• 検索結果がありません。

目次 第 1 章序論 1-1 研究背景 既往の研究 研究目的 論文構成 9 第 2 章建物と空調機概要及び実測方法 2-1 建物と空調機概要 実測方法 14 第 3 章実測結果 3-1 温度変動と温度頻度 絶対湿度変動と絶対湿度頻度 1

N/A
N/A
Protected

Academic year: 2021

シェア "目次 第 1 章序論 1-1 研究背景 既往の研究 研究目的 論文構成 9 第 2 章建物と空調機概要及び実測方法 2-1 建物と空調機概要 実測方法 14 第 3 章実測結果 3-1 温度変動と温度頻度 絶対湿度変動と絶対湿度頻度 1"

Copied!
44
0
0

読み込み中.... (全文を見る)

全文

(1)

卒業論文

夏期におけるヒートポンプ式リタンエアデシカント

空調機の性能調査と設定温湿度の検討

指導教員:

宋 城基 准教授

広島工業大学環境学部

環境デザイン学科

2015 年度

和田 幸大

指導教員記入欄 担当教員 宋 城基 印

(2)

目次

第1 章 序論 1-1 研究背景・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・1 1-2 既往の研究・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・2 1-3 研究目的・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・8 1-4 論文構成・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・9 第2 章 建物と空調機概要及び実測方法 2-1 建物と空調機概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・10 2-2 実測方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・14 第3 章 実測結果 3-1 温度変動と温度頻度・・・・・・・・・・・・・・・・・・・・・・・・・・・16 3-2 絶対湿度変動と絶対湿度頻度・・・・・・・・・・・・・・・・・・・・・・・19 3-3 除湿量と処理熱量及び電力量・・・・・・・・・・・・・・・・・・・・・・・22 3-4 COP と負荷率と SHF ・・・・・・・・・・・・・・・・・・・・・・・・・・26 3-5 交換効率と除湿効率・・・・・・・・・・・・・・・・・・・・・・・・・・・28 第4 章 考察 4-1 デシカントロータの再生温湿度の検討・・・・・・・・・・・・・・・・・・・29 4-2 回帰分析による給気温湿度に関する検討・・・・・・・・・・・・・・・・・・30 4-3 デシカントロータ回転数に関する検討・・・・・・・・・・・・・・・・・・・32 第5 章 まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・34 参考文献 付録(AIJ 中国支部論文) 謝辞

(3)

第 1 章

序論

(4)

1

第 1 章 序論

1-1

研究背景

京都議定書締結以降、地球温暖化問題への対策として各方面で CO2排出量削減や省エネ ルギー化が進められている。工場などの産業部門では一定の成果が出ているものの、オフ ィスビル等の業務部門では依然として増加の傾向にある。図 1.1 に示すオフィスビルのエネ ルギー消費量を見てみると約 40%が空調関連分野であり、空調システムの省エネルギー化 や高性能化が求められている。従来型デシカント空調機は顕熱交換機とデシカントロータ により構成されたが、リタンエアデシカント空調機1)は全熱交換機とデシカントロータによ り構成されるためより効率よく温湿度の管理を行うことができる。また、従来型デシカン ト空調機はデシカントロータの再生に 80℃以上の熱を必要とし湿度を処理するために多く のエネルギーを必要としたが、リタンエアデシカント空調機は 40℃~60℃の低温でデシカ ントロータを再生できるため従来型デシカント空調機に比べさらに省エネルギーで運転が 行える。 図 1.1 オフィスビルのエネルギー消費量 (出典;一般財団法人省エネルギーセンター) (http://www.eccj.or.jp/office_bldg/01.html)

(5)

2

1-2 既往の研究

(1)ヒートポンプ式デシカント空調機の性能調査 -夏期における実測調査‐2) 研究目的 省エネルギー空調機として注目されるヒートポンプ式リタンエア型であるが、性能調査 研究事例はほとんどなく詳しいデータは明らかになっていない。そこでヒートポンプ式リ タンエア型デシカント空調システムの性能を明確にすることを目的に実測調査を行った。 研究方法 対象建物は、広島市に建設された地下 2 階、地上 12 階建ての延床面積 13,000 ㎡のオフ ィスビルである。室内負荷はビル用マルチエアコンが、外気負荷はデシカント空調機が処 理を行う。冷房時の給気設定温湿度は 27℃と 10.5gに設定されている。リタンエアデシカ ント空調機の外気と出入口に測定器を設置し外気温湿度と給気温湿度、還気温湿度の実測 を5 分間隔で行った。また、電力量は 1 時間間隔で実測を行った。 研究結果 図 1.2 に 7 月~9 月の空調時間内における温度頻度を、図 1.3 絶対湿度頻度を示す。給気 温度 27℃以下は 7 月が 95%、8 月は 40%、9 月は 60%であった。給気絶対湿度 10.5g 以下 は 7 月が約 20%、8 月は約 10%、9 月は約 50%であった。 図 1.4 に 7 月~9 月の空調時間内における日積算の処理熱量と電力量を示す。7 月の電力量は 欠測している。7 月~9 月で処理熱量は約 310MJ/day~5,200MJ/day で、そのうち顕熱は約 40MJ/day~500MJ/day で潜熱は約 270MJ/day~4,700MJ/day であった。このことから、7 月~9 月 における処理熱量の平均は約 2,500MJ/day で、そのうち顕熱は 2~3 割、潜熱は 7~8 割であった。 8 月と 9 月の電力量は約 250kW/day~約 650kW/dayであった。 図 1.5 に 8~9 月の空調時間内における除湿負荷率と熱負荷率、COP の関係を示す。除湿負荷 率 8 月と 9 月ともにまんべんなく散布されていた。8 月の熱負荷率は 0.6~0.8 に集中して おり、この時の COP は定格以上の 4~8 を示した。9 月の熱負荷率は 0.1~0.3 に集中してお り、この時の COP は、ほぼ定格を下回っていた。8 月よりも温度が低かったため負荷率が低 くなったと考えられた。 考察 給気温度の約4割、給気湿度の約 8 割が設定温湿度に達していないことがわかったが、 その原因分析は行われなかった。空調機出入口だけでなく、空調機内部の測定を行う必要 があることが考えられた。

(6)

