• 検索結果がありません。

直動送り機構を有するメカトロニクス機器のPID制御をベースとした高精度位置制御系設計

N/A
N/A
Protected

Academic year: 2021

シェア "直動送り機構を有するメカトロニクス機器のPID制御をベースとした高精度位置制御系設計"

Copied!
106
0
0

読み込み中.... (全文を見る)

全文

(1) 

(2)              ! "   # $ % &  .       

(3)         .     .

(4) . 

(5)              ! "   # $ % &      .   .     .   

(6)         

(7)           .

(8) i.     ............................................................................................................................. 1 1.1  

(9)  ................................................................................................................... 1 1.2    ! ........................................................................................ 4 1.3   #"%$#'&( ....................................................................................................... 6 1.4 )*+ , - ................................................................................................................... 7 1. 0. /1 2#3'456/7 1980:<;= >?@A9BCD19EFHGI ............................... 9 2.1 J KML  ........................................................................................................................... 9 2.2 N0O0P Q#R'STMUVWXP ...........................................................................................11 2.2.1 YZWXP ...............................................................................................................11 2.2.2 WXP[\ ...............................................................................................................17 2.3 N0O0P Q#R'STMUV]M^<_` abcdd0ef ...........................................................20 2.3.1 gOh i<jkDPml+ n oDp<jkDPmlqrstud0e v .........................................20 2.3.2 bTwxy#jkDPl Hzr ....................................................................................28 2.4 {|[\ ..........................................................................................................................29 2.4.1 n oDp<jkDPml }~ +gOh i<jkDPl €oƒ‚ „+jD†‡Y+ Hˆ‰ .........31 2.4.2 ‰ Š‹Œ uŽ .......................................................................................................35 2.5  ..................................................................................................................................37 2.5.1 bTwxy#jkDPl H‘’ ....................................................................................37 2.5.2 gOh i<jkDPml0 “”<]u•s– ........................................................................39 2.6 J˜— ..............................................................................................................................42 2. .

(10) ii.  ™š›œ%žF Ÿ¢¡£0¤/+EF ¥¦§Ÿ0¨©01m8<ª=%«<¬®­¯š°m±+²³˜@A´#= µ0¶ °·¸A¹ ........................................................................................................................43 3.1 J KML  ..........................................................................................................................43 3.2 º%»¼MWO<l H½¾ºMo ¿ PÀ Á†‡Y WXP .......................................................45 3.3 Â0Tà ÄÅÇÆÉÈ Ê ]Hˁ`̽¾ÍºMo ¿ P< ÎÏ9q Ðс`Dd0e Òf ................47 3.3.1 d0e v ˜VÓ ...........................................................................................................47 3.3.2 d0eÔÕÖ ...............................................................................................................49 3.4 {|[\ ..........................................................................................................................52 3.4.1 {|×Ê ...................................................................................................................52 3.4.2 È ÊØÆÙÄÅÚ Ûu Hcdd0em u{|[\Ü’ ........................................................56 3.5  ..................................................................................................................................59 3.6 J˜— ..............................................................................................................................61 3.  < Ý Þ?5<F @Am³0ßà᠟¢¡£M¤/<E˜456/7u1+F µ šM« ¬âã˜A0¹ .......62 4.1 J KML  ..........................................................................................................................62 4.2 º%»¼MWO<l˜STäOå P+ U<æbTWX0P ...........................................................64 4.3 º%»¼MWO<l˜STäOå P+ 0ç0ÄMÈ Ê—d0e Òf ................................................67 4.3.1 d0e v ˜VÓ ...........................................................................................................67 4.3.2 d0eÔÕÖ ...............................................................................................................69 4.4 d0e è0é ê)0ë ......................................................................................................71 4.5 {|[\ ..........................................................................................................................75 4.5.1 {|×Ê ...................................................................................................................75 4.5.2 È Ê—Dìí+ u{|[\Ü’ ................................................................................77 4.6  ..................................................................................................................................84 4.6.1 U<æbTWXP+ ˜ÑîïYÕŠ ............................................................................84 4.6.2 ðñf “ré .......................................................................................................85 4.7 J˜— ..............................................................................................................................86 4.

(11) iii. 5.  ò. ............................................................................................................................87. óô ............................................................................................................................................90 õö÷ø ....................................................................................................................................91 ù ú0ûü ....................................................................................................................................96 ý <8Hþ0ÿ´#= ûü  ÷ Ÿ  .............................................................................................98.

(12) iv. List of Figure Captions Fig. 1.1. Situation of advanced control system for industry [6].................................................. 5. Fig. 2.1. Ball screw drive table .................................................................................................11. Fig. 2.2. Machine model of ball screw drive table (Kyoto University method)[25] ..................12. Fig. 2.3. Machine model of ball screw drive table. (Tokyo University of Agriculture and Technology method)[26]......................................13 Fig. 2.4. Frequency response of Kyoto University method .......................................................16. Fig. 2.5. Frequency response of Tokyo University of Agriculture and Technology method ......16. Fig. 2.6. Experimental machine.................................................................................................17. Fig. 2.7. Frequency response of ball screw drive table (measurement) .....................................19. Fig. 2.8. Frequency response of ball screw drive table (simulation) .........................................19. Fig. 2.9. Block diagram of P-PI+LPF control system................................................................20. Fig. 2.10. Fig. 2.11 Fig. 2.12. Fig. 2.13. Fig. 2.14. Root locus of P-PI+LPF control system.  Kv=286.5Hz . . 1/Ti=300 1/s. fc=2000Hz. Block diagram of P-PI+LPF. . Root locus of P-PI+LPF.  Kv=286.5Hz . . . ...............................................................22. NF control system.....................................................23. 1/Ti=300 1/s. . NF control system. . fc=2000Hz. . fn=1950Hz. ..........................................24. Root locus of P-PI+LPF+NF control system by cut off frequency.  Kp=300 1/s . Kv=286.5Hz. Root locus of P-PI+LPF.  Kv=286.5Hz . . . 1/Ti=300 1/s. . 1/Ti=300 1/s. . fn=1950Hz. . .........................................26. NF control system fc=4000Hz. . fn=1950Hz. . ..........................................27. Fig. 2.15. Block diagram of proposed control system ...............................................................28. Fig. 2.16. Composition of experimental system ........................................................................29. Fig. 2.17. Position command.....................................................................................................30. Fig. 2.18. Frequency analysis result of torque by conventional method..........................................31.

(13) v. Fig. 2.19. Frequency analysis result of torque with notch filter......................................................32. Fig. 2.20. Frequency analysis result of torque after adjustment for filter ........................................33. Fig. 2.21. Frequency analysis result of torque by proposed method ...............................................34. Fig. 2.22. Time response of position .........................................................................................35. Fig. 2.23. Fig. 2.24. Root locus of Proposed control system.  Kv=286.5Hz . . 1/Ti=300 1/s. fc=4000Hz. . fn=1950Hz. . f1=360Hz. . f2=1000Hz. . .38. Root locus of P-PI+NF control system.  Kv=286.5Hz . 1/Ti=300 1/s. . fn=1950Hz. . ...............................................................40. Fig. 2.25. Frequency analysis result of torque without low pass filter.............................................41. Fig. 3.1. Block diagram of control system ................................................................................47. Fig. 3.2. Block diagram of band pass filter ...............................................................................49. Fig. 3.3. Block diagram of P-P control......................................................................................50. Fig. 3.4. Block diagram of P-PI control ....................................................................................50. Fig. 3.5. Experimental machine.................................................................................................52. Fig. 3.6. Position error by thrust ripple .....................................................................................54. Fig. 3.7. Position error by thrust ripple .....................................................................................58. Fig. 4.1. Base vibration model of linear motor driving system .................................................65. Fig. 4.2. Block diagram of base vibration system .....................................................................65. Fig. 4.3. Block diagram of control system ................................................................................67. Fig. 4.4. Time response of motion command and output...........................................................72. Fig. 4.5. Experimental machine.................................................................................................75. Fig. 4.6. Base vibration mode ...................................................................................................76. Fig. 4.7. Time response for command pattern A........................................................................79. Fig. 4.8. Time response for command pattern B........................................................................80. Fig. 4.9. Time response for command pattern C........................................................................82. Fig. 4.10. Time response for command pattern D .....................................................................83.

(14) vi. List of Table Captions Table 1.1. Performance comparison of a feed mechanism device[1].......................................... 2. Table 2.1. Status of experimental machine ................................................................................18. Table 2.2. Specifications of the experimental system................................................................30. Table 2.3. Control gains ............................................................................................................35. Table 3.1. Specifications of the linear motor drive system........................................................53. Table 3.2. Control gains ............................................................................................................55. Table 3.3. Control gains ............................................................................................................56. Table 4.1. Specifications of the linear motor drive system........................................................75. Table 4.2. Control gains ............................................................................................................78.

