···,nN;m;Z)

8 / 34

(9)

Result B

Mφ : 3-mfd with genus one open book decomp which monodromy is φ

Suppose thatMφ is a QHS

˜

φ∈M]1,1 =T2/KI, KII, KIII ρ:M]1,1End( ˆA( )) Theorem B [M.]

The Casson-Walker invariant ofMφ can be calculated as follows.

λ(Mφ) = 2

tr0(ρ( ˜φ))tr1(ρ( ˜φ)) +1 8σ( ˜φ)

whereσ( ˜φ) : signature of linking matrix ofLφ˜

tri(ρ( ˜φ)) =degree ipart of “quantum trace” of ρ( ˜φ)

(10)

A table of contents

Introduction

Backgrounds

Motivations

Def (Open book decomp) and Prop (Surgery presentation)

Results Part A

Def (Surgery) and Explanation (Surgery presentation)

Idea of Proof of Thm A

Definitions (Jacobi diag, Kontsevich inv, LMO inv)

Proof of Thm A Part B

Definitions (Kirby moves, Space of Jacobi diags, Product)

Construction of Representation

Proof of Thm B

10 / 34

(11)

Surgery

S3 M

the surgery alongL S3

L

pull out the tubular nbd ofL

ψ

D2×S1

M = (S3\the nbd ofL)∪ψ (D2×S1)

(12)

Surgery presentations and monodromies

α β

α

β

12 / 34

(13)

Idea of Proof of Thm A

λ(M)=

deg=1 LMO inv Z1LMO(M)

Kontsevich inv of L Z(L)

ι

Caluculate

glue them

Z

Z(L

n1,···,nN;m) ZLMO

1 (M

n1,···,nN;m)

ι

(14)

Jacobi diagrams

AJacobi diag on a 1-manifoldX

degof a Jacobi diag = 12 #vertices

A(X) = spanC {Jacobi diags onX}/AS, IHX, STU rel

AS : = -

IHX : = -

STU : = -

14 / 34

(15)

Kontsevich invariant

TheKontsevich invis an inv of a link L

Z(L) =Z(T1)◦Z(T2)◦ · · · ◦Z(Tk)∈ A(⊔S1) (Ti : elementary q-tangle)

For example,

Z( ) = Φ = + 1

24[ , ] +· · ·

Z( ) =ν12 =



S2Φ )



12

Z( ) = exp 2 = +1

2 +1

8 + 1

48 +· · ·

(16)

deg=1 part of LMO invariant

Thedeg=1 part of LMO inv Z1LM O(M) = ι(Z(L))

ι(Z( ))σ+ι(Z( ))σ spanC{∅, } ι:A(S1)spanC{∅, }

where

ι : 7−→

7−→ 1 2 7−→ 1

6 + 1

6

=2

16 / 34

(17)

The value of the deg=1 LMO invariant of g = 1 open books

Mn1,···,nN;m : 3-mfd with genus one open book decomp obtained by surgery along a linkLn1,···,nN;m AN : linking matrix ofLn1,···,nN;m

SupposedetAN ̸= 0

Z1LMO(M) =c0(M) +c1(M)θ Prop

c1(Mn1,···,nN;m) = 1

48(1)N+σ+detAN(trAN 3σ)

1

48(1)m+N+σ+(2trAN+ 6N 12m)

(18)

The value of a clasp

Z( ) =

ν12

ν12

S1Φ

S1S32Φ

S2exp

S1S3Φ

= exp 1

24 + 1

96 + 1

96 (Ohtsuki, 2007)

where exp = +1

2 +1

8 + 1

48 +· · ·

18 / 34

(19)

Result A

Mn1,···,nN;m : 3-mfd with genus one open book decomp obtained by surgery along a linkLn1,···,nN;m Suppose thatMn1,···,nN;m is a QHS,

Theorem A [M.]

