Final14 最近の更新履歴 yyasuda's website

全文

(1)

1

Final Exam 

Date: March 29, 2014 

Subject: Game Theory (ECO290E)  Instructor: Yosuke YASUDA   

1. True or False (10 points) 

Answer whether each of the following statements is true (T) or false (F). You do NOT  need to explain the reason. Please just indicate T or F. 

 

A) A  dynamic  game  may  have  multiple  Nash  equilibria,  but  its  subgame  perfect  equilibrium is ALWAYS unique. 

B) A strategy in dynamic games specifies what the player will do in her decision node  or information set reached ONLY on the equilibrium path. 

C) In  the  Stackelberg  models,  the  FOLLOWER  gets  higher  profit  than  the  leader  because it can observe the leader’s output and take the best reply against it.  D) In finitely repeated games, a stage game Nash equilibrium must be played in the 

LAST period in any subgame perfect equilibria. 

E) For ANY dynamic games of bargaining, there exists a subgame perfect equilibrium  that realizes equal surplus division among players. 

   

2. Game Tree (15 points) 

See the following game tree.   

                     

1

2

2

1 1

1

A F

C

K

L

M

N

D E

G B

H

I H

I

(2, 2) (3, 4)

(1, 3)

(1, 3) (0, 0) (0, 0) (3, 1) (1, 5) (0, 2)

(2)

2

A) How  many  information  sets  (containing  two  or  more  decision  nodes)  does  this  game have? 

B) How many subgames (including the entire game) does this game have?  C) Find all subgame perfect Nash equilibria. 

Remark:  You  should  make  it  clear  which  action  each  player  will  take  in  every  decision node (or information set). Writing a resulting payoff alone is not enough.   

 

3. Dynamic Game (16 points) 

A manufacturer of automobile tires produces at a cost of $20 per tire. It sells units to a retailer who in turn sells the tires to consumers. Imagine that the retailer faces the (inverse) demand function, p = 200 – q/100. That is, if the retailer brings q tires to the market, these tires will be sold at this price. The retailer has no cost of production, other than whatever it must pay to the manufacturer for the tires. Suppose that the manufacturer and retailer interact as follows. First, the manufacturer sets a price x that the retailer must pay for each tire. Then, the retailer decides how many tires q to purchase from the manufacturer and sell to consumers.

 

A) What is the profit function of the manufacturer?  B) What is the profit function of the retailer? 

C) Derive  the  retailer’s  best  reply  function,  i.e.,  the  optimal  reaction  to  the  manufacturer’s strategy, x. 

D) Solve for the subgame perfect equilibrium of this game.   

 

4. Repeated Games (12 points) 

Consider the following two persons 2 x 2 game.   

1 / 2  L  R 

U  2, 3  0, 6 

D  4, 0  1, 1 

 

A) Find all pure‐strategy Nash equilibria. 

B) Consider the repeated game in which the above stage game will be played 5 times.  Then,  can  (U,  L)  be  sustained  as  a  subgame  perfect  Nash  equilibrium?  If  yes, 

(3)

3

derive the equilibrium. If not, explain why. 

C) Now suppose that the game will be played infinitely many times, and each player  tries to maximize the discounted sum of payoffs with the discount factor δ (< 1).  For  what  value  of  δ,  can  (U,  L)  be  sustained  as  a  subgame  perfect  Nash  equilibrium? You can focus on the trigger strategy. 

   

5. Bayesian Nash Equilibrium (12 points) 

There are three different bills, $5, $10, and $20. Two individuals randomly receive one  bill each. The (ex ante) probability of an individual receiving each bill is therefore 1/3.  Each  individual  knows  only  her  own  bill,  and  is  simultaneously  given  the  option  of  exchanging her bill for the other individual’s bill. The bills will be exchanged if and only  if  both  individuals  wish  to  do  so;  otherwise  no  exchange  occurs.  That  is,  each  individuals can choose either exchange (E) or not (N), and exchange occurs only when  both  choose  E.  We  assume  that  individuals’  objective  is  to  maximize  their  expected  monetary payoff ($). 

 

A) Consider the above situation as a Bayesian game. How many strategies does each  individual have? Recall that a strategy is the complete plan of actions. 

B) Prove that no trade will occur in any Bayesian Nash equilibrium. 

C) Now suppose that the rule of the game is modified as follows. If exchange occurs,  each  individual  receives  3  times  as  much  amount  as  the  bill  she  will  have.  For  example, if individual 1 receives $5 and 2 receives $10 initially and both wish to  exchange,  then  1  will  receive  $30  (=  $10  x  3)  and  2  will  receive  $15  (=  $5  x  3).  Nothing  happens  if  they  do  not  exchange.  Then,  does  trade  occur  in  a  Bayesian  Nash equilibrium? Explain. 

   

Updating...

参照

Updating...