On the Casson-Walker invariant and a quantum representation of the mapping class group through
the LMO invariant for genus one open books
Atsushi MOCHIZUKI
RIMS, Kyoto University. D3 revised on 22th February, 2017
A table of contents
Introduction
• Backgrounds
• Motivations
• Def (Open book decomp) and Prop (Surgery presentation)
• Results Part A
• Def (Surgery) and Explanation (Surgery presentation)
• Idea of Proof of Thm A
• Definitions (Jacobi diag, Kontsevich inv, LMO inv)
• Proof of Thm A Part B
• Definitions (Kirby moves, Space of Jacobi diags, Product)
• Construction of Representation
• Proof of Thm B
2 / 34
Backgrounds
Casson-Walker invλ(M)∈Q
• for aZ::::HSM (Casson, 1980s) H∗(M;Z)∼=H∗(S3;Z)
• for aQ::::HSM (Walker, 1992) H∗(M;Q)∼=H∗(S3;Q)
Construction in terms of mapping class groups with regard toHeegaard splittings
• Morita (1980s)
• Cheptea, Habiro, Massuyeau (2008) etc.
⇝How about the case of open book decompositions
Motivation A
g= 1 Heegaard splitting lens spacesL(p, q)
λ(L(p, q)) =−1 2s(q, p) (s(q, p) : Dedekind sum)
g= 1open book decomposition g= 1open books Mφ
(φ: homeo ofΣ1,1)
λ(Mφ) =?
Aim A
Calculate the Casson-Walker invariant for 3-manifolds admitting a genus one open book decomposition.
4 / 34
Motivation B
quantum inv. of links
quantum rep. of a braid group ψn:Bn→End(V⊗n)
quantum inv. of 3-manifolds quantum rep. of a mapping class group
ρ:M1,1 →End( ˆA( ))
· · ·
· · ·
· · ·
σ
σ∈Bn,L= ˆσ Jones poly.
trace(h⊗n·ψn(σ))
T
T ∈M1,1,M =S3ˆ
T
Casson inv.
?
Aim B
Construct the representation of the mapping class group MCG(Σ1,1) and present the Casson-Walker invariant ofg= 1 open books
Open book decompositions
Anopen book decompositions (genus 1, 1 boundary comp) of a 3-manifoldM
M = Σ1,1×[0,1] ϕ ∪
D2×S1
whereφ: a homeo ofΣ1,1 s.t. φ|∂Σ1,1 = id∂Σ1,1
6 / 34
Surgery presentation
Fact : A 3-mfd with genus one open book decomp has the following surgery presentation.
Ln1,···,nN;m
•
•
•
•
•
nN
n3
n2 n1
nN−1
mhalf twists
half twist
S3 M
n1,···,nN;m surgery alongLn1,···,nN;m
Result A
Mn1,···,nN;m : 3-mfd with genus one open book decomp obtained by surgery along a linkLn1,···,nN;m Suppose thatMn1,···,nN;m is a QHS,
Theorem A [M.]
λ(Mn1,···,nN;m) =− 1 24(∑
i
ni−3σ)
−(−1)m+σ+ 24|H1| (2∑
i
ni+ 6N−12m) whereσ : signature of linking matrix ofLn1,···,nN;m
σ+: ♯ posi. eigenvalues of linking mat.
|H1|: order ofH1(Mn1,···,nN;m;Z)
8 / 34
Result B
Mφ : 3-mfd with genus one open book decomp which monodromy is φ
Suppose thatMφ is a QHS
˜
φ∈M]1,1 =T2/KI′, KII, KIII ρ:M]1,1→End( ˆA( )) Theorem B [M.]
The Casson-Walker invariant ofMφ can be calculated as follows.