λ(Mn1,···,nN;m) = 1 24(∑

i

ni3σ)

(−1)m+σ+ 24|H1| (2∑

i

ni+ 6N12m) whereσ : signature of linking matrix ofLn1,···,nN;m

σ+: posi. eigenvalues of linking mat.

|H1|: order ofH1(Mn1,···,nN;m;Z)

(20)

Proof of Thm A

Fact : λ(M) = 2c1(M)

|H1| when b1(M) = 0 Jacobi diags which become throughι

, , , , , ,

, ,

As for non circular case, it can be calculated as LMO inv of lens spaces.

As for circular case, we have only to claculate above three diags. 2

20 / 34

(21)

The value of twist knots 1

n

m Kn;m

Mn;m=SK3

n;m, |H1(Mn;m)|=|n+ (1)m2|

c1(SK3n,m) =











(1)σ+(1

48(n+ 2)(n3σ) + 481(2n+ 6 + 12m)) m : even (−1)σ+(1

48(n2)(n3σ) 481(2n+ 6 + 12m)) m : odd

λ(Mn;m) =

{241 ((n+2)1)((n+2)n+2 2) 2(n+2)m (m:even, n+ 2>0)

241 ((n2)1)((nn2 2)2) 2(nm+12) (m:odd, n2>0)

(22)

The value of twist knots 2

λ(Mn;m) =

{241 ((n+2)1)((n+2)n+2 2) 2(n+2)m (m:even, n+ 2>0)

241 ((n2)1)((nn2 2)2) 2(nm+12) (m:odd, n2>0)

λ(SK3) =λ(S3) + 1

2p∆′′K(1)−s(1, p)

=−s(1, p) + 1

2p∆′′K(1) s(1, p) = (p1)(p2)

12p

′′Kn,m(1) =

{−m m : even m+ 1 m : odd

22 / 34

(23)

A table of contents

Introduction

Backgrounds

Motivations

Def (Open book decomp) and Prop (Surgery presentation)

Results Part A

Def (Surgery) and Explanation (Surgery presentation)

Idea of Proof of Thm A

Definitions (Jacobi diag, Kontsevich inv, LMO inv)

Proof of Thm A Part B

Definitions (Kirby moves, Space of Jacobi diags, Product)

Construction of Representation

Proof of Thm B

(24)

Kirby moves

the KI move : ←→ ∅ ←→

the KII move : −→

the KIII move :

0

−→ ∅

theKI move : ←→ ∅

24 / 34

(25)

The space of the Jacobi diagrams on 2-tangles

Aˆ( ) ={Jacobi diagrams on 2-tangles up to AS, IHX, STU}/P2, O1, I>2

P2 : + + 0

O1 : ∼ −2

I>2 : the Jacobi diagram whose trivalent vertices >20 We set 10 elements as the basis ofA( ).

µ00= ,µ1 = ,µ10= ,µ01= ,µ11= , θµ00= ,θµ1 = ,θµ10= , θµ01= ,θµ11=

(26)

The product on the space of the Jacobi diagrams

The product on the spaceA( )

: ˆA( )⊗A(ˆ ) A(Sˆ 1 )ˆι A(ˆ )

For diagramsη= D ,η= D ∈ A( ),

η•η= ˆι





D

D





∈A(ˆ ),

26 / 34

(27)

Construction of Representation

ρ:M]1,1=T2/KI, KII, KIIIˆιZˇ Aˆ( )π End( ˆA( )) ˆ

ι:=

−1ι: ˆA((⊔S1) )→A(ˆ ) ˆιZˇ is invariat under the KI, KII, KIII moves.

: ˆA( )⊗Aˆ( ) (

D , D )

7→ˆι



D D

∈Aˆ( )

π: ˆA( )End( ˆA( )) π(

ˆ ιZ(R)ˇ )

: ˆA( )→A(ˆ ) ˆ

ιZˇ(T)7→ˆιZˇ(R◦T) = ˆιZ(R)ˇ ˆιZ(R)ˇ

(28)

Result B

Mφ : 3-mfd with genus one open book decomp which monodromy is φ

Suppose thatMφ is a QHS

˜

φ∈M]1,1 =T2/KI, KII, KIII ρ:M]1,1End( ˆA( )) Theorem B [M.]