(15) . 1. . ). 1.    )* 

(16)  TTmq˜#`uNOP<QƒR STUVͺ¢»¼0WO+lHST0UV#q˜“#`  € ‚ g  » ui˜UÔ9 Mç ÅÇÆ ç0ÄMÈ Ê— d0eémq "!$##`Dd0e vÕÖ<] •s–u) RD& t % ( ') +` * J ,<  H+ ' ƒ`H9H!.q -/"00 )*9( 1 "Ì$<]0• s – 23   *"! 4 ]˜)*+ M

(17) - 5<7q 6&8:– 9;:<m—` t—]0 MVÓ > =

(18). ?.@]u•s+– -A/H9B` * 1.1. . C O NWOmlq STED§0t0× Ê F(GH(IAJ× Ê K(ULmMNr gMNƒo‚   ].OEPQ!R9`  € ‚ g »ui˜UÔÍE0D–+M

(19) NSA' TQUWV X R –0s`+*3YZR 4  € ‚ g »u i˜UÔ9 T

(20) +  l. [ ¿ q. \ &U^]_Em ` ].m a _` ÌE b0 TT

(21) 

(22) ƒ  c ed  f T

(23) 

(24)  ] 4 am_ 9 R `+* < g Bh i + j TA  ]( k `DTE+  lB [ ¿0 :M

(25)  N rgHN9oƒ‚ B=&k.< l m O0P pon

(26) p:q˜r O sEtq p po ¿s u0p l s up l. v o"wyxH  q z" U 7m { }|  D L0 TT

(27)   ~

(28)  8 –0^Q (0 T

(29) i€ UVq “` € ‚ g »u  iUԁ0 ‚ ƒ ] „ U V X R –s`+* 0 T

(30) i€ UVm]E0  • • • •. N0O0P Q#R'STMUV Û +o  ‡Æ †˜»& „ p STMUV ˆP ‚ STMUV º%»¼MWO<l˜STMUV. 1.

(31) . 1. ) . 2. DL) ` L YZR 4 7V<sam_ 0-(‰ !ŠR9`DT

(32) 0é 3‹˜i ‚Œ +Žm]o& — 4  R `+* ‘ $]’ 4Z“  T

(33)  çŕ”—– 10 m ˜o?B™ È Ê—+š È Ê—D‰<Š‹ Œ B›E< œ L0-(‰ !9 R `E% ]E N0O0P Q#R'STMUV<:si ‚ gOAML+ž- ~ `

(34) %. ]

(35) Û o  ƟH † »„3 p ST0UV+çÄTQ” 120m/min ˜

(36) (™ uT  é<  L ž -o  E¡A' B ˆ P ‚ ×ÊSTMUV < ¢ uè((< £ – q} ¤ QB# ¥ KMt& % 9ED 0 –& ‹ i ‚§¦'+¨Q!RERA© º%»¼MWO<l˜STMUV ¢s8 t.< V sm a _](  `+* ü ] 300mm i ‚ gO&u ª  d0e×Ê<]o `.0 T

(37) i€ ×Ê ˜é  Ž [1] q~ 2 o* Table 1.1. ® \ÄÅ ® \ ° ÄÅ. Performance comparison of a feed mechanism device[1]. N0O0P Q#R Q#R7«uŠ Q#}R d f m/s. 0.3. g. 0.5. È Ê—D‰ Š‹Œ È Ê.— Å m ± ³²´0$Å m ‹˜i ‚  j µl. s. ¯ ¯. 1.3. 0.3. 2.0. 0.5. ¯ ¯. lB[Q¬Bp(­ ˆP ‚. 1.3. 5. 2.0. 1. 0.1. 0.1. 0.2. 5. 12.5. 2.5. 5. 25.4. 1.2. 0.73. 0.81. º%»¼MWO<l 7.5 2.0. ¯. ±1. 10 0.015. 0.005 1.0. ¯. ¯. 2.5. hP i 1. K 0UoL&F(GH(IAJ× Ê+ HÈ+Ê9—].V"XR+–s`+ Ti¶ U VÍ0–o × Ê E. B·¸+-(‰ !R9`DÄÅÇÆÉÈ Ê—.Å&D T

(38) 0é “"4 N0O0P Q#R'STMUV+L„ U V X R –^Q ! 4 ]uçs0T

(39) 0  é  L0-(‰ !Š R –s`

(40) % ]E0 NMO0P Q#R'STMUVq º%»¼MWO<l˜STMUVm] Ê~9 ¹ KMt ×ʁ% ) `+* YM 3»º¼½A¾"Y~R 4 Ti¶ U Vƒq “ `  € ‚%gM»&0iuUÔ ]uË¿0 Á

(41) M ‘À

(42)  +  qm"%$#EÌ 0 –u×Ê 0ç0ÄÁ Æ çMÄMÈ Ê—.MÈ Ê—7Å M-(‰A .ÃAÄ çs % 9~

(43) 8 –s`B* Å  YZR 4 H×Êo o‹˜i ‚ HÐÑ

(44) ÕÊÆ(Ç+ d(–]o& × Ê£ H +ÈÉ: Á L^Y+EX R –s`+*E Ê t —MuÐÄo'0 ¼u  pAËB Ì O<l' ) ` AC.

(45) . 1. . ). 3. C  O N0WO<l “"4 ÁR `

(46) ‹:Íp(­]+ÎÏu`'È ÊØÆÙÄÅÚ Û LçMÄo' 0 VJ$]DU V

(47) =x Ðué+L ЕU~E8– Mt3Y]+ÎÏu9`˜äOå P iäOq È Ê—M‹ bT LMÁR$ QU~

(48) 8 –s+`+*3HY t—M:M

(49) N+ S ]M^s– H Y Aº$H  bTmqcdQ0ÌuÐÄ “"4 ç0Ä JE ' ç  Å&D  È Ê—q˜{E Ñ `DdMe vÕÖ B ž -Mé M çs. % 9~

(50)  8 –s`B* Jt:M

(51) NSA'0 0{ Ò ]  € ‚ g »u  i˜UÔ9 d0em¼HP»+ Ó ºŠ Ô Ú +ÕE Ö Md0eˆ‰#q ^YBQºØ × L+ž

(52) ,Q0:Ì % d0e&K Ù ]B

(53) Ú´D 0 –s` 7 Û 4 0  st—M • •. 0d e vÕÖ L +Ü+$]Hê0¿0$s(Ý =d0e&Þ[ pM Hˆ‰L+@

(54) ß+]M^YBK`7Ý. ¢s¿º -(‰%çs % 9~

(55) 8–s`+*.

(56)  1.2. 1. . ). 4.   

(57)   .  € ‚ g0»Ai Uԃ]^m_ `de<v Mde¼uPQÓ9ºàÔ<Ú

(58) á ÀoÕ Ö]k»0– 1960 ÃEO]M^<_`~Ñ O d0eê)  1980 ÃEOoF© “4 1990 ÃEOâ F ] “ _u– H u ã d0e9].O PQ!9 R `+ ä i ‚ Wåp d0em  \   À æ L)E 8 tE*3YZR 4 0 u PID d0e ( Ç ç Æ è a Æêéo a de ) ]+OP•!Z# R `.ë( ì de ê) Bí.î¿!à R :ï¿Ì 0 sde ê) 

(59)  0 –Ù(ðñ H' Y„ U  Ê MÒf [2]-[5] L ðñ•! R –s`+*. J t The Math Works ò MATLAB Aº$HÕÖr»ó0j ‚

(60) ô+Ñ<]&  YZR 4. d0e v HÕÖ<].ž- } `˜çMÅ&˜YÙ +õ(ö L(ÊRA{ %-(‰ !Ro U~» \

(61) Ù Æê÷N. 

(62)  ø u{A | ù0iä Ú ' Ž $ @

(63) ß<A ] YZR 4 d0e v B ú;û;L ~ ` Æ(Ç<L˜‰<s•o • ) +` * 0 “ 0BL 4 "Y~R 4 0de+v+ MÕ Öm] de Ë

(64) ümLMY Z WXP

(65) Áý!ZR+–s`Y DL:âð ~

(66) 8–s`B*3YZRq7M

(67) NS]M^<_` {rÁ ¢s¿ºW¦';+` Ì C ON0WO<l  O€L ×Ê  O€  þ ]+ÿo  ` U L MWX º7p(­q sEÊR:RË0ì`Dd0e vq ÕÖ´Ì0 +I9  ED0 –   ` ¢s¿º7 Y ](  ` Lu×Ê UV+L„ EÁ€D 0 –s`

(68)  A' " “  4  0  HY Aº$  d0e v0ÕÖ u{EÑA˜ ‘ À ¦ ¢0 s % L ) `B*( Ê t—M:M

(69) NS C ]M^s– ON0WO<lqST´!$# # `u¼u p ¿] ´! R –s`Dd0em¼˜P»+ Ó ºŠ Ô ÚE0    r   ED0 t& % (' ) `+* é

(70) ) ` PID d0e#q ß 1.1 0 :M

(71) N+ S Ñ(+   ]– zr´! R –s`Dd0e 

(72) ?o' ) `+*.