λ(Mφ) = 2
tr0(ρ( ˜φ))tr1(ρ( ˜φ)) +1 8σ( ˜φ)
whereσ( ˜φ) : signature of linking matrix ofLφ˜
tri(ρ( ˜φ)) =degree ipart of “quantum trace” of ρ( ˜φ)
A table of contents
Introduction
• Backgrounds
• Motivations
• Def (Open book decomp) and Prop (Surgery presentation)
• Results Part A
• Def (Surgery) and Explanation (Surgery presentation)
• Idea of Proof of Thm A
• Definitions (Jacobi diag, Kontsevich inv, LMO inv)
• Proof of Thm A Part B
• Definitions (Kirby moves, Space of Jacobi diags, Product)
• Construction of Representation
• Proof of Thm B
10 / 34
Surgery
S3 M
the surgery alongL S3
L
pull out the tubular nbd ofL
ψ
D2×S1
M = (S3\the nbd ofL)∪ψ (⊔ℓD2×S1)
Surgery presentations and monodromies
⇝
α β
⇝
↔α
⇝
↔β
•
•
•
⇝
•
•
•
12 / 34
Idea of Proof of Thm A
λ(M)=
deg=1 LMO inv Z1LMO(M)
Kontsevich inv of L Z(L)
ι
Caluculate
glue them
Z
Z(L
n1,···,nN;m) ZLMO
1 (M
n1,···,nN;m)
ι
Jacobi diagrams
AJacobi diag on a 1-manifoldX
degof a Jacobi diag = 12 #vertices
A(X) = spanC {Jacobi diags onX}/AS, IHX, STU rel
AS : = -
IHX : = -
STU : = -
14 / 34
Kontsevich invariant
TheKontsevich invis an inv of a link L
Z(L) =Z(T1)◦Z(T2)◦ · · · ◦Z(Tk)∈ A(⊔ℓS1) (Ti : elementary q-tangle)
For example,
Z( ) = Φ = + 1
24[ , ] +· · ·
Z( ) =ν12 =
S2Φ )
−12
Z( ) = exp 2 = +1
2 +1
8 + 1
48 +· · ·
deg=1 part of LMO invariant
Thedeg=1 part of LMO inv Z1LM O(M) = ι(Z(L))
ι(Z( ))σ+ι(Z( ))σ− ∈spanC{∅, } ι:A(⊔ℓS1)→spanC{∅, }
where
ι : 7−→
7−→ 1 2 7−→ 1
6 + 1
6
=−2
16 / 34
The value of the deg=1 LMO invariant of g = 1 open books
Mn1,···,nN;m : 3-mfd with genus one open book decomp obtained by surgery along a linkLn1,···,nN;m AN : linking matrix ofLn1,···,nN;m
SupposedetAN ̸= 0
Z1LMO(M) =c0(M) +c1(M)θ Prop
c1(Mn1,···,nN;m) =− 1
48(−1)N+σ+detAN(trAN −3σ)
− 1
48(−1)m+N+σ+(2trAN+ 6N −12m)
The value of a clasp
Z( ) =
ν12
ν12
S1Φ
S1S3∆2Φ
S2exp
−
S1S3Φ
= exp − 1
24 + 1
96 + 1
96 (Ohtsuki, 2007)
where exp = +1
2 +1
8 + 1
48 +· · ·
18 / 34
Result A
Mn1,···,nN;m : 3-mfd with genus one open book decomp obtained by surgery along a linkLn1,···,nN;m Suppose thatMn1,···,nN;m is a QHS,
Theorem A [M.]
λ(Mn1,···,nN;m) =− 1 24(∑
i
ni−3σ)
−(−1)m+σ+ 24|H1| (2∑
i
ni+ 6N−12m) whereσ : signature of linking matrix ofLn1,···,nN;m
σ+: ♯ posi. eigenvalues of linking mat.
|H1|: order ofH1(Mn1,···,nN;m;Z)
Proof of Thm A
Fact : λ(M) = 2c1(M)
|H1| when b1(M) = 0 Jacobi diags which become throughι
, , , , , ,
, ,
As for non circular case, it can be calculated as LMO inv of lens spaces.