3 図1.2 温度頻度図 図1.3 絶対湿度頻度図 0% 20% 40% 60% 80% 100% 外気 還気 給気 外気 還気 給気 外気 還気 給気 7月 8月 9月 頻度 [% ] 6.0~ 10.5~ 14.0~ 17.0~ [g/kg(DA)]

(7)

4

図1.4 日積算処理熱量と電力量

(8)

5 (2)低炭素化と知的生産性に配慮した最先端オフィスにおける潜熱顕熱分離型空調の研究 -第一報 レタンエアデシカント空調機の実負荷運転における最適能力調整-3) 研究目的 レタンエアデシカント空調システムの実負荷運転時における性能調査及び性能改善のた めの検討をし、更なる省エネ運転への最適化を目的としている。定格風量4200𝑚3/ℎに対し て実運用風量は 1000~1500𝑚3/ℎであったため、デシカントロータと全熱交換機の設定回 転数が最適でないことが考えられた。 研究方法 対象建物は、東京都清瀬市に建設された地上三階立て延べ床面積 3,370 ㎡の研究所であ る。顕熱は自然対流を使用したタスクパネル、潜熱はレタンエアデシカント空調システム により処理を行う。風量による影響を確認するため、表1.1 に示す条件で可変させて検証 を行った。また、最適な回転数を設定するために、定格風量時4200𝑚3/ℎではデシカントロ ータと全熱交換器回転数をそれぞれ6~70rph と 3~18rph に、実運用風量時 1200𝑚3/ℎでは デシカントロータ回転数を6~29rph に変化させて検証を行った。 研究結果 表1.1 に示すように、風量が減少し風速が遅くなりすぎた場合、全熱交換器に偏流が発生 することによる除湿性能の低下が見られた。また、図1.6 に示すように、風量に対して回転 数が早すぎた場合、デシカントロータに顕熱交換量が多くなることによる除湿性能の低下 が見られた。図1.7 に示すように、定格風量時では回転数が 17~41rph のとき除湿性能が確 保され、17rph が最も温度上昇が少なかった。図 1.8 に示すように、実運用風量時では回転 数が初期設定29rph で大きな除湿性能の低下が見られ、17rph 以下では大きな変化は見ら れなかった。このことからデシカントロータ適正回転数は 17rph であることがわかった。 図1.9 に示すように、回転数 15rph 以下では熱交換後の性能が安定せず、15rph 以上では 飽和状態の傾向が見られた。このことから全熱交換器適正回転数は 15rph であることがわ かった。また、遮蔽版により面風速を上げることで、偏流を防げることがわかった。 考察 全熱交換器では、偏流により素子に均等に風が接触せず除湿性能の低下が起きているこ とが考えられたが、デシカントロータでは偏流については考えられていなかった。デシカ ントロータに遮蔽版を取り付けた場合の影響を検証する必要があると考えられた。

(9)

6

表1.1 風量の各可変条件(左)、風量変化時における全熱交換機の除湿性能(右)

図1.6 風量変化時におけるデシカントロータの除湿性能

(10)

7

図1.8 回転数可変時の実運用風量時におけるデシカントロータの除湿性能

(11)

8

1-3 研究目的

従来型デシカント空調機に比べ性能が向上したリタンエアデシカント空調機であるが、 性能調査の研究事例はほとんどなく詳しいデータは明らかになっていない。そのため、既 往の研究2)では、リタンエアデシカント空調機(以下、デシカント空調機)の性能を明確に することを目的に外気とデシカント空調機の出入口の温湿度の実測を行い、デシカント空 調機の外気と給気と還気の温湿度変動と除湿量および処理熱量、COP、SHF を調査した。 その結果、定格以上の性能で運転されていることが確認されたが設定給気温湿度 27℃、 10.5g に対し実測期間 2013 年 7 月~9 月の給気温度の約4割、給気湿度の約 8 割が設定温 湿度に達していないことがわかった。しかし、設定温湿度に達しない原因の分析は行われ なかった。 そこで本研究では、空調機内部の実測調査を行い、既往の研究に引き続きCOP や交換効 率等の性能調査と給気設定温湿度に達しない原因について検討を行った。

(12)

9

1-4 論文の構成

図 1.10 に本研究における研究の流れを示す。文献調査を行い、研究背景、空調機概要を 理解したうえで目的を決め、収集データを整理し、データ解析を行った。データは 2014 年 7 月 14 日~2014 年 9 月 30 日で、それぞれの期間の解析結果から考察とまとめを述べる。 第 1 章の序論では研究の背景、既往の研究、本研究の研究目的を示す。第 2 章の建物と 空調機概要では本研究における対象建物とその空調機概要を示す。第 3 章の実測結果では 温湿度変動、デシカント空調機の除湿量、デシカント空調機の処理熱量と電力量、COP と負 荷率、SHF と負荷率、交換効率、除湿効率の結果を示す。第 4 章では考察を行い、第 5 章で はまとめを行う。 図 1.10 研究の流れ •文献調査(既往の研究) •データ解析(温湿度変動、除湿量と処理熱量及び電力量、COPと 熱負荷率、SHFと除湿負荷率、交換効率、除湿効率) •考察 •まとめ

(13)

第 2 章

(14)

10

第 2 章 建物と空調機概要及び実測方法

2-1 建物概要と空調機概要

2-1-1 建物概要

図 2.1 に対象となる建物の外観を示す。対象となるデシカント空調機が設置されている 建物は広島市に 1973 年に竣工された地上 12 階、地下 2 階立てのSRC造のビルである。 この建物の 1 階と 2 階は銀行、3 階から 11 階はオフィス、12 階は監視室となっており、対 象空調機は屋上に設置されている。この建物の空調方式は個別分散方式であり、室内負荷 はビル用マルチエアコンが、外気負荷はデシカント空調機が処理をする。 図 2.1 対象建物の外観

(15)