(73) . Fig. 1.1. 1. . ). 5. Situation of advanced control system for industry [6]. Y R<]o`  PID d0e].OEPQ!R9`7ëìd0eê)+](k `

(74) % L+– 8 9qu—0–s Z deƒqBˆ Oi 0 –jk O `:*Y 3"º%]M{rEÁ€!ZR<–s9`deÔ"    w"! o:( ù iä<Ú]Â$ # Vo J vÇÆ „ å$ % O$! Æ =

(75) _ jkPl+ñq'&(° 0tÒf [7]-[15]  (*) ìív<]MWXP0 + de jkHO w j-,/˜ . O w q&°¶D0 t0Òf [16]-[18] D d0e§"%$]. ž - Um  q PID d0eԁ]¼¶w „&p `0$ 1 L:Ñ3m 2 1-4 ~

(76)  8 –s`+*. MY 3»º¢]EëEìde ê)qH f 0–(ÑEO de<ê)m 5È é q.2ý0–+tEÙ S ëìd0eê)mq$67ƒE0D–BI] {ו0̖ Mt M

(77) NS #  € ‚ g »ui˜UÔ9 d e vÕÖ<](kD0 – MÙ'0  ž

(78) ,Q0:%. Ê BÅ&  é+L*8´0D–s0s(¦L)" Ù  L M

(79) N S ]'9 “ !< R ] ¢ U s¼

(80) < ½ ]E ) `+* Ê Y+'MoÙ LE

(81) H .8–{r#qH;:¿0˜t39 r€0à<sde<vÕ Öq {ѕ0˜–s " UYDL !m 3< %• E0D–)L8–s`+*.

(82)  1.3. 1. . ).    .  )* '   € ‚%gM»&0iuUԃ ( Ti¶ U VÍ0–OP$NOP+QR%STU V = >< ?$r @

(83) \ LA$BQ!R –s`º%»¼uWO<l˜STMUVm](k0̖! J CJ

(84) + ¦ ]–MÁRu`Db

(85) T Ñüm]DìRDt $z D& d0e vÕÖq  ^ YB0sç0Ä®Æ ç & Å  È Êd0e#q { с E ` YHqm"%$#'+` * de vÕÖ+]Ek0 – 0M “»4 r C O N0WO+l'BVX:R –sm` PID deÔ   € ‚ gMA » 0iHUÔ# MdeÔ 0–  P-PI de§Eo©:R#`%È+ÊP O ¿Eçde´ÄÅ P O ¿E ç Æ è adeJ t  P-IP de§Eo©:R#`¢È+ÊP O ¿(çde´˜ÄÅP O è ¿ a®Æ¯ çd0e'L FG

(86) $ ') ~` 7q ˆOiE 0D–Md0e§H" F#q˜({ с` t—.] =(_#j kDPmlMMd0eԃq &°¿0Dtud0e vqD V I` Jƒ¢¿ s º7YHq ;G +` *3YZRA 0: M

(87) N ì  r M< PID deÔ9EL Ê JJ ? A r ' `ut —03 &°¶0 tMd0eԁ: xEa+ ;. {A × 'ME { Ñ L  ~   ` Y$  Md0eÔ9 Hˆ0‰9(] k0D–   K-| LMq ?Q r 0$s ¢¿ s º7YHqmKM–&. Y} ') +` * Jt)*3'  :ý0 –so s$NEümL-O3Ï'&(° 0tdeԁLde+v]3PÎ Ï#q Q KM–0DJ8–3%˜EÊ d0eԃq z _(©00{*R+

(88) ) `Ì ud0eÔ (P-PI d0eÔ , Jt  

(89) ÊRA Ì uT0é<L S 4 R`<Ìsýº7Y%HMN(S :Ñ P-IP deÔ ) HVÓ 7 %  o'  € ‚ g »u  i˜UÔ9 d0eˆ‰#q`B Ò ]E0  \ ?Aƒ 5 ~  ` UTX 9 R `+* Y &º%]0deé< :q-V+`ut —]u< PID deÔ q.ˆOiƒ

(90) 0 tMde vÕÖq ^YBQ º ¢s€'º ¼¿<gOp0  ¢ Aº$  ê  W ]o&  M

(91) NMìr\ &( L ) `

(92) % 9'mKM–s`+*. 6.

(93)  1.4. 1. . ).    .  )0* m"'$

(94)   € ‚ g˜»HiDUÔ&'}V&XBR–us<`OP$E T(iQ UV 0¢–u NuOuPQmR STHUV º »¼ WOl STHUVmqXYu&YŠR 4 ST0×Ê]˜ÁƒRH`¢è Z $E˜bTèué+]ÌE‰ ¡´0¢tHduevMÕÖ D<qDm`EYà'E)`.* [ H$ ] •. •. NuOuPQ9R ST UV LH“0m`+«“bTMY  due0Ô]&\ m`=_9jk¢P+lu ] Ì. kDï9qDduev '^Š é< +¦ “4_3` 0%Ao çuÄÌÈÊ0<—q {Ñ0m`¢d eÒ0f<q V I0m.` * ! 4 ` çuÄ Æ¯ç 0 Å Á L a"Ucb+J R–Ms<`<º'»¼ WO l ST+q0l˜EO Þmo9‚% m` F GH I

(95) JM×Ê  K H(U L+] ^s–0MWO luJ(t ¢EU L< ˜bT  €» ÔÚqD- :´0 –˜ÐÄ “4 çuÄJ 'Mç 0o Å ÌÈÊ0<—q { Ñ0m`¢dueÒ0f<q¢ V I0m.` *. Yq+"'$90¢–Ms<`.*.  )0* DVÓqà2*˜)M*A ~£ 5 

(96) ' VÓ !>R  2 

(97) 'E NuO PQ9R STHUV è0“ (« “bTƒ duev ]< kÌï “4 duevMÕÖ '^ŠBÁ+]km`¢0^&MdMç Ä ÈÊ0 —q { Ñ0m`%d evMÕÖ]k30%–.2´0%–u^    3 

(98) 'E ƒº'»¼ WO lDST UV+] k&0¢–0˜Ð(Ä iQ ‹] ^ _`<º'»¼ WO lu ½¾ ºHoÌ¿˜P .] ÎÏH` ÈÊ Æ ÄMÅ ÚÛMqDc0dm`%duevuÕÖ  4 E'E u#º'»¼HWO l S0T UV<] k30%–M0ä0OåP. ç °ÑÄ0(T ‹]˜ÁƒRH` U æ ˜b0T+qDc0 7 d 0%0ç Ä ÈÊ0 —q { Ñ0m`¢d evMÕÖ àq 2   *  * 5 

(99) 'E uH)0*q e-f´0%H)0* Ü)+Zq 2  ˜E¾]uB=

(100)  D,- qZ2*  2 

(101) 'E NuO PQ9RST UVqD“`  €§‚ g˜»HiDUÔ due0Ô 0¢–'r$ V3X+ R –Ms+` P-PI dMeÔ9]g OMhi jkÌPl (Low pass filter g LPF)  noÌp jk¢Pl # to˜ % ]k3¢ 0 –UVè0“ («“bT  dMev ]< k (Notch filter g NF) qZú;+¡oX7. 7.

(102) . 1. . ). “ 4 ï  d evMÕÖ '^ŠBÁ+]k˜`¢ qÌw*h3i<]B8M–u^3Y7 s&Y duev ]kj • jk¢P+lq+.°m`'_+'MçuÄ ÈÊ0<—q {Ñ0m`¢duevMÕÖ ]k30¢–.2* . 3. . 4. . 5. 