The Casson-Walker invariant ofMφ can be calculated as follows.

λ(Mφ) = 2

tv0ρ( ˜φ)w

tv1ρ( ˜φ)w+1 8σ( ˜φ) whereσ( ˜φ) : signature of linking matrix ofLφ˜ vi =degree ipart oft

(

tr ,tr ,tr ,tr ,tr ,· · ·) w= ˆιZ(ˇ )∈Aˆ( )

28 / 34

(29)

Proof of Thm B

It is known that

Z1LMO(M) =c0(M) +c1(M)θ, λ(M) = 2

c0(M)c1(M), Z1LMO(M) =

(

−1 + 1 16θ

)σ+( 1 + 1

16θ )σ

ιZ(L)ˇ

=(1)σ+ (

1 + 1 16σθ

)

(b0+b1θ)

=(1)σ+b0+ (1)σ+ (σ

16b0+b1 )

θ.

On the other hand, we have that

(trµ00,trµ1,trµ10,· · ·)ρ( ˜φ)ˆιZ(ˇ ) = ˆιZ(Lˇ φ˜).

2

(30)

Concrete Calculations

When the monodromyφis periodic in M1,1, we can set

˜

φ=hmαn1β· · ·αnNβ, ∀i, ni 0, ∃j, nj ̸= 0,

whereh= ,α=

+1 ,β = +1 ,

andσ( ˜φ) = 0.

ρ(h),ρ(α),ρ(β) can be presented as matrices inGL10(C).

v=t(0, 2, 2, 2, 1

6θ, 0, 2θ, 2θ, 2θ, 0) w=t(0, 1, 1

2, 1 2, 0, 1

24, 0, 0, 0, 0) Thus, the Casson-Walker invaritant ofMφ is

λ(Mφ) = 2

tv0ρ( ˜φ)w

tv1ρ( ˜φ)w

30 / 34

(31)

Presentation of the generators

α= 1

24θµ00+ (

1 + 1 24

) µ1+1

2µ10+1

2µ01+1 4

( 1 1

3θ )

µ11

β= (

1 + 1 16θ

)

µ00−µ1+1

2(1 1

48θ)µ10+1

2(1 1

48θ)µ01 1 96θµ11

V =V1⊕V2⊕V3

=C⟨µ00, µ10, θµ00, θµ10⟩ ⊕C⟨µ01, µ11, θµ01, θµ11⟩ ⊕C⟨µ1, θµ1

(32)

Concrete matrix presentaion of α

A:=ρ(

+1

) is the following matrix.









1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1

2 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 241 0 0 0 0 1 0 0 0

1

96 0 241 0 0 12 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 961 241 0 0 0 12 1









=

( 1 0 0 0

1

2 1 0 0

0 0 1 0

961 241 12 1

)

( 1 0 0 0

1

2 1 0 0

0 0 1 0

961 241 12 1

)

( 1 0

241 1

)

32 / 34

(33)

Concrete matrix presentaion of β

B:=ρ( +1 ) is the following matrix.









1 0 −2 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 2 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

481 0 241 0 0 1 02 0 0 0 241 0 0 0 0 1 0 0 0 0 0 481 0 0 0 0 1 0 0 0 0 0 481

1

24 0 0 0 12 0 0 0 0 481 0 0 0 0 1









=

( 1 2 0 0

0 1 0 0

481 241 12 0 481 0 1

)

( 1 2 0 0

0 1 0 0

481 241 12 0 481 0 1

)

( 1 0

241 1

)

(34)

Summary and Future directions

Summary

We calculated the Casson-Walker invariant ofg= 1 open books through the calculation of the deg=1 part of the LMO invariant.

We constructed the representaion of M1,1 on the space of the Jacobi diagrams on , and we gave a formula for the calculation of the Casson-Walker invariant of g= 1 open books.

Future directions

relation to rep. theory of MCG

relation to contact topology

general cases

34 / 34

参照

関連したドキュメント