As for circular case, we have only to claculate above three diags. 2
20 / 34
The value of twist knots 1
n
m Kn;m
Mn;m=SK3
n;m, |H1(Mn;m)|=|n+ (−1)m2|
c1(SK3n,m) =
(−1)σ+(1
48(n+ 2)(n−3σ) + 481(2n+ 6 + 12m)) m : even (−1)σ+(1
48(n−2)(n−3σ)− 481(2n+ 6 + 12m)) m : odd
λ(Mn;m) =
{−241 ((n+2)−1)((n+2)n+2 −2) −2(n+2)m (m:even, n+ 2>0)
−241 ((n−2)−1)((nn−2 −2)−2) −2(nm+1−2) (m:odd, n−2>0)
The value of twist knots 2
λ(Mn;m) =
{−241 ((n+2)−1)((n+2)n+2 −2) −2(n+2)m (m:even, n+ 2>0)
−241 ((n−2)−1)((nn−2 −2)−2) −2(nm+1−2) (m:odd, n−2>0)
λ(SK3) =λ(S3) + 1
2p∆′′K(1)−s(1, p)
=−s(1, p) + 1
2p∆′′K(1) s(1, p) = (p−1)(p−2)
12p
∆′′Kn,m(1) =
{−m m : even m+ 1 m : odd
22 / 34
A table of contents
Introduction
• Backgrounds
• Motivations
• Def (Open book decomp) and Prop (Surgery presentation)
• Results Part A
• Def (Surgery) and Explanation (Surgery presentation)
• Idea of Proof of Thm A
• Definitions (Jacobi diag, Kontsevich inv, LMO inv)
• Proof of Thm A Part B
• Definitions (Kirby moves, Space of Jacobi diags, Product)
• Construction of Representation
• Proof of Thm B
Kirby moves
the KI move : ←→ ∅ ←→
the KII move : −→
the KIII move :
0
−→ ∅
theKI′ move : ←→ ∅
24 / 34
The space of the Jacobi diagrams on 2-tangles
Aˆ( ) ={Jacobi diagrams on 2-tangles up to AS, IHX, STU}/P2, O1, I>2
P2 : + + ∼0
O1 : ∼ −2
I>2 : the Jacobi diagram whose ♯trivalent vertices >2∼0 We set 10 elements as the basis ofA( ).
µ00= ,µ1 = ,µ10= ,µ01= ,µ11= , θµ00= ⊔ ,θµ1 = ⊔ ,θµ10= ⊔ , θµ01= ⊔ ,θµ11= ⊔
The product on the space of the Jacobi diagrams
The product on the spaceA( )
•: ˆA( )⊗A(ˆ )→◦ A(Sˆ 1⊔ )→ˆι A(ˆ )
For diagramsη= D ,η′= D′ ∈ A( ),
η•η′= ˆι
D′
D
∈A(ˆ ),
26 / 34
Construction of Representation
ρ:M]1,1=T2/KI′, KII, KIII→ˆιZˇ Aˆ( )→π End( ˆA( )) ˆ
ι:=√
−1ℓι: ˆA((⊔ℓS1)⊔ )→A(ˆ ) ˆιZˇ is invariat under the KI′, KII, KIII moves.
•: ˆA( )⊗Aˆ( )∋ (
D , D′ )
7→ˆι
D′ D
∈Aˆ( )
π: ˆA( )→End( ˆA( )) π(
ˆ ιZ(R)ˇ )
: ˆA( )→A(ˆ ) ˆ
ιZˇ(T)7→ˆιZˇ(R◦T) = ˆιZ(R)ˇ •ˆιZ(R)ˇ
Result B
Mφ : 3-mfd with genus one open book decomp which monodromy is φ
Suppose thatMφ is a QHS
˜
φ∈M]1,1 =T2/KI′, KII, KIII ρ:M]1,1→End( ˆA( )) Theorem B [M.]
The Casson-Walker invariant ofMφ can be calculated as follows.