(103) 'E ƒº'»¼ WOl ST UV+]k&0¢–0˜ÐÄ(iQ ‹]-lD! Z` AC C ON W O l0] ^0s–VE J $] z0 m m`EY¢L  0 s ½¾ º oÌ¿˜P ]B8u– ÁƒRH` ÈÊ Æ ÄMÅ Ú Û0qH Ú

(104)  ƒ P-PI dMeÔm]ÌÈÊ Æ ÄÅ<ÚÛ¢cdr Hdue0ԁq& °m`

(105) Yà'Ê Î ÏqÌÐÑm`E Y ¢LMÂ    Z  `E Y qZ 2 * 

(106) 'E ƒº'»¼ WOl ST UV+]k&0¢–0Mç Ä(iQ%]n¶º äMOå˜P ç7°ÑÄ0T ‹]HÁƒR ` U æ HbT+q cdm`Ht—]uU æMbT+qB s i - åpDh - ©MQ('BP´0ÌtYZ W0XMPqE % D]  2 • jk¢P+lqÌÕÖ"%0 0çuÄHÈÊ0<—q {M Ñ m`¢duevMÕÖ ]:k&0 –o H[\{0| ]M–Ê ‘0’mqZ2 * 

(107) 'E H)M*qe3f´0%Hu ]B8M–S 4 Rt˜ÓM’ »!$RtM!]H•s –Jm —`.*. )0* ?~@A Hs ,(R %ŠMEÙ HaªÌ]B8M–AXBRt%˜ '()`.*AY HaªÌ p q+. r*sB` ùMi0äÚdue(ø#t ‹'uZ:ðò$^ v wHU xyz*{ |-}~l  Ñ 2<3  $€\EÙMEN ê K:Ùx w-

(108) Ú3‚oKÙ-ƒ „

(109)  D Œ 'Eᆕ!ŠR–Ms<`  € ‚ g%[ ‡ðE#‰ ˆm‹` Š;a+ð BL ˆOi9Z 8M–Ms<7` *AY -[ ‡ðA M(N:S'˜zr»!>R– s+`  € ‚ gu

(110) ]  iUÔm HdMev Hê)M ë <q" $( 0ÌA t %H ' 1989 à “4 R J  . à 4 d' ŒOi '(á†Q!>R Ñ2A'E   63 d  2004 à 12 Ñ2<q%YmK` " J 'mZ 8M–Ms .` *pqŽ‘o u$’:ðò*^3v w'“•”–;—˜™šœ› 1996 ”ž Ÿ¡  28 ¢  £ ¤¦¥‰§‹¨©ª*«;¬®­¯ ”°±M– —²³´µšœ›3¶¸·=¹º$” » ¬®­œ£ ¤¦¥‰§¼;½¾ “-¿•”. À Á;Â3Ã$Ä ²-Å'Æ Çc–;—²È ÉʚU¹ Ë̲Í;Î3›3Ï/Ç'Ð. 8.

(111) Ñ. 2. Ò. ӜÔUÕÖ$×"ØMÙ'ÚÔÛcÕ3Ü‹Ý ÞßHàMáâã-äåHÕ-æœç=èé. 2.     

(112)   ê ë ìí®î‘ïð $ “ ñ òóÆ Ç £ ¤¦¥‰§'¼;½¾$ô3¾-õ;ö ²¶Ï$›3÷ øúùû÷ ü ý•þMÿ  ò Ë3Æ Ç²  ¹  ë

(113)  ½ À Á ¿” ÷~” ʙ"!ʙœþÇ'Ð š ¬ š þ ­ ¹ ê ë ì;í®î‘ïð “$ñ/”$#%!&ó' ð ²(·=¹ À Á ¿” ÷ )* £ ¤¦¥§¼ ½¾$ô3¾3õ;ö ,ò +%-.•0² /%10ò 2 3 Æ 465 %7;ÇÐ8:9:; ¹ êë ìí®î‰ïð “$ñ/²¶ ì ? Ã$Ä ” -Ë/ ì ? ”E)F < ÇM%° => À :”   ò @BA®™‘Æ ÇÐ3D Ï C"! ¬ ” ° =)> À   G%H I™ ' ð J K6L  * ì ? ” Ã$Ä ,ò MNkšU¹ MNPO"QSR  ì ? Ã$Ä  êë ìí®î‰ï-ð ë T'ì ”M õ : ¨ Z šU¹º$$ ÿ   F-$% » U$ ” V W ò X)Y~²Æ Ç ¯ ™ò % ” [\ ^ò ]_Ç'Ð 2.1. . ` a%bcd e f gh“Siþkj” £-¤ ¥=§¼½ ¾ “$¿l;S-¹*÷-ø ù ÷-üm•þ ð h. Y)noDO"Q;› Ï/Ç'Ð `a b)c:d)e ²¶Ï$›%¹$F-$»U”$VW pq6r%s²t u)/ 1*Æ ÇR  ¹“*ñ™ À Á ò,vSw5 x$y R Ã$Ä z n;þ${6|™MþÇÐ ¯ Q ­ ”M“¿ ²¶-Ï ›-¹ } ~S$ A þ k  ·"“$ñ•² € ë ê)- ë ? ™ ê ë ìí î ò ‚ Î)R ïð “$ñ% 7 Ç'Ð ¯ ” êë ìí®î‘ï-ð “$ñ*  ¹*¢ ƒ)„€ ë ê ë ? ²~ ( · ï-ð O" Q ¹  ë ? ” ~ † ²k ‡ ·‰ˆ < ­ Q ›3Ï/Ç^Š%‹ ë:Œ ²~ ( ·=¢ ƒ  m ” Ž/  ò,®  Ç'Ð ¯ ”R  À Á;  ¹6‘’ ½$§ ë%“”

(114) ì ë:• ”ñ k – ™Mþ;Ç'Ð ¯ ”(˜‘— þñ – ;% ¹*‹ §$™ ë ôDš –› Æ ÇR  ¹œ /  ”'°6' òó*Æ Ç,4• 5 ²¶*Ï$›*ž ¹ Ÿ6   þ¡6¢ À Á òMñ$– Æ%Q £+%- þ ¤6 . ™þÇ [19] ™O"Q ›3Ï/Ç3  ¹-÷ ø ùû÷ üm6 ò ë

(115) ¥ ½ À Á  ; Ë3Æ Ç²  ¹-÷Ï À Á )*3 ò. 9.

(116) Ñ. 2. Ò. ӜÔUÕÖ$×"ØMÙ'ÚÔÛcÕ3Ü‹Ý ÞßHàMáâã-äåHÕ-æœç=èé. 10. à -3Æ §Ç ¦:n:7®·=¹)%¨ ² œ“i/”°6'•ò0©ª$Æ ÇR  ¹ à -%;S«$Ç ÀÁ )² ¬:­ %7;Ç [20] Ð ê-ë-ì~íÊîcï$ð “;ñ”S “ i”  ° '•² š›* ¹ ® T ¯*ë  ²(•· “;ñ•”' ð ò°- šœ¹ ë

(117) ³ ½ ±²  ² (~´· F -$: » U ^ò V W$Æ ÇÉ H [21] %7Ç'Юš ¬ šU¹ ê3ë3ìí î‘ï ð “ ñ/ ” (˜—c²  ¹ ªSpÆ ,Ç ' ð µ%¶ ;%7Ç [22]4 5¹µ:·” ì? ò¸S¹*Æ Ç G%H ì ? ,ò ¹ 6  qº»%¹ ¬ ; ¹SA;7;Ç'Ð ¼ 0½   Ï Q £¹- ÷ ¾ ¿6SÀ)Á”°'> À ;« Ç ¹ÿ K Q ² (~Ä· Ã/$ ” ¾%¿6*ÅÆ¥O§QÇ [23] 45%7 ·=¹ ê ë ìí î‘ï*ð “ ì ? ” à - I™ ÉlÊ £ ë ? E6F$¦ Â Ç $ ñ/ ” (˜—‘^² œ ~” ° '•0ò #:! ” ȹ ^œ /: ”   nʙMþÇ'Ð ì ? 8– — ;S-¹ ê-ë-ì~í îcï$ð “;ñ ²3¶$Ï;›*¹ œ%”  ° ' $ ò > À Æ Ç R  ” % l ì ? ™ § ë É ¾   ì ? ” 2 ÍÎ ò Ã$Ä ÆÇ'Ð q º6Ë/²  › ÌPCĂxQ;›3Ï~ Ç ¼ ½   ì ? 0ò Ï Ðk0š R 465/²¶Ï*›- S”  * ¹ ¼ 0½ÑÒ ¾¿6¹ ¤  ¥ ®0¾¿) ^ò ÉlÊ £ ë ? ™0š RM%“ i%' ð ” > À r\•² !Ï$› Ó*ÔšU ì ?  ¹   ” E6F®ò¶ ¯ P þ —˜ Ð O ­  ² ' ð ì ? $ ^ò > À ÆÇ   ò Õ´µ0š R ÀÁ H 0ò MNšU¹ ¯ Q ­ ”É H 0ò ȹ 0š R$ ™ « $ ” r6\ò Ö~² (~· %¨ Z Æ Ç'Ð-º$” ' ð > À r\•²-Åšœ› J×6Ø ^ò ¹ Ï$› ÙÚ-Æ Ç'Ð ì ÜÝB“ ö  ¨ Z [\•² !*Ï$› 8:9²¶Ï$›-¹ MN$Æ Ç À Á É H ” Û D ¶ (,Þ$¹º$” Ö % ]_Ç'Ð 2.2 ß; ¹ êë ìí®î‰ïð “*ñ/” &ó ' ð  0ò ~*6Æ %à á ì â ÆÐ 2.3 ß; ì Ü*ÝB“ ö ò â ÆÐ 2.4 ß;% Ö~ $MN$Æ®Ç À Á ¿ ” Ã$Ä G:H ™ À3Á Û D ² (-Ç M N H ¨ Z Æ Ç') ”' ó r.ò % Ð ã ¬ $ ” [\: ò ž;™M²•šœ› 2.5 ß; Ù Ú ¹ 2.6 ß;8%9; ” ä ™  ò ]_Ç'Ð.