11

2-1-1 空調機概要

ビル用マルチエアコンの室外機の冷房能力は 90kW のものが屋上に 9 台あり、室内機は冷 房能力 2.2kW~9kW のものが計 207 台ある。 表 2.1 と図 2.2 にデシカント空調機の性能表とデシカント空調機の概要図及び外観図を 示す。デシカント空調機はデシカントロータと全熱交換器、蒸発器と凝縮器により構成さ れており、デシカントロータと全熱交換器によって温湿度管理を行っている。デシカント 空調機に取り入れられた空気は全熱交換機により熱交換され冷却除湿された空気となり各 フロアに送られる。そして室内から戻ってきた空気はの蒸発器により冷却され、さらにデ シカントロータにより除湿された後、全熱交換機で外気と熱交換される。この外気と熱交 換された空気は、凝縮器で加熱されデシカントロータの再生後に排気される。除湿冷却能 力と加湿加熱能力はそれぞれ 143kg/h、約 133.2kW と約 79kg/h、約 121.8kW であり、給気 風量と還気風量、排気風量、バランス風量はそれぞれ 13,000m3/h と 9,765m3/h、13,670m3/h、 3,905 m3/h である。バランス風量とはヒートポンプの熱バランスを合わせるために必要な 風量のことである。また、全熱交換器とデシカントロータの回転数はそれぞれ 16rpm と 5 ~20rph である。夏期の定格運転時における COP と SHF はそれぞれ 3.76 と 0.23、全熱交換 器の温度交換効率と湿度交換効率は両方とも 68%、デシカントロータの除湿効率は 0.09g/kJ である。ここで除湿効率は再生熱量 1kJ あたりの除湿量である。冷房時の給気設定温湿度 は 27℃と 10.5g で、暖房時の給気設定温湿度は 20℃と 10g となっている。また、空調運転 時間は平日の 8:30~18: 00 である。

(16)

12

表 2.1 デシカント空調機の性能表

(17)

13

2-1-2 デシカント空調機ダクト系統図

図 2.3 に対象建物のデシカント空調機ダクト系統図を示す。デシカント空調機で空調された 空気はダクトを通り、まず防火ダンパー(以降 FD と表記)を通過する。FD とは、火災時の 延焼防止や熱い空気の噴出を防ぐためのダンパーで、ダクトが防火区画を貫通する場合に 取り付けられる。次に FD を通過した空気は、各階の風量調整防火ダンパー(以降 FVD と表 記)に送られる。FVD とは、風量調整を兼ねる防火ダンパーで、通常は風量調整、火災発生 時は防火ダンパーとして作動する。最後に FVD で風量調整された空気は、各可変低風量ダ ンパー(以降 VAV と表記)に送られ、室内に給気される。VAV とは、室内負荷に応じて送風 量を変えることにより冷暖房能力を調整できる設備である。そして、排気される室内空気 は、まず風量調整ダンパー(以降 VD と表記)に送られる。VD とは、風量調整用のダンパー である。次に VD に送られた空気は、ダクトを通り FD に送られる。そして最後に FD に送ら れた空気はデシカントロータの再生を行った後に排気される。 図 2.3 デシカント空調機ダクト系統図

(18)

14

2-2 実測方法

図 2.4 に夏期におけるデシカント空調機の測定位置を示す。測定期間は 2014 年 7 月 14 日~2014 年 9 月 30 日で行った。デシカント空調機の外気、給気、還気の3箇所と全熱交換 器の給気側と排気側、デシカントロータの除湿側と再生側、蒸発器通過後、凝縮器通過後 の内部6箇所の温湿度と電力量を測定した。内部測定箇所を図 2.5 に示す。また、温湿度 の間隔は 5 分、電力量は 1 時間間隔で測定した。 図 2.4 デシカント空調機の測定位置

(19)

15 ① 給気側全熱交換器通過後 ② 蒸発器通過後 ③ 除湿側デシカントロータ通過後 ④ 排気側全熱交換器通過後 ⑤ 凝縮器通過後 ⑥ 再生側デシカントロータ通過後 図 2.5 内部測定箇所

(20)

第 3 章

実測結果

(21)

16

第 3 章 実測結果

3-1 温度変動と温度頻度

3-1-1 各月の温度変動

図 3.1 に各月の変動が安定しない立ち上がり時を除いた空調運転時間帯 9:00~18:00 に おける温度変動を示す。7月の外気温度は 25.3℃~36.2℃、給気温度は 25.2℃~30.7℃の 変動であった。還気温度は 26.8℃~29.2℃、蒸発器通過後は 12.5℃~18.4℃、除湿側デシ カントロータ通過後は 26.2℃~35.4℃の変動であった。排気側全熱交換器通過後は 24.8℃ ~32.8℃、凝縮器通過後は 38.4℃~48.7℃、再生側デシカントロータ通過後は 39.1~48.6℃ の変動であった。 このことから、給気側全熱交換器通過前後で約 1℃~6℃の冷却、蒸発器通過前後で約 8℃ ~14℃の冷却、除湿側デシカントロータ通過前後で約 3℃~11℃の加熱、排気側全熱交換器 通過前後で約 1℃~9℃の加熱、凝縮器通過前後で約 8℃~22℃の加熱、再生側デシカント ロータ通過前後で約 1℃~9℃の加熱が行われていることがわかった。 8 月の外気温度は 24.0℃~33.8℃、給気側全熱交換器通過後は 23.6℃~26.7℃、給気温度 は 24.9℃~28.1℃の変動であった。還気温度は 26.1℃~28.5℃、蒸発器通過後は 11.6℃~ 16.4℃、除湿側デシカントロータ通過後は 20.7℃~23.9℃の変動であった。排気側全熱交 換器通過後は 24.8℃~32.8℃、凝縮器通過後は 38.4℃~48.7℃、再生側デシカントロータ 通過後は 32.2℃~46.5℃の変動であった。 このことから、給気側全熱交換器通過前後で約 1℃~6℃の冷却、蒸発器通過前後で約 10℃ ~14℃の冷却、除湿側デシカントロータ通過前後で約 5℃~12℃の加熱、排気側全熱交換器 通過前後で約 1℃~10℃の加熱、凝縮器通過前後で約 12℃~22℃の加熱、再生側デシカン トロータ通過前後で約 1℃~10℃の加熱が行われていることがわかった。 9月の外気温度は 24.9℃~31.9℃、給気側全熱交換器通過後は 25.0℃~26.8℃、給気温 度は 23.5℃~25.3℃の変動であった。還気温度は 26.1℃~27.2℃、蒸発器通過後は 11.7℃ ~18.6℃、除湿側デシカントロータ通過後は 20.4℃~23.4℃の変動であった。排気側全熱 交換器通過後は 24.7℃~31.1℃、凝縮器通過後は 39.0℃~48.4℃、再生側デシカントロー タ通過後は 36.7℃~45.6℃の変動であった。 このことから、給気側全熱交換器通過前後で約 1℃~6℃の冷却、蒸発器通過前後で約 8℃ ~14℃の冷却、除湿側デシカントロータ通過前後で約 3℃~11℃の加熱、排気側全熱交換器 通過前後で約 1℃~9℃の加熱、凝縮器通過前後で約 8℃~22℃の加熱、再生側デシカント ロータ通過前後で約 1℃~9℃の加熱が行われていることがわかった。 また、7 月~9 月における再生温度の変動は 38.4℃~48.7℃であったため、低温度により 再生を行っていたことがわかった。

