• 検索結果がありません。

ConcerningthestrongorbitequivalenceofaCantorminimalsystem,wecan askthefollowingquestion・Withinanystrongorbitequivalenceclass,isthere aminimalsubshift?In{S31,weobtainthe駒llowingresult:FbreveryCantor minimalsystemitsstrongorbitequivalenceclasscontainsminima

N/A
N/A
Protected

Academic year: 2021

シェア "ConcerningthestrongorbitequivalenceofaCantorminimalsystem,wecan askthefollowingquestion・Withinanystrongorbitequivalenceclass,isthere aminimalsubshift?In{S31,weobtainthe駒llowingresult:FbreveryCantor minimalsystemitsstrongorbitequivalenceclasscontainsminima"

Copied!
30
0
0

読み込み中.... (全文を見る)

全文

(1)

within a strong orbit equivalence class

Fumiaki Sugisaki *

(2)

118 P.Sugisaki

thetopologicalsettingwehaveasimilarresult,thatis,theconceptsofstrong o r b i t e q u i v a l e n c e a n d t o p o l o g i c a l e n t r o p y a r e i n d e p e n d e n t ( [ S 1 ] , [ S 2 ] ) .

ConcerningthestrongorbitequivalenceofaCantorminimalsystem,wecan askthefollowingquestion・Withinanystrongorbitequivalenceclass,isthere aminimalsubshift?In{S31,weobtainthe駒llowingresult:FbreveryCantor minimalsystemitsstrongorbitequivalenceclasscontainsminimalsubshiftof allfinitetopologicalentropies・Inthispaperwegeneralizethisresultusingthe c o n c e p t o f t o p o l o g i c a l p r e s s u r e b y t h e f o l l o w i n g ( T h e o r e m 1 . 1 ) . F o r a t o p o l o g i c a l dynamicalsystem(X,T),denoteMIX)bythesetofBorelprobabilitymeasures onXandルi(X,T)bythesetofT‑invariantBorelprobabilitymeasuresonX.

LetC{X,K)denotethesetofallrealvaluedcontinuousfunctions.

Theorem1.1Supposethat(X,4>)isaCantorm伽加αIsystema冗〃eC(X,R),

whichiscα"edapote沌鰯α』ん c"on,isgiven.Chooseanyawith

e x p I s u p < / 抑 r e M { x , 4 > ) X ¥ α ( 1 . 1

α 仇髄.me測娩ereexistsaCa冗加rminimalsystem(Y,tp)stronglyorbitequiv‑

alentto(X,$)sueノithat

m/0‑*)=ioga,

ノ e7℃W‑)お〃ietopologicalpressure〃妙α泥de:X‑→Yisasti℃noorbit

equhノαノencemap.〃αお伽"e,uノeca汎takerj)asam如加αノsubsノZ縦.

Weremarkthatifノニ0,then1<a<ooandP(V>,0)isthetopologicalentropy o f t p . S o T h e o r e m 1 . 1 i s t h e g e n e r a l i z a t i o n o f [ S I ] , [ S 2 ] a n d [ S 3 ] . W e a l s o r e m a r k that(1.1)isthebestpossibleinequalitywhichacantake・Thereasonisthe following.Giordano,PutnamandSkaushowedthatan(strong)orbitequivalence map0:X→Ygivesabijection$:M(Y,if>)‑→M(X,<I>)definedby9(is)=〃。β ( T h e o r e m 2 . 2 i n [ G P S ] ) . U s i n g t h i s f a c t a n d t h e v a r i a t i o n a l p r i n c i p l e o f t o p o l o g i c a l pressure(seeTheorem9.10in[Wl]),wehave

P 他 ' 。 ' ‑ り 言 愚 " { M 州 ル ‑ * d i / I i ; e M { Y , i l > ) ¥

> s u p │ / f o 9 ‑ * d v │ u e M { Y ^ ) ¥

= s u p U f d 9 ( v ) │ u e M ( Y ^ ) ¥

= " { 〃 " │ 似 E ル * . * ) } .

Nowwegiveanoverviewofeachsectionbelow.Inthissectionbelowweintro‑

ducesomenotations,definitionsandconditionsconcerningBrattelidiagrams.In

§2,weconsidertherelationbetweenCantorminimalsystemsandsubshifts.We

(3)

willshowthatwheneveraproperlyorderedBrattelidiagramBsatisfiesProperty

1 . 5 , t h e n t h e a s s o c i a t e d B r a t t e l i ‑ V e r s h i k s y s t e m ( X z , 入 慮 ) i s t o p o l o g i c a l l y c o n j u ‑ gatetoasubshift(Theorem2.4).In3,wecalculateatopologicalpressureofa specialcaseofCantorminimalsystem・ByTheorem3.8,weonlycalculateapres‑

sureofasubshiftassociatedwithaBsatisfyingProperty1.5.In4,weintroduce twomodificationpropositionsofdiagramwhichpreservetheequivalencerelation onBrattelidiagrams.InProposition4.2weconstructabasedBrattelidiagram CusingagivendiagramB.InProposition4.5weconstructthedesireddiagram Bof(Y,ip)inTheorem1.1usingabaseddiagramC.Thesepropositionsplay

importantrolesinprovingTheorem1.1.Finallyin5,weproveTheorem1.1.

