トップPDF en 最近の更新履歴 yyasuda's website

en 最近の更新履歴  yyasuda's website

en 最近の更新履歴 yyasuda's website

Introduction to Market Design and its Applications to School Choice.. Yosuke YASUDA.[r]

84 さらに読み込む

MarketDesign en 最近の更新履歴  yyasuda's website

MarketDesign en 最近の更新履歴 yyasuda's website

  Exist exactly one for ANY exchange problem.   Always Pareto efficient and individually rational[r]

49 さらに読み込む

Lec9 最近の更新履歴  yyasuda's website

Lec9 最近の更新履歴 yyasuda's website

3(a - e)/4, is greater than aggregate quantity in the Nash equilib- rium of the Cournot game, 2(a - e)/3, so the market-clearing price is lower in the Stackelberg game.. Thus, i[r]

17 さらに読み込む

Lec10 最近の更新履歴  yyasuda's website

Lec10 最近の更新履歴 yyasuda's website

   If the stage game has a unique NE, then for any T , the finitely repeated game has a unique SPNE: the NE of the stage game is played in every stage irrespective of the histor[r]

20 さらに読み込む

Midterm2 最近の更新履歴  yyasuda's website

Midterm2 最近の更新履歴 yyasuda's website

(a) If an agent is risk averse, her risk premium is ALWAYS positive. (b) When every player has a (strictly) dominant strategy, the strategy profile that consists of each player’s dominant strategy MUST be a Nash equilibrium. (c) If there are two Nash equilibria in pure-strategy, they can ALWAYS be Pareto

3 さらに読み込む

PS3 最近の更新履歴  yyasuda's website

PS3 最近の更新履歴 yyasuda's website

(b) Now suppose there are n(> 2) individuals. Then, can we find a competitive equilibrium? (How) Does your answer depend on n? 4. Question 4 (8 points) Consider a production economy with two individuals, Ann (A) and Bob (B), and two goods, leisure x 1 and a consumption good x 2 . Ann and Bob have equal en-

2 さらに読み込む

Final14 最近の更新履歴  yyasuda's website

Final14 最近の更新履歴 yyasuda's website

    5. Bayesian Nash Equilibrium (12 points)  There are three different bills, $5, $10, and $20. Two individuals randomly receive one  bill each. The (ex ante) probability of an individual receiving each bill is therefore 1/3.  Each  individual  knows  only  her  own  bill,  and  is  simultaneously  given  the  option  of  exchanging her bill for the other individual’s bill. The bills will be exchanged if and only  if  both  individuals  wish  to  do  so;  otherwise  no  exchange  occurs.  That  is,  each  individuals can choose either exchange (E) or not (N), and exchange occurs only when  both  choose  E.  We  assume  that  individuals’  objective  is  to  maximize  their  expected  monetary payoff ($). 
さらに見せる

3 さらに読み込む

Midterm14 最近の更新履歴  yyasuda's website

Midterm14 最近の更新履歴 yyasuda's website

Find (all) pure‐strategy Nash equilibrium if it exists.  iii.[r]

2 さらに読み込む

Final1 最近の更新履歴  yyasuda's website

Final1 最近の更新履歴 yyasuda's website

e z . The prices of the three goods are given by (p, q, 1) and the consumer’s wealth is given by ω. (a) Formulate the utility maximization problem of this consumer. (b) Note that this consumer’s preference can be expressed in the form of U (x, y, z) = V (x, y) + z. Derive V (x, y).

2 さらに読み込む

Slide2 最近の更新履歴  yyasuda's website

Slide2 最近の更新履歴 yyasuda's website

elimination of strictly dominated strategies can never be selected (with positive probability) in a mixed-strategy Nash equilibrium.[r]

16 さらに読み込む

Slide1 最近の更新履歴  yyasuda's website

Slide1 最近の更新履歴 yyasuda's website

Combination of dominant strategies is Nash equilibrium. There are many games where no dominant strategy exists[r]

20 さらに読み込む

PS2 最近の更新履歴  yyasuda's website

PS2 最近の更新履歴 yyasuda's website

Prove that if a firm exhibits increasing returns to scale then average cost must strictly decrease with output. 4.[r]

1 さらに読み込む

PS1 最近の更新履歴  yyasuda's website

PS1 最近の更新履歴 yyasuda's website

(a) The intersection of any pair of open sets is an open set. (b) The union of any (possibly infinite) collection of open sets is open. (c) The intersection of any (possibly infinite) collection of closed sets is closed. (You can use (b) and De Morgan’s Law without proofs.)

1 さらに読み込む

EX3 最近の更新履歴  yyasuda's website

EX3 最近の更新履歴 yyasuda's website

Solve the following problems in Snyder and Nicholson (11th):. 1.[r]

1 さらに読み込む

EX2 最近の更新履歴  yyasuda's website

EX2 最近の更新履歴 yyasuda's website

Solve the following problems in Snyder and Nicholson (11th):. 1.[r]

1 さらに読み込む

EX1 最近の更新履歴  yyasuda's website

EX1 最近の更新履歴 yyasuda's website

Solve the following problems in Snyder and Nicholson (11th):. 1.[r]

1 さらに読み込む

Lec8 最近の更新履歴  yyasuda's website

Lec8 最近の更新履歴 yyasuda's website

  A tree starts with the initial node and ends at2. terminal nodes where payoffs are specified..[r]

23 さらに読み込む

Lec6 最近の更新履歴  yyasuda's website

Lec6 最近の更新履歴 yyasuda's website

  A strategy in dynamic games is a complete action plan which prescribes how the player will act in each possible.. contingencies in future..[r]

16 さらに読み込む

Final13 最近の更新履歴  yyasuda's website

Final13 最近の更新履歴 yyasuda's website

  4. Incomplete Information (16 points, think carefully)  There are four different bills, $1, $5, $10, and $20. Two individuals randomly receive  one bill each. The (ex ante) probability of an individual receiving each bill is therefore  1/4.  An individual knows only her own bill, and  is  simultaneously given the option of  exchanging her bill for the other individual’s bill. The bills will be exchanged if and only  if  both  individuals  wish  to  do  so;  otherwise  no  exchange  occurs.  That  is,  each  individuals can choose either exchange (E) or not (N), and exchange occurs only when  both  choose  E.  We  assume  that  individuals’  objective  is  to  maximize  their  expected  monetary payoff ($). 
さらに見せる

2 さらに読み込む

Midterm13 最近の更新履歴  yyasuda's website

Midterm13 最近の更新履歴 yyasuda's website

B) Nash equilibrium outcomes are always Pareto efficient. C) A strategy used in Nash equilibrium can never be eliminated in the process of iterated elimination of dominated strategies. D) In a mixed-strategy Nash equilibrium, each player must completely randomize his/her (pure-) strategies, i.e., taking every strategy with exactly equal probability. E) The Zermelo’s theorem says that the second mover always has a winning strategy.

2 さらに読み込む

Show all 10000 documents...