(22)

17 図 3.1 温度変動(9:00~18:00)[上:7月、中:8 月、下:9 月] 10 15 20 25 30 35 40 45 50 14 15 16 17 18 22 23 24 25 28 温度( ℃ ) 日付 凝縮器後 外気 還気 給気 排気側全熱交換器 再生側デシカントロータ 蒸発器後 除湿側デシカントロータ 10 15 20 25 30 35 40 45 50 1 4 5 6 7 8 11 12 13 14 15 18 19 20 21 22 25 26 27 28 29 温度 [℃ ] 日付 凝縮器後 外気 給気側全熱交換器 還気 給気 排気側全熱交換器 再生側デシカントロータ 蒸発器後 除湿側デシカントロータ 10 15 20 25 30 35 40 45 50 1 2 3 4 5 8 温度 [℃ ] 日付 凝縮器後 外気 給気側全熱交換器 還気 給気 排気側全熱交換器 再生側デシカントロータ 蒸発器後 除湿側デシカントロータ

(23)

18

3-1-2 外気と還気と給気の温度頻度

図 3.2 に立ち上がり時を除いた空調運転時間帯における外気、給気、還気の温度と再生 温度の頻度を示す。外気温度 27.1℃以上は7月が約 90%、8 月が約 90%、9 月が約 80%、そ のうち 31.5℃以上は7月が約 48%、8 月が約 10%、9 月が約 1%であった。還気温度 27.1℃以 上は 7 月が約 80%、8 月が約 50%、9 月が約 10%であった。給気温度 27.0℃以下は7月が約 50%、8 月が約 90%、9 月が約 99%であった。7 月は 27.1℃以下の割合が 8 月と 9 月に比べ小 さかったが、これは外気温度 31.5℃以上の割合が大きかったためだと考えられる。また、 各月の再生温度は 46.1℃以上が7月が約 95%、8 月が約 90%、9 月が約 70%であったため、 低温度で再生を行っていたことがわかった。 図 3.2 温度頻度(9:00~18:00) 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 外気 還気 給気 再生温度 外気 還気 給気 再生温度 外気 還気 給気 再生温度 7月 8月 9月 頻度 [% ] 24℃~25℃ 25.1℃~27℃ 27.1℃~30℃ 30.1℃~34℃ 38℃~40℃ 40.1℃~43℃ 43.1℃~46℃ 46.1℃~49℃

(24)

19

3-2 絶対湿度変動と絶対湿度頻度

3-2-1 各月の絶対湿度変動

図 3.3 に各月の変動が安定しない立ち上がり時を除いた空調運転時間帯 9:00~18:00 に おける湿度変動を示す。7 月の外気湿度は 12.2g~22.0g、給気湿度は 8.9g~12.4g の変動 であった。還気湿度は 10.5g~13.7g、蒸発器通過後は 8.0g~12.8g、除湿側デシカントロ ータ通過後は 6.0g~10.7g の変動であった。排気側全熱交換器通過後は 11.8g~18.9g、凝 縮器通過後は 11.7g~18.9g、再生側デシカントロータ通過後は 11.2g~19.9g の変動であっ た。このことから、給気側全熱交換器通過前後で約 2g~8g の除湿、蒸発器通過前後で約 1g ~3g の除湿、除湿側デシカントロータ通過前後で約 1g~3g の除湿、排気側全熱交換器通過 前後で約 2g~12g の加湿、再生側デシカントロータ通過前後で約-2g~1g の加湿が行われて いることがわかった。 8 月の外気湿度は 13.4g~19.9g、給気側全熱交換器通過後は 6.5g~12.9g、給気湿度は 8.6g ~12.6g の変動であった。還気湿度は 8.4g~12.8g、蒸発器通過後は 7.7g~10.6g、除湿側 デシカントロータ通過後は 5.4g~9.4g の変動であった。排気側全熱交換器通過後は 13.0g ~19.7g、凝縮器通過後は 12.9g~19.8g、再生側デシカントロータ通過後は 13.4g~19.9g の変動であった。このことから、給気側全熱交換器通過前後で約 3g~8g の除湿、蒸発器通 過前後で約 1g~4g の除湿、除湿側デシカントロータ通過前後で約 1g~3g の除湿、排気側 全熱交換器通過前後で約 5g~12g の加湿、再生側デシカントロータ通過前後で約-1g~3g の 加湿が行われていることがわかった。 9 月の外気湿度は 11.8g~18.3g、給気側全熱交換器通過後は 8.6 g~10.9g、給気湿度は 8.9g~10.8gの変動であった。還気湿度は 9.9g~12.5g、蒸発器通過後は 7.7g~11.7g、除 湿側デシカントロータ通過後は 50g~10.5g の変動であった。排気側全熱交換器通過後は 11.4g~18.2g、凝縮器通過後は 11.3g~18.5g、再生側デシカントロータ通過後は 10.5g~ 18.7g の変動であった。このことから、給気側全熱交換器通過前後で約 2g~8g の除湿、蒸 発器通過前後で約 1g~3g の除湿、除湿側デシカントロータ通過前後で約 1g~3g の除湿、 排気側全熱交換器通過前後で約 2g~12g の加湿、再生側デシカントロータ通過前後で約-2g ~1g の加湿が行われていることがわかった。 再生側デシカントロータ通過前後で絶対湿度の低下がみられ、水蒸気の脱着がされず、 吸着を行われている時間帯があった。これはデシカントロータ回転数制御の影響により再 生過多による吸着が起きていることが考えられた。

(25)