Notation1.2Basically,weusenotationsanddefinitionsin[HPS]and(GPSl.

SupposeB=(K,E,≧)isaproperlyordered(alsocalledsimplyordered)Bratteli diagram.SupposeAisasetandIAl(or#^4)denotesthecardinalityofA.

(1)Letr:E→Vdenotetherangemapands:E‑→Vdenotethesourcemap.

Namely,eE且、connectsbetweens(e)E脇‑,andγ(e)E賂.

( 2 ) L e t M ( ' ) = [ # r ‑ n w ) n s ‑ n v ル e v h , u E v h ‑ 』 d e n o t e t h e‑ t h i n c i d e n c e m a t r i x o f

B ( i 、 e 、 , M 無 ) i s t h e n u m b e r o f e d g e s c o n n e c t i n g b e t w e e n u E V h a n d t ノ G V , ‑ i ) . W e a l s o w r i t e B = { V , E , { M ^ " ) } , ≧ ) . L e t M か ) = 1 M 蝿 ) 1 秒 E , , ; 、 ̲ , d e n o t e t h e u ' s

rowvectorofM^"^whichiscalleda冗如cidencevectorofu.For≧k,let j V / ( n , f c ) d e n o t e t h e p r o d u c t o f i n c i d e n c e m a t r i c e s M ^ ^ ^ M ^− i ) . . . M W . (3)SetXb={(e,)ieNICiGEi,r{ei)=s(ei+i)ViGN}.Wecallitthe伽一

伽茄elengtfisノpatノispaceofB.Forv^Vn,letP(v)denotethesetofall (finitelengths)pathsconnectingbetweenthetopvertexvqeVnandv.Then

l P ( U ) │ = M 卿 6 1 ) h o l d s , P u t P ( 1 / ; 、 ) = U o E V h P ( ひ ) . T h e r a n g e m a p r i s e x t e n d e d

toViVn),thatis,forp=(d.…,e")EP(脇),wedefiner(p)=『(e").

( 4 ) F o r X = ( e i ) i 6 N G X ^ o r a ; = ( e i , … , e n ) e V { V n ) , p n t z l . j 1 = ( c i . e t + i . … , e , ) andX(i,j│=(ci+i,…,ej).FbrpEP(略),se巾}B={zEXBlzI1,"l=p}・

Wecallitthecylindersetofp.

(5)ForVGKiandeGr^{v),letOrder(e)denotetheorderofeinr^(v).If Pmin=(ei,e2,…)istheuniqueminimalpathinXb,thenOrder(cn)=1 forallnGN.IfPmax=(/i,/2,…)istheuniquemaximalpathinXb,then O r d e r ( ん ) = │ r − 1 r ( / h ) │ f b r a l lE N S i m i l a r l y , O r d e r ( ・ ) i s d e f i n e d o n P ( 脇 ) . I.e.,forpGV{Vn),Order(p)istheorderofpinVMp)).

(6)ForVGKi,wewriter^{v)={cj│1≦j≦¥r‑^{v)lOrder(ei)=i}.Define

L i s t ( t ; ) = ( s ( e i ) , s ( e 2 ) , … . 5 ( e │ r ‑ i ( . ) │ ) ) G ( V n ‑ l ) " ' ‑ ' ( ' ' > "

WecallittheorderIistofv.

(4)

120 F・Sugisaki

(7)Foramonotoneincreasingsequence{tn}nez+CZ+withto=0,wesaythat

a B r a t t e l i d i a g r a m B ' = ( V , E ' , { M ' * " H ) i s a t e l e s c o p i n g ( o r c o n t r a c t i o n ) o l B t o { t " } , w h i c h w e w r i t e B ' = ( B , { t " } ) , i f V ' " = V La n d M ' ( " ) = M ( t " , t " − 1 + ' ) L e t & " , f , 、 ̲ 、 + , = { 麺 (" ̲ , ," l l z E X B } . T h e n t h e r e i s a b i j e c t i o n b e t w e e n E ' a n d E" ," ̲ , + , p r e s e r v i n g s o u r c e a n d r a n g e v e r t i c e s ・ W e c a l l { t n } a s e q u e n c e oftelescopingdep"蹄.Especially,wedefineBoddastelescopingBtoodddepths

{ 0 , 1 , 3 , … } a n d d e f i n e S e v e n a s t e l e s c o p i n g B t o e v e n d e p t h s { 0 , 2 , 4 , … } . (8)Let(Xb,入b)denotetheBratteli‑VershiksystemofB.Namelyi入B:XB‑→Xb

isalexicographictransformationdefinedbytheorder≧onE.

(9)ForBrattelidiagramsBandB',defineB〜B'providedthatthereexistsa BrattelidiagramBsuchthatBoddyieldsatelescopingeitherBorB',and

Sevenyieldsatelescopingoftheother・Thenitisnothardtoshowthat〜is anequivalencerelationonBrattelidiagrams.