(118) Ñ 2.2. 2. Ò. ӜÔUÕÖ$×"ØMÙ'ÚÔÛcÕ3Ü‹Ý ÞßHàMáâã-äåHÕ-æœç=èé. 11.  !"#$%&. S8 ßl; ê$ë*ìí îœï;ð “ñ ” À$Á/ ÃÄ ²¦*n™þ•Ç ê*ë$ì•íkîUïð õ ë-T ì ” áì  ò^å~Ï ¹ æ áì òñç*Æ ÇÐ Sà áì -¹ ê-ë-ì~í îcï$ð õ ëTì ”è ðGé  à ò$¹ Ï;›*¹3  1 ê:ë áìÝ í [24] ò¶ ¯ þî—=Ð  Sï áìÝ 학$-¹6 ð ò ñ:ò ÆÊÇ ï ê:ë (óæ H ô ) ²*ž~™õ;Ï› %áìÝ %í ò¶ ¯ þî— GH ;7~Ç Ð)è ð%G%é à˜* ¹)ö:÷*øS/ æ ”)ùú ­ [25] f%û:öSügøæ~”6ý ­ [26] ²*(-Î*›6Mþ¥O0Q*Rlž ”~ò ÿ ë ¾ ²ñ* ç Æ ÇÐ *à S$á ì ( ·B ­ Ê Q Çŝ ¹3& óS' ð Ê  ² ! Ï›;¹8*9; ~ ¹ Ï Ç $T ë*ìí î ï$ð ”)Ö e /²› ¨SZ Ö ò¶ ¯ þî=— Ð 2.2.1. . ² ê-ë-ì~íÊîcï*ð “;ñ”'ñ:–ò â ÆÐ ê-ë-ì~íÊîcï$ð “;ñ˜-¹%8A² ï$ð ë ê* ë ? (Servo motor) ò%¹ÊÏ®¹ ¤ • Ý ˜í (Coupling) ²P(· ê/ë/ì í î ²l€ Ê ë ê ** ë ? [%5îOQ›ÏÇÐ $ë*? ”*¢)ƒ•²(•· ê-ë-ì~íÊî  ï$ð O (Ball screw) ™0€ Q~¹  ¥

(119) (Nut) ²$›;¢ƒSè ð %t ð è ð ² ìO,Q~¹

(120) Më*ì ; O,Q*R õ ë Tì (Table) ò ï$ð Æ ÇÐ ê-ë-ì~íÊî ¹  ë*? ²%&)- /¹ $ë*? ² ñ #S . . 2.1. (Support bearing). ; ñ #îOQ›ÏǹʙœÏ — ñ:–®ò•š›ÏÇÐ. Coupling. Servo motor. Ball screw. Table. Anchor bracket Fig. 2.1. Nut. Ball screw drive table. Support bearing. Base.

(121) Ñ. 2. Ò. ӜÔUÕÖ$×"ØMÙ'ÚÔÛcÕ3Ü‹Ý ÞßHàMáâã-äåHÕ-æœç=èé. 12. ê-ë-ì~íÊîcï$ð õ ëTì  ” è ðGé à/²)! Ï ›*¹*ÏC! ¬ ”%Û) á ÛMN OQ›¶ ·‹¹)}%~A;* þ ž” $ ² ö ÷ ø:æ G àk™Iû%ö%ü*g6ø:æ G à S7ÇÐ  2.2 ²$ö÷ ø:æ G à~” áì ò ¹  2.3 $² ûö%ü*gø:æ G à~” á-ì ò â Æ~Ð ö÷ ø:æ G à ;S  ™² ./¹!). ò" < ›ÏÇ™œÏ —Ĥ* # S7Ê·‹¹ûö%ü*gø:æ G à ;S ê3ë-ì~íÊî ”*¢)ƒ%è ð ™ ê-ë-ì~íÊî ”$: % è ð " & OQ›ÏÇ~™œÏ —(' ² ¤#*S7ÇÐ xn. ). Kb. Jm. Table. Nut. ). m Tm Kc. xt Kn. Mt. Ct. b. Kg. Jc/2. Jc/2. Coupling. Jb. Ball screw. *. Mbs p R p/2. +. Ks. Motor. ,. Tm Motor torque. ,. xt. Displacement of the table. ,. b Mt. ,. Jb. Angle of rotation of ball screw. ,. Kg Ct p. ,. ,. ,. ,. m Angle of rotation of motor Mbs. Ball screw inertia. Jc. , ,. Elastic displacement of nut part. Mass of the table. Jm Rotor inertia Kb. ,. xn. ,. Ks. Torsional rigidity of ball screw. Kn. Mass of the ball screw. Coupling inertia. Kc. Rigidity of ball screw. ,. ,. ,. Torsional rigidity of coupling. ,. Rigidity of support bearing Rigidity of nut. Table sliding side viscous damping coefficient Lead Fig. 2.2. Machine model of ball screw drive table (Kyoto University method)[25].

(122) Ñ. 2. Ò. ӜÔUÕÖ$×"ØMÙ'ÚÔÛcÕ3Ü‹Ý ÞßHàMáâã-äåHÕ-æœç=èé. xn. xt. Table. Nut. -. Ks m. Kb. Kc. Jm. -. .m. Kn. 13. Mt. Ct. b. Kg. Jc/2. Jc/2 Jb. Coupling. /. Mbs p R p/2. 0 Ball screw. Motor Fig. 2.3. Machine model of ball screw drive table. (Tokyo University of Agriculture and Technology method)[26]. ð G:é à®òR;›;¹6*à Sá$ì òñ*ç Æ ¯ Q ­ ” Sá$ì ¬ ­ è S à áì ”)!¡ 1¹ ¨$© ò¶ ¯ þ Î R$Ð à (2.1) $² ö÷ ø:æ G à¹à (2.2) ²$û%ö%ü*gøSæ G à~”è ð%Gé ” 3 2 Ó34  ² (•Ä· à áì ” $ë*? ¥ ì ½ Ð 5² $Æ Ç $ë*? ò78Æ ÇÐ  2.4 ²ö÷ ø:æ G à~” ê-ë-ìíÊîcï$ð “;ñ áì $² û%ö%ü*gø:æ G à~” ê-ë-ì~íÊîcï$ð “;ñ áì ” ¾:¿ ¤. ò. Ç3Ð ¯;¯ ;  ¯ Q ­ . àò â Æ~Ð)è ðG%é à ø m »6•” ¾:¿ ¤. ”¾:¿ ¤./¹  2.5 â Æ~Ð.