20 図 3.3 湿度変動(9:00~18:00)[上:7月、中:8 月、下:9 月] 5 7 9 11 13 15 17 19 21 14 15 16 17 18 22 23 24 25 28 絶対湿度 [g /k g( D A)] 日付 凝縮器後 外気 還気 給気 排気側全熱交換器 再生側デシカントロータ 蒸発器後 除湿側デシカントロータ 5 7 9 11 13 15 17 19 21 1 4 5 6 7 8 11 12 13 14 15 18 19 20 21 22 25 26 27 28 29 絶対湿度 [g /k g( D A)] 日付 凝縮器後 外気 給気側全熱交換器 還気 給気 排気側全熱交換器 再生側デシカントロータ 蒸発器後 除湿側デシカントロータ 4 6 8 10 12 14 16 18 20 1 2 3 4 5 8 絶対湿度 [g /k g( D A)] 日付 凝縮器後 外気 給気側全熱交換器 還気 給気 排気側全熱交換器 再生側デシカントロータ 蒸発器後 除湿側デシカントロータ

(26)

21

3-2-2 各月の絶対湿度頻度

図 3.4 に各月の立ち上がり時を除いた空調運転時間帯における外気、給気、還気の湿度 頻度を示す。外気湿度 16.1g 以上は7月が約 80%、8 月が約 70%、9 月が約 30%、そのうち 18g 以上は7月が約 30%、8 月が約 70%、9 月が約 3%であった。給気湿度 10.5g以下は7月 が約 70%、8 月が約 30%、9 月が約 90%であった。還気湿度 10.6g以上は7月が約 99%、8 月 が約 90%、9 月が約 50%であった。8 月は外気湿度 18g 以上の割合が大きかったため、給気 湿度 10.5gの割合が少なかったと考えられる。 図 3.4 絶対湿度頻度(9:00~1800) 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 外気 還気 給気 外気 還気 給気 外気 還気 給気 7月 8月 9月 頻度 [% ] 8g~10.5g 10.6g~13g 13.1~16g 16.1g~20g

(27)

22

3-3 除湿量と処理熱量及び電力量

3-3-1 日積算除湿量と処理熱量及び電力量

図 3.5 に各月の立ち上がり時を除いた空調運転時間帯における日積算除湿量と日積算処 理熱量及び電力量を示す。ここで、除湿量と顕熱と潜熱、処理熱量はそれぞれ(1)と(2)、 (3)、(4)の式により求めた。 L = ρ × G𝑆𝐴× (𝜃𝑂𝐴− 𝜃𝑆𝐴)・・・・・・・・・・・・・・・・・・・・・・・・・・・(1) 𝑞𝑠= ρ × G𝑆𝐴× c × (𝑥𝑂𝐴− 𝑥𝑆𝐴)・・・・・・・・・・・・・・・・・・・・・・・・・ (2) 𝑞𝑙= ρ × G𝑆𝐴× w × (𝜃𝑂𝐴− 𝜃𝑆𝐴)・・・・・・・・・・・・・・・・・・・・・・・・・(3) Q = 𝑞𝑠+ 𝑞𝑙・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(4) L:除湿量 ρ:比重 G𝑆𝐴:給気風量 𝜃𝑂𝐴:外気温度 𝜃𝑆𝐴:給気温度 𝑞𝑠:顕熱 c:比熱 𝑥𝑂𝐴:外気湿度 𝑥𝑆𝐴:給気湿度 𝑞𝑙:潜熱 w:蒸発潜熱 Q:処理熱量 外気湿度が高いため除湿・処理熱量が高くなった 7 月 14 日と 15 日、外気温湿度が低い ため除湿・処理熱量の低かった 7 月 28 日と 8 月 29 日を除けば、7 月~9 月の除湿量は 658kg/day~1,080kg/day で変動しており、平均除湿量は 874kg/day であった。 各月の処理熱量は 1,995MJ/day~3,239MJ/day で、そのうち顕熱と潜熱はそれぞれ 129MJ/day~650MJ/day と 1,647MJ/day~2,701MJ/day で変動しており、平均処理熱量は 2,652MJ/day で、そのうち顕熱と潜熱は 517 MJ/day と 2,134 MJ/day であった。

各月の電力量は 124 kW/day~204kW/day で変動しており、平均電力量は 143kw/day であ った。

(28)

23 図 3.5 日積算除湿量と処理熱量及び電力量 0 50 100 150 200 250 0 1000 2000 3000 4000 5000 6000 141516171819202122232425262728 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031 1 2 3 4 5 7月 8月 9月 電力量 [kw /d ay] 処理熱量 [M J/ d ay] 除湿量 [kg /d ay] 顕熱 MJ/d 潜熱 MJ/d 除湿量 kg/d 電力量 kw/d

(29)

24

3-3-2 時間積算除湿量と処理熱量及び電力量

図 3.6 に各月の立ち上がり時を除いた空調運転時間帯における時間積算除湿量と時間積 算処理熱量及び電力量を示す。 7 月の除湿量は 18kg/h~196kg/h で変動しており、平均除湿量は 114kg/h であった。処理 熱量は 63MJ/h~613MJ/h で、そのうち顕熱と潜熱はそれぞれ 5MJ/h~167MJ/h と 46MJ/h~ 490MJ/h で変動しており、平均処理熱量は 351MJ/h で、そのうち顕熱と潜熱は 65MJ/h と 286 MJ/h であった。電力量は 11 kW/h~21kW/h で変動しており、平均電力量は 16kw/h であった。 8 月の除湿量は 52kg/h~127kg/h で変動しており、平均除湿量は 91kg/h であった。処理 熱量は 166MJ/h~383MJ/h で、そのうち顕熱と潜熱はそれぞれ 2MJ/h~96MJ/h と 130MJ/h~ 317MJ/h で変動しており、平均処理熱量は 280MJ/h で、そのうち顕熱と潜熱は 52MJ/h と 229 MJ/h であった。電力量は 14 kW/h~24kW/h で変動しており、平均電力量は 19kw/h であった。 9 月の除湿量は 23kg/h~118kg/h で変動しており、平均除湿量は 83kg/h であった。処理 熱量は 138MJ/h~319MJ/h で、そのうち顕熱と潜熱はそれぞれ 4MJ/h~93MJ/h と 58MJ/h~ 294MJ/h で変動しており、平均処理熱量は 255MJ/h で、そのうち顕熱と潜熱は 207MJ/h と 48 MJ/h であった。電力量は 12 kW/h~24kW/h で変動しており、平均電力量は 21kw/h であ った。

(30)

