When we analyze the demand for a single good (partial equilibrium study), it would be convenient to aggregate “all other goods”. A Consumer’s Problem (again)[r]

12 さらに読み込む

where ; > 0. Let w **1** ; w 2 > 0 be the prices for inputs x **1** and x 2 respectively.
Then, answer the following questions.
(a) Sketch the isoquant for this technology.
Hint: Isoquant is the combination of inputs that achieves a certain given level of output. (corresponds to “indi¤erence curve” in consumer theory.)

2 さらに読み込む

◮ A set S in R n is called compact if it is closed ( 閉 ) and bounded.
Thm A**1**.**10** (Weierstrass) Existence of Extreme Values
Let f : S → R be a continuous real-valued function where S is a non-empty
compact subset of R n . Then f has its maximum and minimum values. That

34 さらに読み込む

Continuous
(a) Show that if % is represented by a linear utility function, i.e., u(x **1** ; x 2 ) = x **1** + x 2
with ; > 0, then % satis…es the above three properties.
(b) Find the preference relation that is **1**) Additive and Strictly monotone but not Continuous, and 2) Strictly monotone and Continuous but not Additive.

2 さらに読み込む

Solve the following problems in Snyder and Nicholson (11th):. 1.[r]

1 さらに読み込む

(a) Show that if u(x **1** , x 2 ) and v(x **1** , x 2 ) are both homogeneous of degree r, then
**s** (x **1** , x 2 ) := u(x **1** , x 2 ) + v(x **1** , x 2 ) is also homogeneous of degree r.
(b) Show that if u(x **1** , x 2 ) and v(x **1** , x 2 ) are quasi-concave, then m(x **1** , x 2 ) :=
min{u(x **1** , x 2 ), v(x **1** , x 2 )} is also quasi-concave.

1 さらに読み込む

【戦略】 個々**の**プレイヤーがとること**の**できる行動
【利得】 起こり得る行動**の**組み合わせに応じた満足度、効用
Q: ゲーム**の**解（予測）はどうやって与えられる？
A: 実はノイマン達は一般的な解を生み出せなかった…

22 さらに読み込む

“Soon after Nash ’s work, game-theoretic models began to be used in economic theory and political science,. and psychologists began studying how human subjects behave in experimental [r]

26 さらに読み込む

with x = (y, z) where y is a scalar, z is an n-dimensional consumption vector, and V (·) is a real valued function. The consumption set X = R n +**1**
+ .
(a) Show that if V is concave, U is quasi-concave. (b) Show that if U is quasi-concave, V is concave. 5. Question 5 (4 points)

1 さらに読み込む

Solve the following problems in Snyder and Nicholson (11th):. 1.[r]

1 さらに読み込む

Solve the following problems in Snyder and Nicholson (11th):. 1.[r]

1 さらに読み込む

with x = (y, z) where y is a scalar, z is an n-dimensional consumption vector, and V (·) is a real valued function. The consumption set X = R n+**1**
+ .
(a) Show that if V is concave, U is quasi-concave. (b) Show that if U is quasi-concave, V is concave. 5. Question 5 (4 points)

1 さらに読み込む

vNM Utility Function (**1**)
Note the function U is a utility function representing the preferences on L(S) while v is a utility function defined over S, which is the building block for the construction of U (p). We refer to v as a vNM (Von Neumann-Morgenstern) utility function.

15 さらに読み込む

Two neighboring homeowners, **1** and 2, simultaneously choose how many hours to spend maintaining a beautiful lawn (denoted by l **1** and l 2 ). Since the appearance of one’**s** property depends in part on the beauty of the surrounding neighborhood, homeowner’**s** benefit is increasing in the hours that neighbor spends on his own lawn. Suppose that **1**’**s** payoff is expressed by

2 さらに読み込む

Consider a consumer problem. Suppose that a choice function x(p; !) satis…es Walras’**s** law and WA. Then, show that x(p; !) is homogeneous of degree zero. 6. Lagrange’**s** Method
You have two …nal exams upcoming, Mathematics (M) and Japanese (J), and have to decide how to allocate your time to study each subject. After eating, sleeping, exercising, and maintaining some human contact, you will have T hours each day in which to study for your exams. You have …gured out that your grade point average (G) from your two courses takes the form

2 さらに読み込む

is increasing in x **1** , the marginal
product of x 2 must be negative.
(c) Let (x, p) be a competitive equilibrium. Suppose u i (y i ) > u i (x i ) for some
bundle y i . Then show that p · y i > p · x i . Does this depend on whether utility

2 さらに読み込む

vNM Utility Function (**1**)
Note the function U is a utility function representing the preferences on L(S) while v is a utility function defined over S, which is the building block for the construction of U (p). We refer to v as a vNM (Von Neumann-Morgenstern) utility function.

15 さらに読み込む

Explain.
(b) Show that any risk averse decision maker whose preference satisfies indepen- dence axiom must prefer L 2 to L 3 .
3. Question 3 (4 points) Suppose a monopolist with constant marginal costs prac- tices third-degree price discrimination. Group A’**s** elasticity of demand is ǫ A and

2 さらに読み込む

long-run total, average, and marginal cost functions.
7. Expected Utility
Suppose that an individual can either exert e¤ort or not. The cost of e¤ort is c. Her initial wealth is 100. Her probability of facing a loss 75 (that is, her wealth becomes 25) is **1**

3 さらに読み込む

3. Auction (14 points)
Suppose that a seller auctions one object to two buyers, = **1**, 2. The buyers submit bids simultaneously, and the buyer with higher bid receives the object. The loser pays nothing while the winner pays the average of the two bids b + b

2 さらに読み込む