(123) Ñ. 2. Ò. ӜÔUÕÖ$×"ØMÙ'ÚÔÛcÕ3Ü‹Ý ÞßHàMáâã-äåHÕ-æœç=èé. 14. Mt ⋅ xt + Ct ⋅ xt + Kn( xt − xn) − Kn ⋅ R ⋅ θb = 0 Mbs ⋅ xn + Kn( xn − xt ) + Kl ⋅ xn + Kn ⋅ R ⋅ θb = 0 Jb +. Jc θb + Kg1(θb − θm) + R ⋅ Kn( xn − xt ) + R 2 ⋅ Kn ⋅ θb = 0 2. Jm +. Jc θm + Kg1(θm − θb) = Tm 2. (2.1). Mt ⋅ xt + Ct ⋅ xt + Kn( xt − xn) = 0 Mbs ⋅ xn + Kn( xn − xt ) + Kl ( R ⋅ θb − xn) = 0 Jb +. Jc θb + R ⋅ Kl ( R ⋅ θb − xn) + Kg1(θb − θm) = 0 2. Jm +. Jc θm + Kg1(θm − θb) = Tm 2. ¯ ¯ ; R b  êë-ì/íÊî ”$¢)ƒ²($Ç  ¥ 3ÿ ò â Æ~Ð Kg1. ë*ì•í¸î ” í î ·96. ”!.;:;7 ·U¹à (2.3) ² â Æ/ÐSä:R ¹ Kl íÊî ” ¾ Ê ¾ ¥ G=< ”).:;S7Ê·‹¹à (2.4) ² â Æ~Ð Kg1 =. Kl =. Kc ⋅ Kg Kc + Kg. Kb ⋅ Ks Kb + Ks. (2.2).  ¤ $ • Ý % 학 ê  ñ # !  ™ *ê ëì. (2.3). (2.4). ( · ö%÷*øSæ G à % á*ì ”¾¿ ¤ .l;¹ &ó:' 𠝘 315Hz ¹ 1140Hz ¹  û ö%ü*gø:æ G à áì ” ¾:¿ ¤.˜;S-¹&ó%' ð  2250Hz ;S7ÇÐ3 2.5 (•·Ä% 7 ÇÐ 3 !”:&ó%' ðS$ë

(124) -¹ 1 >  Kn ²?:·$Æ Ç õ ë 317Hz ¹ 1140Hz ¹ 2240Hz ;S T ì ” ¾ Ê ¾ ¥=  G < ² A Æ @ Æ Ç $ ë

(125) ¹ 2 > Kn ¹ Kc ¹ Kg ²?:·$Æ Ç ê-ë-ì~íÊî ” í î · = G < ²A Æ @ Æ Ç * ë

(126) ¹ 3 >  Kn ¹ Kb ¹ Ks ²?:$· Æ Ç ê-ë-ì~í î ” ¾ Ê ¾ ¥ G=< ”: & ó%' ðS$ ë

(127) ;S7 ÇÐ ¯ Q ­ 2  ! ”à á ì ”:& ó%' ð  ²ø˜-« þCBÏS w ­ . 2.4.

(128) D. 2. E. FHG9IKJ L

(129) MONPQGRSITVUWXZYO[Q\]^_ZI`Hacbd. 15. Qþ*ÏR  ¹ 89*; *¹ö:÷øæ :á$ì ò *À Á•Â$Ã~Ä ”)à Sá$ì ™š› ¹~Ï Ç3Ðà ” ö÷ ø:æ áì ” ±%² Gé àò â ~ Æ Ð (2.5) ²à (2.1)  − M −1C x= I 4×4 Mt 0. 0 Mbs. 0. 0. Jb +. 0. 0. 0. M=. C=. − M −1 K x + B ⋅ Tm 04×4 0 0. Ct. 0 0 0. 0 0 0. 0 0 0 0 0 0 0 0 0. Jc 2. 0 Jm +. Kn − Kn Kn + Kl − Kn K= − R ⋅ Kn R ⋅ Kn 0. 0 0 Jc 2. − R ⋅ Kn 0 R ⋅ Kn 0 2 R ⋅ Kn + Kg1 − Kg1 − Kg1. 0. Kg1. R = p (2π ). [. x = xt. xn θb θm. xt. xn θb θm. ]. T. T. B= 0 0 0. 1 Jm +. Jc 2. 0 0 0 0. (2.5).

(130) D. 2. E. 315Hz. Fig. 2.4. 1140Hz. 16. 2250Hz. Frequency response of Kyoto University method. 317Hz. Fig. 2.5. FHG9IKJ L

(131) MONPQGRSITVUWXZYO[Q\]^_ZI`Hacbd. 1140Hz. 2240Hz. Frequency response of Tokyo University of Agriculture and Technology method.

(132) D 2.2.2. 2. E. FHG9IKJ L

(133) MONPQGRSITVUWXZYO[Q\]^_ZI`Hacbd. 17. .  à Sá$ì ¨ Z ”:R  ²$¹SÖ“¸”)¾ ¿%*¤. òo  ¹ ëe ¤. '™ ” ¡31Êò3¶ ¯ þ * Î R$Ðf 2.6 ²Ö3“®”Kgh•¹i 2.1 ² ê-ë-ì~íÊîcï$ð “;ñC ” j k ò â ~ Æ Ð Table. Coupling. Servo motor. Ball screw Fig. 2.6. Support bearing. Guide rail. Experimental machine. :Ö“Ê”¾¿% ¤.D¹:€ ë~ê ; ë˜? ” ¥ ì ½ Ð5;l!m ™;š› ¹%-n ¥ ì ½ ” 40% ';o~”÷ø p=q)¿ (10 r 3000Hz) ò$Ð35µš¹ º”Ê™«”  ë? ø%m»A6Êò FFT Û kÊ$ ¯ ; Ä s ÆÊÇ GH ò$ÈS¹ š R Ð;f 2.7 ²)%-Ö “ ”  ë? ø%m /  ë? ¥ ì ½ ”¾S¿ ¤ .:•  ¹Af 2.8 ² à %*á ì  ( ·c78®šR  ë? ø%m /  ë? ¥ ì ½ ”¾S¿ ¤ .Êò â Æ/Ð ¯ ” 2 ! ” ¾:¿ ¤• . ”:& ó%' ð  ò!¡ 1$Æ®Ç~™M¹3Ö “®”:& ó%' ð  840 ¹ 2040Hz ;~ 7 Ç3”;² š›*¹)à %*á ì ”S& ó:' ð l 814 ¹ 2070Hz ™t3 ï uš›*Ï Ç ¯ ™ ( ·‹¹à á ì  ó r*;S • 7 Ç ¯ ™^ v3w;;« ÇÐã x¹ ¯ ”à á ì ò À-Á ¿ Ã;Ä ”. ë e3Ó 4 ² ¹ ÏÇÐ.

(134) D. Table 2.1. 2. E. FHG9IKJ L

(135) MONPQGRSITVUWXZYO[Q\]^_ZI`Hacbd. 18. Status of experimental machine. Ball screw. Maximum travel Root diameter Lead. Coupling. mm. 302. mm. 9.2. mm. 4. Hole diameter(motor side). mm. Hole diameter(ball screw side) N m. Torsional rigidity. N m/rad. Inertia. y. mm. 8. y. Permissible torque. y. 8. kg m2. 3.5 2940. z. 10-4. 0.12. Support bearing. Hole diameter. mm. Servo motor. Rated output. W. 100. Rated torque. N m. y. 0.318. Peak output torque Rated speed. y. 0.955. N m. rpm. Maximum speed Rotor inertia. 10. 3000. y. rpm. kg m2. 5000 0.0364. z. 10-4.

(136) D. Fig. 2.7. 2. E. FHG9IKJ L

(137) MONPQGRSITVUWXZYO[Q\]^_ZI`Hacbd. Frequency response of ball screw drive table (measurement). 2070Hz 814Hz. Fig. 2.8. Frequency response of ball screw drive table (simulation). 19.

(138) D. 2. E. FHG9IKJ L

(139) MONPQGRSITVUWXZYO[Q\]^_ZI`Hacbd. 2.3. 

(140) . 2.3.1.    

(141)    

(142)       . 20. q º%Ë®” £$¤ ¥U§3¼•½-¾ “;¿¸” À$Á ¿ ²¶Ï›;¹“i®”°:'Êò > À Æ Ç6R  ² § ë É ¾ % ìl? fk¼ ^½ % ìl?  ¥ ì ½ lm ²$Ï:ÐîOQ®Ç ¯ ™^{ Ï;Ð § ë É ¾ %. ìl? $ °/ ' ”> À ¹¼ ^½ % ìl? ¤:-” ¾:¿ :–3"/”|}/òC~kš“Si°'6p î þ-Ïl(k‹— ²‚lx) Q ›-ÏÇÐ ¯ Q ­ ” % ì˜?   Q:n € ™þ~ÇR  7 ä ·‚Ï6¾:¿  ² à  - Æ Ç~™ À-Á òƒ%+S~ - ²Æ Ç ¯ ™^S7ÇR  ¹3øm À-Á ”$»36%¾:¿ ¤.” „ é ¬ ² à - Æ Ç ¯ ™^ ä šœÏ¸™O Q ›ÏÇÐ (4 r 6 m ) ã ¯¯ ;*  ¹3{!S. ô ¾ õ•ö ™š›6œS ”3& óS' ð  ò#*! ê$ë*ìí îœï;ð “ñʲ¶ Ï› ¹ P-PI À*Á ¿¸² § ë É ¾ S ìk? ™6¼ ½ S ìD? òÏÐ š$R À*Á/ òȹ š$R ™ « ¹  ”+S-6. òO†ˆ‡ !% ! ÷$Ï» 6/ . ¹3Æ~þ%;x ‡÷:l* ò$ ËÆ Ç% ìl? ” Ã;Ä ²) ! Ï;›3Ó 4 ò¶ ¯ þî=— Ð ä ‰/¹ £*¤ ¥‹§-¼/½¾ “¿¸² ‚Dx /  Q › ϮNJ¹ ”€ ë~ê Û* • ²*¶;Ï~›C‹Œ~ A þ˜ž ”;S 7 Ç P-PI À-Á ™ ¥ ì ½ % ìl? ™$š› § ë É ¾ % ìl? (Low pass filter) òÕ ´ š^R À-Á ¿ [27] ²*Å®š› ”$3 Ó 4 ò¶ ¯ þî=— Ðf 2.9 ² ¯ ” À-Á ” T §  ½ ò â Æ~Ð.     