25 図 3.6 時間積算除湿量と処理熱量及び電力量[上:7月、中:8 月、下:9 月] 0 5 10 15 20 25 0 100 200 300 400 500 600 700 電力量 [kw /h ] 処理熱量 [M J/ h ] 除湿量 [kg /h ] 日付 顕熱 MJ/h 潜熱 MJ/h 除湿量 kg/h 電力量 kw/h 0 5 10 15 20 25 30 0 50 100 150 200 250 300 350 400 450 電力量 [kw /h ] 処理熱量 [M J/ h ] 除湿量 [kg /h ] 日付 顕熱 MJ/h 潜熱 MJ/h 除湿量 kg/h 電力量 kw/h 0 5 10 15 20 25 30 0 50 100 150 200 250 300 350 電力量 [kw /h ] 処理熱量 [M J/ h ] 除湿量 [kg /h ] 日付 顕熱 MJ/h 潜熱 MJ/h 除湿量 kg/h 電力量 kw/h

(31)

26

3-4 COP と負荷率と SHF

3-4-1

COP と熱負荷率の関係

図 3.7 に7月~9 月の立ち上がり時を除いた空調運転時間帯における COP と熱負荷率の関 係を示す。COP と熱負荷率はそれぞれ(5)と(6)により求めた。 COP = Q/W・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(5) 𝛼𝑄= Q/Q𝑅・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(6) Q:処理熱量 W:電力量 𝛼ℎ:熱負荷率 Q𝑅:定格処理熱量 7月~9 月における熱負荷率は約 0.2~1.2、COP は約 2~10 で変動しており、熱負荷率は 約 0.4~0.8、COP は約 3~8 に集中していた。定格 COP3.76 を上回ったものは 79%であった。 熱負荷率 0.4 以上の時、定格 COP 以上の性能を示した。また、7 月 14 日と 15 日は外気絶対 湿度が高く、処理熱量が大きくなるため熱負荷率 1.0 を超える値を示したと考えられ、7 月 28 日と 8 月 29 日は外気温湿度が低く、処理熱量が小さくなるため熱負荷が 0.4 以下、COP が 3 以下の値を示したと考えられる。 図 3.7 COP と熱負荷率の関係 0 2 4 6 8 10 12 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 C OP 熱負荷率 定格COP 3.76 7/14・15 7/28・8/28

(32)

27

3-4-2

SHF と除湿負荷率の関係

図 3.8 に7月~9 月の立ち上がり時を除いた空調運転時間帯における SHF と除湿負荷率の 関係を示す。SHF と除湿負荷率はそれぞれ(6)と(7)により求めた。 SHF =𝑞𝑠/ Q・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(7) 𝛼𝐿=L/ LR・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(8) 𝑞𝑠:顕熱 Q:処理熱量 𝛼𝐿:除湿負荷率 L:除湿量 LR:定格除湿量 7月~9 月における除湿負荷率は約 0.2~1.4、SHF は約 0.1~0.4 で変動しており、除湿 負荷率は約 0.3~0.8、SHF は約 0.1~0.3 に集中していた。除湿負荷率 0.5 以上のとき、定 格 SHF0.23 を下回っていた。また、7 月 14 日と 15 日は外気絶対湿度が高く、除湿負荷が大 きくなるため熱負荷率 1.0 を超える値を示したと考えられ、7 月 28 日と 8 月 29 日は外気温 湿度が低く、除湿負荷率が小さくなるため SHF が 0.3~0.4 と高い値を示したと考えられる。 図 3.8 SHF と除湿負荷率の関係 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 SHF 除湿負荷率 定格SHF 0.23 7/14・15 7/28・8/28

(33)

28

3-5 交換効率と除湿効率

図 3.9 に7月~9 月の立ち上がり時を除いた空調運転時間帯における全熱交換機の温度交 換効率と湿度交換効率、デシカントロータの除湿交換効率を示す。全熱交換機の温度交換 効率と湿度交換効率、デシカントロータの除湿効率それぞれは(9)と(10)、 (11)の方法で 求めた。 η𝜃= (𝜃𝑂𝐴− 𝜃𝑆𝐴)/(𝜃𝑂𝐴− 𝜃3) ・・・・・・・・・・・・・・・・・・・・・・・・・・(9) η𝑥= (𝑥𝑂𝐴− 𝑥𝑆𝐴)/(𝑥𝑂𝐴− 𝑥3) ・・・・・・・・・・・・・・・・・・・・・・・・・ (10) η𝑙= ρ × G𝑆𝐴× (𝜃2− 𝜃3)/(ℎ5− ℎ4) ・・・・・・・・・・・・・・・・・・・・・・(11) η𝜃:温度交換効率 𝜃𝑂𝐴:外気温度 𝜃𝑆𝐴:給気温度 𝜃3:除湿側デシカントロータ通過後の温度 η𝑥:湿度交換効率 𝑥𝑂𝐴:外気温度 𝑥𝑆𝐴:給気温度 𝑥3:除湿側デシカントロータ通過後の温度 η𝑙:除湿効率 ρ:比重 ℎ5:凝縮器通過後のエンタルピー ℎ4:排気側全熱交換器通過後のエンタルピー 全熱交換の温度交換効率は 45%~92%で変動し、平均して約 66%を示し、湿度交換効率 は約 70%を示した。デシカントロータの除湿効率は 0.02g/kJ~0.12g/kJ で変動し、平均し て約 0.05g/kJ を示した。定格運転時における全熱交換機の温度交換効率と湿度交換効率が 68%、デシカントロータの除湿効率が 0.09g/kJ であるため全熱交換器はほぼ定格と同等の 値を示したが、デシカントロータは定格以下の値であった。 図 3.9 交換効率 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 除湿効率 [g /k J] 温度交換効率・湿度交換効率 [%] 温度交換効率 除湿効率 湿度交換効率

(34)

第 4 章

考察

(35)