λ(Mφ) = 2
tv0ρ( ˜φ)w
tv1ρ( ˜φ)w+1 8σ( ˜φ) whereσ( ˜φ) : signature of linking matrix ofLφ˜ vi =degree ipart oft
(
tr ,tr ,tr ,tr ,tr ,· · ·) w= ˆιZ(ˇ )∈Aˆ( )
28 / 34
Proof of Thm B
It is known that
Z1LMO(M) =c0(M) +c1(M)θ, λ(M) = 2
c0(M)c1(M), Z1LMO(M) =
(
−1 + 1 16θ
)−σ+( 1 + 1
16θ )−σ−
ιZ(L)ˇ
=(−1)σ+ (
1 + 1 16σθ
)
(b0+b1θ)
=(−1)σ+b0+ (−1)σ+ (σ
16b0+b1 )
θ.
On the other hand, we have that
(trµ00,trµ1,trµ10,· · ·)ρ( ˜φ)ˆιZ(ˇ ) = ˆιZ(Lˇ φ˜).
2
Concrete Calculations
When the monodromyφis periodic in M1,1, we can set
˜
φ=hmαn1β· · ·αnNβ, ∀i, ni ≤0, ∃j, nj ̸= 0,
whereh= ◦ ,α=
+1 ,β = +1 ,
andσ( ˜φ) = 0.
ρ(h),ρ(α),ρ(β) can be presented as matrices inGL10(C).
v=t(0, −2, −2, −2, 1
6θ, 0, −2θ, −2θ, −2θ, 0) w=t(0, −1, 1
2, 1 2, 0, 1
24, 0, 0, 0, 0) Thus, the Casson-Walker invaritant ofMφ is
λ(Mφ) = 2
tv0ρ( ˜φ)w
tv1ρ( ˜φ)w
30 / 34
Presentation of the generators
α= 1
24θµ00+ (
−1 + 1 24
) µ1+1
2µ10+1
2µ01+1 4
( 1− 1
3θ )
µ11
β= (
−1 + 1 16θ
)
µ00−µ1+1
2(1− 1
48θ)µ10+1
2(1− 1
48θ)µ01− 1 96θµ11
V =V1⊕V2⊕V3
=C⟨µ00, µ10, θµ00, θµ10⟩ ⊕C⟨µ01, µ11, θµ01, θµ11⟩ ⊕C⟨µ1, θµ1⟩
Concrete matrix presentaion of α
A:=ρ(
+1
) is the following matrix.
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1
2 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 241 0 0 0 0 1 0 0 0
1
96 0 241 0 0 12 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −961 −241 0 0 0 12 1
=
( 1 0 0 0
1
2 1 0 0
0 0 1 0
−961 −241 12 1
)
⊕
( 1 0 0 0
1
2 1 0 0
0 0 1 0
−961 −241 12 1
)
⊕( 1 0
−241 1
)
32 / 34
Concrete matrix presentaion of β
B:=ρ( +1 ) is the following matrix.
1 0 −2 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 −2 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
−481 0 241 0 0 1 0−2 0 0 0 −241 0 0 0 0 1 0 0 0 0 0 −481 0 0 0 0 1 0 0 0 0 0 −481
1
24 0 0 0 1−2 0 0 0 0 −481 0 0 0 0 1
=
( 1 −2 0 0
0 1 0 0
−481 241 1−2 0 −481 0 1
)
⊕
( 1 −2 0 0
0 1 0 0
−481 241 1−2 0 −481 0 1
)
⊕( 1 0
−241 1
)
Summary and Future directions
Summary
• We calculated the Casson-Walker invariant ofg= 1 open books through the calculation of the deg=1 part of the LMO invariant.
• We constructed the representaion of M1,1 on the space of the Jacobi diagrams on , and we gave a formula for the calculation of the Casson-Walker invariant of g= 1 open books.
Future directions
• relation to rep. theory of MCG
• relation to contact topology
• general cases
34 / 34