(143) . . . m. cmd. Kp.  

(144)  

(145) . Kv 1 Tis. s. Kp Ti. Ž. ,. ,. Position loop gain Integral time. cmd. ,. s. Position command. Fig. 2.9. Kv. Ž. ,. ,. Velocity loop gain. Laplacian operator m. ,. Motor position. Block diagram of P-PI+LPF control system.

(146) . 2. . ‘H’9“K” •

(147) –O—˜Q’™S“šV›œZžOŸQ ¡¢£Z“¤H¥c¦§. 21. ¯ ¯ ; â ^š Rž ¨ ² § ë É ¾ % ìl?¨ ;~ŝ G (s) ò â Æ~Ð $  ¹ 1> ¨ § ë É ¾ % ìl? S; 7ǹ€ ëê Û  •  ² ( Î-›S-¹ 2 > ¨ § ë É ¾ %  ìl?  © ª; « ^Ç 45ž)7ÇÐ. à. (2.6). GLP ( s) =. LF. 2π ⋅ fc s + 2π ⋅ fc. fc «­¬¯®±°³²´Hµ!¶·. (2.6). ¸ ¹¯º!»C¼¾½Q¿ ÀÁÂÃÅÄSÆ3ÇÈ;ÉAÊ!Ë!Â=ºÌ P-PI Í 1 ÎÏÐ ÁÑÒÓ3ÔQÂÖÕ Ï×Ø  ÙÅÚ É;Û!܈ÝCÞß!àáâãä¯å Kv=286.5Hz(1800 1/s) Ìß!àæ;çAãä=å 1/Ti=300 1/s Ì Ð ÁÑAÒÓ ÔQÂ¯Õ Ïèˆé±ê

(148) ë ÓQì3íî fc=2000Hz ïcð;ñ ½OÌóòZôõö Ï÷øùú ºKû±üQý þÿ Ú Ý  á!âãäÖå Kp Ú

(149)  (0  rad/s) ï ½¿ ï þ Ï Ú 2.10 º¼3ÜÞ  2.10  Kp Ú »! ï ÈÉ Ï 1 Î Ì 2 ÎÏ#"%$& Ç  Ý 800Hz Ì 2000Hz '( Ï% ) *+ñ-, º/.Ç ÜˆÝ0 ï1)#23 ÝKÞ4 ¿!Ì ×Ø Ù  Ý  ü657;á Ï%8 :9#; Ú/< »=ÝCÞ00=K¼ ½Q¿ ×Ø Ù É#> =?Ì:@ Ï÷ø!ú Ú:A SÜÖÝC¿B!º;Ó ÔÁDCFE éG ãä¯å Ú »H ï ÌÈÉ Ï#"%$& Ǻ  Ý & Ç )-IJ »KCÝ ïML N J ÝCÞ4 ¿!Ì Kp Ï+ñOP ? 10000rad/s ï ÿ#Q »=ÝCÞ.

(150) R 2 S T6U V%WXZY\[]1U_^MV-`ba c_dfe\g1h/i:j/kfV:l6mon_p. (a) General view. 2nd natural frequency. 1st natural frequency. (b) Enlarged view Fig. 2.10. Root locus of P-PI+LPF control system. q Kv=286.5Hz r. 1/Ti=300 1/s. r. fc=2000Hz. s. 22.

(151) R 2 S T6U V%WXZY\[]1U_^MV-`ba c_dfe\g1h/i:j/kfV:l6mon_p. 23. t è êcÐuvG ÒÈ Ù Ï"%$& Çî )w ì3íîxy z ß!à ×دÏ÷3ø ì3íî ùú=Ï 4 {}|#~ ) ò + =  J€ Ì ~ Ï×Ø Ù ºv‚ é/ƒ Ó3ÔÂÖÕ (Notch filter) Ú/„ ½» & Ç Ú_† × ÜˆÝ_‡ˆ ):‰ ‹Š 2 J ÝCÞ}‚ é1ƒ Ó ÔO¯Õ?Ì-EÖåŒCZŒŽ‘3ä ê Ó ÔQ¯ÕÌ-E å’CŽ/“}” G ê Ó;ÔÂˆÕ ï ü • €:Jù;ñÏ ì;í3î>Aç Ï-8 5Öº%Š 2:J ÝÞK00 =v? Ì '( Ï*+ñ: Ú%–—%˜ Ü¿B!º‚ é\ƒ Ó ÔQÂ¯Õ Ú1„# ܈ÝKÞ  2.11 º P-PI × 2000Hz Ø ïÐ ÁÑAÒÓ ÔQ¯Õ!º‚ é1ƒ Ó ÔQÂ¯Õ Ú%™š ½Q¿ ×Ø @ Ï›ÐAéG/œ AÚ ¼3ÜÞ. .     

(152)  cmd. Kp. .  

(153)    

(154)   

(155) . Kv s. Fig. 2.11. m. 1 Tis. Block diagram of P-PI+LPF. . NF control system. º ‚ é1ƒ.  Ó ÔQÂ¯Õ  Ï Ÿ }¡ î Gn(s) Ú ¼ÜÞ Q ?‚ é1ƒ Ó ÔQÂÖÕ Ï ì3íî#¢ £ Ú ð;ñ ܈ÝQÑK¤ t ÁÕ ï ÿ Ý ) Ì¥00=?̦#§¨!Á;À#©Aå ª Ï%«¬ õ ï ½Q» ð;ñ!­ J »=ÝOõ Ï 0.7 º "ñ ½Q» |® _ Ï ¯#° º%§=ÝCÞ. ž. (2.7). s 2 + (2π ⋅ fn) 2 2π ⋅ fn s2 + s + (2π ⋅ fn) 2 Q Q = fn ( fh − fl ). G N ( s) =. fn ±»º¼ ½¾_¿%·¸ ¹. fh, fl ±³²´µ ¶:·¸ ¹. (2.7). ¸ ï_ÀÁ=Ï  À ÁÂñÄSÆ3ÇÈ;ÉAÊ ËÂ=ºÌ P-PI Í 1 ÎÏÐ ÁÑAÒÓ ÔQÂÖÕ Í ‚ é/ƒ Ó ÔÂ±Õ Ï× Ø Ù Ú ÉÛ;ÜóÝÞß;àá3â¯ã ä±å Kv=286.5Hz(1800 1/s) Ì!ßà3æç=ã ä±å ÁÑÒÓ ÔÂÖÕ Ïè±éóê

(156) ë ÓQì3í!î fc=2000Hz Ì‚ é1ƒ Ó3ÔÂ¯Õ Ï ‚ é 1/Ti=300 1/s Ð ƒ}Âà ì3íî fn=1950Hz ïcð;ñ ½OÌ}. áâãä¯å Kp Ú

(157)  (0  rad/s) ï ½Q¿ ï þ Ï # Ú 2.12 º¼3ÜÞ.

(158) Ä 2 Å Æ6Ç È%ÉÊZË\ÌÍ1Ç_ÎMÈ-ÏbÐ Ñ_ÒfÓ\Ô1Õ/Ö:×/ØfÈ:Ù6ÚoÛ_Ü. (a) General view. 2nd natural frequency. 1st natural frequency. (b) Enlarged view. Fig. 2.12. Root locus of P-PI+LPF. q Kv=286.5Hz r. 1/Ti=300 1/s. r. . NF control system. fc=2000Hz. r. fn=1950Hz. s. 24.