29

第 4 章 考察

4-1 デシカントロータの再生温湿度の検討

実測結果の各月の絶対湿度の変動から再生側デシカントロータ通過前後で絶対湿度の低 下がみられ、水蒸気の脱着がされず、吸着を行われている時間帯があることがわかった。 そこで、吸着が行われた原因を探るため、脱着と吸着が行われた場合での各プロセスの違 いを確認するために空気線図による比較を行った。図 4.1 の空気線図に再生側デシカント ロータ通過時に水蒸気の脱着が行われた場合と、吸着が行われた場合における各場所の温 湿度を示す。外気、給気、還気、全熱交換器の給気側と排気側、除湿側デシカントロータ、 蒸発器、凝縮器通過後での値は異なるものの、脱着が行われた場合と、吸着が行われた場 合のどちらにおいても各場所における冷却、除湿、加熱、加湿のプロセスは、同様に行わ れていた。このことから、再生側デシカントロータ通過時における脱着と吸着には、各場 所における温湿度ではなく、回転制御が影響を与えていると考えられる。また、デシカン トロータの熱分布は均一ではないため、再生側デシカントロータ通過時の測定器設置位置 に問題があることも考えられる。 図 4.1 空気線図

(36)

30

4-2 回帰分析による給気温湿度に関する検討

給気設定温湿度に影響を与えている因子を探るため、回帰分析によりそれぞれの測定箇 所の温湿度と電力量の影響度を調べた。回帰分析はある変数(x)が他の変数(y) とどのよう な関係にあるのかを推定するために用いられる。また、一方の変数(x)がもう一方の変数(y) にどのように影響しているのかが 回帰式として表される。表 4.1 に給気温湿度それぞれの 回帰分析の結果を示す。本研究では P 値により因子を確定させた。P 値はその因子が意味の ない可能性の確立を示しており、この値が一般的 0.05 以下になれば信用できるとされてい る。そこで、0.05 より上の因子は除外し、残った因子が給気温湿度に影響を与えている因 子だと考え分析を行った。 その結果、給気温度に影響を与えている因子は、還気温湿度(𝜃𝑅𝐴, 𝑥𝑅𝐴)、蒸発器通過後の 温湿度(𝜃2, 𝑥2)、除湿側デシカントロータ通過後の温湿度(𝜃3, 𝑥3)、排気側全熱交換機通過後 の温湿度(𝜃4, 𝑥4)、凝縮器通過後の温湿度(𝜃5, 𝑥5)となった。また、給気湿度に影響を与えて いるのは、蒸発器の通過後の温湿度(𝜃2, 𝑥2)、除湿側デシカントロータ通過後の湿度(𝑥3)、 排気側全熱交換機通過後の温度(𝜃4)、凝縮器通過後の温湿度(𝜃5, 𝑥5)となった。回帰分析に より得られた給気温度と給気湿度の回帰式を(12)と(13)に示す。 𝜃𝑆𝐴=0.15𝜃𝑅𝐴+0.14𝑥𝑅𝐴+0.01𝜃2 +0.29𝑥2+0.28𝜃3-0.60𝑥3+0.61𝜃4 -0.42𝑥4-0.12𝜃5+0.50𝑥5+2.6・・・・・・・・・・・・・・・・・・・・・・・・・(12) 𝑥𝑆𝐴=-0.05𝜃2+0.17𝑥2+0.68𝑥3-0.06𝜃4+0.05𝜃5+0.27𝑥5-0.43・・・・・・・・・・・・・・(13) 回帰式の計算結果から得た給気温湿度と、測定した給気温湿度との関係を図 4.2 に示す。 回帰式の計算結果から得られた給気温湿度と測定した給気温湿度の重相関係数𝑅2の値が 1 に近いことから、回帰式から考えられた影響を与えている因子は妥当だと考えられる。 係数の絶対値の大きさから各因子の影響度を考えると給気温度においては、排気側全熱 交換機通過後の温度(𝜃4)、除湿側デシカントロータ通過後の湿度(𝑥3)、凝縮器通過後の湿度 (𝑥5)の 3 つが順に大きいことが分かった。給気湿度においては、除湿側デシカントロータ通 過後の湿度(𝑥3)、凝縮器通過後の湿度(𝑥5)、蒸発器の通過後の湿度(𝑥2)の 3 つが順に大きい ことが分かった。 表 4.2 に各因子の変動を示す。求めたい因子を変数として、そのほかの因子には表 1 の 最小値を回帰式に代入し計算した結果、設定温度 27.0℃以下で給気するためには、排気側 全熱交換機通過後の温度は 29.3℃以下、除湿側デシカントロータ通過後の温度は 30.4℃以 下、凝縮器通過後の湿度は 17.2g 以下にする必要があることがわかった。また、設定湿度 10.5g 以下に給気するためには、除湿側デシカントロータ通過後の湿度は 9.9g 以下、凝縮 器通過後の湿度は 26.3g 以下にする必要があることがわかった。

(37)

31 表 4.1 回帰分析結果[左:給気温度、右:給気湿度] 図 4.2 回帰式の計算結果と給気温湿度の関係 表 4.2 因子の変動 回帰統計 重相関 R 0.985042 重決定 R2 0.970308 補正 R2 0.9692 標準誤差 0.2029 観測数 279 係数 標準誤差 P-値 切片 2.615123 1.044841 0.012914 0.150006 0.059682 0.012543 0.136437 0.047437 0.004349 0.013778 0.002629 3.23E-07 0.288563 0.119142 0.016099 0.283087 0.034855 1.69E-14 -0.60017 0.079949 8.99E-13 0.614844 0.025677 1.55E-68 -0.41814 0.210019 0.047501 -0.11883 0.030315 0.000113 0.495014 0.195154 0.011764 xRA θRA θ2 x2 θ3 x3 θ4 θ5 x4 x5 回帰統計 重相関 R 0.962587 重決定 R2 0.926573 補正 R2 0.924954 標準誤差 0.258186 観測数 279 係数 標準誤差 P-値 切片 -0.43426 0.902117 0.630638 -0.05401 0.002909 2.96E-50 0.173071 0.087586 0.049163 0.678951 0.050281 3.79E-32 -0.05976 0.021363 0.005522 0.05027 0.022183 0.024229 0.266035 0.015102 7.2E-47 θ2 θ5 θ4 x2 x3 x5 y = 0.9999x R² = 0.9694 y = 0.9994x R² = 0.9208 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 計算結果 測定による給気温湿度 給気温度 給絶対湿度

(38)