(159) Ä 2 Å Æ6Ç È%ÉÊZË\ÌÍ1Ç_ÎMÈ-ÏbÐ Ñ_ÒfÓ\Ô1Õ/Ö:×/ØfÈ:Ù6ÚoÛ_Ü. 25.   ÈÉ Ï 2 ÎAÏ#"%$& Ç  Ý 2000Hz '( Ï% ?Ì +ñ-, º  Ú/< þ Ì  ‚ é1ƒ Ó ÔQÂ¯Õ Ï_Ý Þ =ßà ­ J ÝCÞ0 Ï ¿B 2000Hz Ï á& ? † ×â­ J Ý ) ÌÈÉ Ï Ç  Ý 800Hz '( Ï& ÇãÌ Kp Ú »! ïM*+ñ-, º_.Ç ÜˆÝ 1 ÎÏ#"%$& '( Ï% º  Ý & Ç )ävå ÜˆÝ ïML N J ÝCÞ}‚ é1ƒ Ó ÔQÂ=Õ „# º  Ý/@ Ïæ 420Hz JÏ  º  Ì P-PI ×ØÅÍ 1 ÎÏÐ ÁÑAÒÓ ÔQÂ¯Õ ÏÖï þ ï áç;Ì Kp Ï+ñOP ? ÿ#Q »=ÝCÞ 2770rad/s ïo8 Î º × Ø Ù º}‚ é_ƒ ÓÔÂˆÕ Ú_„v ½¿44=Ì Ð Á ÑÒ=Ó;ÔÂ±Õ Ï3èÅé ê ë Óì íî Ú¥è ½¿ ï þ Ï3×Ø @ Ï+ÖñAú ºé¥¯» ¯¥° Úê 0 ÿìë ÞH =áâÅãä å Ìß!àáâãä¯å Kv=286.5Hz(1800 1/s) Ìß!àæçAãä¯å 1/Ti=300 1/s Ì ‚ é Kp=300 1/s ƒ Ó3ÔÂÖÕ Ï ‚ é_ƒ Â-à ìí!î fn=1950Hz ïVðAñ ½QÌ Ð Á!ÑÒ=Ó3ÔÂÖÕ Ï!è±é ê ë Ó ì3íî fc Ú 500  10000Hz º  Ç ­Mí ¿ ï þ Ï%# Ú 2.13 º¼3ÜÞ  2.13  fc Ú w ½Q»!º é J »!Ì î  ?Ì « B!ºïðº (ñ  ëSÿ  Ú < »=ÝCÞ ­ N º w ½Q»! ï Ì:ïð ~Ú .Ç ® Ì  Ý  ?/òó ) ý þ ÿ  57 á )8 ÿ ÝKÌ#4 ¿?Ì 2 Î @ Ï Òô é ª ÷3ø º ê õ Ý\ö57 Ï÷øÏ  ë º ÷ø!ú) 8 ÿ Ý  ëÿ v Ú:< ùŒú )vû N J Ý Þ4¿Ì  2.13 =?;Ì¥ü:ýþ=? ÿ  ) º  ÝVÈÉ Ï 1 ÎÏ#"%$& Ç  Ý  ?Ì èˆéÅê

(160) ë ÓQì3íî Ú w S܈Ý- ÿ OÌ 800Hz 57;á )8 ÿ ÝCÞ00=?Ì fc=4100Hz ÏÖï þ ºÌ î  )  ÿ -ï  =   Ì ö57= ÿ  ÷ø ï ÿ#Q ¿ Þ Ú  ÿ õ=º ð;ñ ÜÖÝ0 ï º  Ì ×Ø @º  Ý & Ç Ú_† × Üˆ Ý  )¬

(161) = þ Ý fc ï ¯ = þ ÝCÞ . 2.12.

(162) Ä 2 Å Æ6Ç È%ÉÊZË\ÌÍ1Ç_ÎMÈ-ÏbÐ Ñ_ÒfÓ\Ô1Õ/Ö:×/ØfÈ:Ù6ÚoÛ_Ü. Fig. 2.13. 26. Root locus of P-PI+LPF+NF control system by cut off frequency. q Kp=300 1/s r. r 1/Ti=300 1/s r fn=1950Hz s  0=!Ì Ð ÁÑAÒÓ ÔOÂ¯Õ ÏèˆéÅê

(163) ë ÓQì3íî Ú w ð;ñ ½Q¿ P-PI Í 1 ÎÏÐ ÁÑAÒ Ó ÔQÂ¯Õ Í ‚ é1ƒ Ó ÔÂ¯Õ ÏC×Ø ÙÅÚ É#>3ܱÝCÞß!àáâãä¯å Kv=286.5Hz(1800 1/s) Ì ß à!æAçAãä¯å 1/Ti=300 1/s Ì Ð ÁÑÒÓ ÔÂ¯Õ Ï!è±éÅê ë ÓQìíî fc=4000Hz Ì‚ é ƒ ÓÔÂ Õ Ï ‚ é:ƒHÂà ì=íî fn=1950Hz ïðÖñ ½ÌH áâ±ãä å Kp Ú#

(164) } ½Q¿ ï þ Ï%# Ú 2.14 º¼ ÜÞ00= fc=4100Hz ïoí º 4000Hz (0  rad/s) ï ï v= §= Ý å êcÐ Á¥¤º» ð;ñ = þ ÝQû3ýõ ) 4000Hz =  Ý0 ï ½Q¿ Ï ?Ì ï º  ÝCÞ Ð ÁÑAÒÓ ÔQÂ¯Õ ÏèÖéÅê

(165) ë ÓQì3íî Ú 2000Hz ï ½Q¿ ï þ ºCáç;Ì Ï 9#; ) ïð 0  = ;¿BÌ 57;á )w  ÷øÏ%#¾ï ÿ#Q »=ÝKÞ4 ¿!Ì *+ñ-, 4 ~ Ú    = Ï 9#; ) ÿ#Q » ê  Ì Kp Ï+ñOP ? 4370rad/s 4=ú ~ ½Q»:=ÝCÞ0 Ï! Ì Ð ÁÑAÒÓ ÔQÂ¯Õ ÏèÖéÅê

(166) ë ÓQì3íî Ú  ÿ õ=º ð;ñ ܈Ý0 ï º  Ì ×Ø Ù º  Ý ß " )  J Ý ïML N J ÝCÞÈÉ & Ç Ï%8 5#ã ×Ø ãä=å Ï:w ãä¯#å "¯º  Ý ÷øÏ:w  Ï 2 ÎÏ#"%$& Çî¥?Ì  2.12 ï_À_Á º‚ é1ƒ Ó ÔQ¯Õ:= +ñ " ­ J »=ÝCÞ Kv=286.5Hz.

(167) Ä 2 Å Æ6Ç È%ÉÊZË\ÌÍ1Ç_ÎMÈ-ÏbÐ Ñ_ÒfÓ\Ô1Õ/Ö:×/ØfÈ:Ù6ÚoÛ_Ü. (a) General view. 2nd natural frequency. 1st natural frequency. (b) Enlarged view. Fig. 2.14. Root locus of P-PI+LPF. q Kv=286.5Hz r. 1/Ti=300 1/s. r. . NF control system. fc=4000Hz. r. fn=1950Hz. s. 27.

(168) Ä 2 Å Æ6Ç È%ÉÊZË\ÌÍ1Ç_ÎMÈ-ÏbÐ Ñ_ÒfÓ\Ô1Õ/Ö:×/ØfÈ:Ù6ÚoÛ_Ü 2.3.2.       

(169) . ¸ ¹=?ÌKÈ;É Ï 2 ÎÏ"$#&  ÔQÂ¯Õ ÏèˆéÅê

Fig. 1.1 Situation of advanced control system for industry [6]
Fig. 2.1 Ball screw drive table
Fig. 2.5 Frequency response of Tokyo University of Agriculture and Technology method 315Hz317Hz 1140Hz1140Hz 2250Hz 2240Hz
Fig. 2.6 Experimental machine
+7

参照

関連したドキュメント

さらに、NSCs に対して ERGO を短時間曝露すると、12 時間で NT5 mRNA の発現が有意に 増加し、 24 時間で Math1 の発現が増加した。曝露後 24

 第一の方法は、不安の原因を特定した上で、それを制御しようとするもので

SVF Migration Tool の動作を制御するための設定を設定ファイルに記述します。Windows 環境 の場合は「SVF Migration Tool の動作設定 (p. 20)」を、UNIX/Linux

非常用交流電源/直流電源/計測 原子炉補機冷却水系/原 中央制御室換気 換気空調補機非 格納容器雰囲気 事故時 制御用直流電源/非常用電気品区 子炉補機冷却海水系

調査の結果を反映し、IoT

タンクタンクタンク モバイル型Sr 除去装置 吸着塔 スキッド 計装制御 スキッド 計装制御装置 ウルトラフィルタ スキッド SSフィルタ

ⅰ.計装ラック室,地震計室(6 号炉) ,感震器室(7 号炉) ,制御

 まず STEP1 の範囲を確認→ STEP2 、 3 については、前段の結果を踏まえ適宜見直し... 2.-③ TIP機器の動作確認