32

4-3 デシカントロータ回転数に関する検討

表 4.3 に風量の各変化条件と、図4.3 に風量変化時のデシカントロータの各結果を示す。 既往の研究3)の風量変化によるデシカントロータの能力変化の検証から、回転数を上げるこ とでデシカントロータの除湿性能は上がるが、風量に対して回転数が早すぎた場合、デシ カントロータの顕熱交換量が多くなることにより除湿性能の低下がすることがわかった。 既往の研究ではデシカントロータ回転数が 29rph に対し、給気風量が 1000𝑚3/ℎになると除 湿性の低下が見られた。本研給のデシカントロータの回転数は 5~20rph、還気風量は 9,765𝑚3/ℎであるため、既往の研究に比べデシカントロータが遅く回転していることが分か った。既往の研究でもっとも良い結果であった 3000𝑚3/ℎと比較しても遅く回転しているこ とが分かり、除湿性能を上げるためには回転数を上げる必要があることが考えられた。ま た、図 4.4 に示すように、遅く回転している顕熱交換量が少ない現状においても、7 月~9 月の温度頻度見ると設定温度に給気できていない割合が約 3 割あり、設定温度を満たすこ とは困難であると考えられた。 表4.3 風量の各変化条件 図4.3 風量変化時のデシカントロータの各結果

(39)

33 図 4.4 温度頻度(9:00~18:00) 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 外気 還気 給気 再生温度 外気 還気 給気 再生温度 外気 還気 給気 再生温度 7月 8月 9月 頻度 [% ] 24℃~25℃ 25.1℃~27℃ 27.1℃~30℃ 30.1℃~34℃ 38℃~40℃ 40.1℃~43℃ 43.1℃~46℃ 46.1℃~49℃

(40)

第 5 章

まとめ

(41)

34

第 5 章 まとめ

ヒートポンプ式リタンエアデシカント空調機の夏期の実測調査を行い、以下の知見を得 た。 1)給気温度が設定温度 27.0℃以下であった割合は7月が約 5 割、8 月と 9 月が約 9 割であ った。給気湿度が設定湿度 10.5g以下であったのは7月が約 7 割、8 月が約 3 割、9 月は 約 9 割であった。7 月は給気設定温度に、8 月は設定温湿度にできていない割合が高かっ たことがわかった。これは外気温度 31.5℃以上の割合が各月の中で 7 月が大きかったた めだと考えられた。 2)再生温度は最小で約 38.0℃、最大で約 49.0℃を示し平均では約 47.0℃であったため低 温度で運転できていることが分かった。しかし、再生側デシカントロータ通過前後で絶 対湿度の低下がみられ、水蒸気の脱着が行われず、吸着が行われている時間帯があった。 これはデシカントロータ回転数制御による影響だと考えられた。 3) 各月の処理熱量の平均は 2,652MJ/day で、そのうち顕熱 1~4 割と潜熱は 6~9 割であっ た。また、除湿量の平均は 874kg/day、電力量の平均は 143kw/day であった。 4)全熱交換の温度交換効率は約 66%、湿度交換効率は約 70%であった。デシカントロータ の除湿効率は約 0.05g/kJ であったため、全熱交換機の温度交換効率と湿度交換効率にお いてはほぼ定格と同等の値を示した。デシカントロータの除湿効率においては定格以下の 値であった。 5)SHF 除湿負荷率 0.5 以上のとき、定格 0.23 を下回り、COP は熱負荷率 0.4 以上の時、定 格以上の性能を示すことがわかった。 6)給気温度と設定湿度にもっとも影響を与えているのはそれぞれ、排気側全熱交換機通過 後の温度と除湿側デシカントロータ通過後の湿度であることがわかった。また、それぞ れが設定温湿度で給気するために何℃以下にする必要があるかを回帰式に変動最小値を 代入し求めた結果、排気側全熱交換機通過後の温度は 29.3℃以下、除湿側デシカントロ ータ通過後の湿度は 9.9rg 以下にする必要があることがわかった。

(42)

35

今後の課題

デシカントロータ再生時に水蒸気の吸着が行われている時間帯があり、それが回転数に よる影響、または、測定器の位置による問題だと考えられたが、どのようにすれば改善さ れるかは検討されなかった。より詳細な解析を行うために、デシカントロータ回転数の測 定を行う必要があることが考えられた。また、デシカントロータの除湿性能は回転数を早 くすることで上昇するが、顕熱交換量が多くなるため設定温度にするのは難しくなる。そ のため、従来通りの室内環境を維持するためには、ビル用マルチエアコンの室内負荷処理 に依存する形となる。ビル用マルチエアコンの性能を解析することで、より正確な温湿度 管理が行えると考えられた。

(43)

参考文献

1)安村直樹、永田久美:低温再生デシカントと全熱交換による換気負荷の軽減、日本冷凍 空調学会,86,pp. 9-13,2011-10 2)上村紘世 宋城基:ヒートポンプ式デシカント空調機の性能に関する研究 夏期における 実測調査、日本建築学会中国支部研究報告集、38、pp.317-320,2015-03 3)伊藤剛 安松直樹 平田清 中山和樹:低炭素化と知的生産性に配慮した最先端オフィ スにおける潜熱顕熱分離型空調の研究 第一報 レタンエアデシカント空調機の実負荷 運転における最適能力調整、日本冷凍空調学会論文集、pp.69-79、2012-11

(44)

謝辞

本研究を遂行するにあたり、様々な御指導してくださった宋城基准教授に感謝の意を表し ます。また、実測に協力して下さったダイダン(株)、昭和鉄工(株)、パナソニック ES エ ンジニアリング(株)、対象建物の皆様に感謝の意を表します。

図 1.4  日積算処理熱量と電力量
図 1.6  風量変化時におけるデシカントロータの除湿性能
図 1.8  回転数可変時の実運用風量時におけるデシカントロータの除湿性能
表 2.1  デシカント空調機の性能表

参照

関連したドキュメント

第2章 検査材料及方法 第3童 橡査成績及考按  第1節 出現年齢  第2節 出現頻度  第3節 年齢及性別頻度

「ツ」反慮陽性率ノ高低二從ツテ地誌的分類地類

 第1節計測法  第2節 計測成績  第3節 年齢的差異・a就テ  第4節 性的差異二就テ  第5節 小 括 第5章  纏括並二結論

視することにしていろ。また,加工物内の捌套差が小

週に 1 回、1 時間程度の使用頻度の場合、2 年に一度を目安に点検をお勧め

「地方債に関する調査研究委員会」報告書の概要(昭和54年度~平成20年度) NO.1 調査研究項目委員長名要

本報告書は、日本財団の 2016

熱源機器、空調機器の運転スケジュールから、熱源機器の起動・停止時刻