Remark1.3

(1)Let(X,T)denoteaCantorminimalsystem,C(X,Z)thesetofallinteger valuedcontinuousfunctions,C{X,Z)+={/GC(X,Z)¥ノ≧0}andBt=

{ノー/or‑*IノEC(X,Z)}、Define

K(X,T)=C(X,Z)/Bt,K(X,T)+=C{X,Z)+/Bt.

In[Pu],Putnamshowedthatthetriple(K(X,T),K(X,T)+Al))isasim‑

pie,acyclic(i.e.K(X,T)^Z)dimensiongroupwiththe(canonicaldistin‑

guished)orderunit[1],where1=l*istheconstantfunction1・Herman, PutnamandSkaushowedin[HPS]thatthefamilyofCantorminimalsystems

coincideswiththefamilyofBratteli‑Vershiksystemsuptoconjugacyand

showedthatKR(X,T)=Ko(V,E)(=meanstwodimensiongroupsareunital o r d e r i s o m o r p h i c ) , w h e r e ( V , E ) i s a B r a t t e l i ‑ V e r s h i k r e p r e s e n t a t i o n o f ( X , T ) andKo(V,E)isdefinedbytheinductlimitofasystemoforderedgroups

Kb(V;E)=lim(ZlVh‑1l,Mh)=Z1%l坐ZlVil坐Z│雌│些….

冗 一

Theyalsoshowedthatall(acyclic)simpledimensiongroupscanbeobtained inthis(dynamical)way.

(2)Itiseasytoseethat(V,E)〜(V',E')ifandonlyifKo(V,E)SKo(V',E).

Giordano,PutnamandSkaushowedin[GPS]thatBratteli‑Vershiksystems (Xb,,Xb,)and(Xb,,A^)arestronglyorbitequivalentifandonlyifBi〜Bo.

Definition1.4

(5)

(1)(distinctorderlist.)WesayK,hasdistincto㎡erhstsiffortノ,ひ′E脇,

L i s t ( v ) = L i s t ( i / ) i m p l i e s v = v ' ( o r e q u i v a l e n t l y , ひ ≠ t ノ ' i m p l i e s L i s t ( t ノ ) ≠ L i s t ( v ' ) ) .

(2)(Theminimal/maximalvertexproperty.)SupposeB=(V,E,≧)isaproperly orderedBrattelidiagram.WesayEnhastheminimal/maximalvertexproperty

i f t h e r e e x i s t U 耐 ↑ ひ 湿 e V n ‑ i s u c h t h a t f o r a n y e , ノ G E n w i t h O r d e r ( e ) = 1 andOrder(ノ)=│r‑V(/)│,thens(e)="肘ands(/)=t侭.

NowweconsideraproperlyorderedBrattelidiagramBofProperty1.5.Laterwe w i l l s h o w t h a t t h e a s s o c i a t e d B r a t t e l i ‑ V e r s h i k s y s t e m { X ^ , X s ) i s c o n j u g a t e t o a s u b s h i f t a n d i t s t o p o l o g i c a l p r e s s u r e i s c a l c u l a b l e .

P r o p e r t y 1 . 5 B = ( K , E , { M ^ } , > ) s a t i s f i e s t h e f o l l o w i n g p r o p e r t i e s . F o r a n y

neN,

( 1 ) M ^ i s a p o s i t i v e m a t r i x ( i . e . M i " J ≧ 1 f o r a l l u a n d v ) 、

(2)且、hastheminimal/maximalvertexproperty,

( 3 ) │ 脇 │ ≧ 3 a n d u 品 i n ≠ ひ 品 a x , w h e r e t ノ 品 i n a n d U 品 a x a r e d e f i n e d i n D e f i n i t i o n 1 . 4 ( 2 ) ,

( 4 ) f b r e a c h 〃 E 典 , 〃 " l ̲= 〃 ( " 1 ‑ , = 1 ,

U U m i n U U m n x

(5)Vnhasdistinctorderlists.(Inthecaseofn=1,weignorethisproperty.) 2.ConjugacybetweenCantorminimalsystemsandsubshifts

I n t h i s s e c t i o n w e c o n s i d e r a B s a t i s f y i n g P r o p e r t y 1 . 5 . W e w i l l s h o w t h a t ( X g , 入 圃 ) i s t o p o l o g i c a l l y c o n j u g a t e t o a s u b s h i f t . T h e d e t a i l s o f s h i f t s p a c e s a n d i t s t o p o l o g y , see[LMJin1and6.

Definition2、1

(1)Let(X,(t)denoteasubshift,thatis,Xisashiftspaceandaisshifttransfer‑

mation.ForxGXandi,j6Zwithi≧j,set

^M=^i^i+l…坊'^(M) XiZi+l…巧一',

whicharecalledblocks(orwords)ofx.Set

Bn(X)={x<o,n)¥xeX},B(X)=Un^Bn(X).

SinceXisshiftinvariant,weseethatB"(X)={zI)|zEX,j−j=冗}and henceBn(X)isthesetofall(length)n‑blocksthatoccurinpointsinX.We callB(X)仇eIα u eQ/X、FbrBEB"(X)andj,jwithj−j+1= ,put

m={xeX¥xuj,=B}.

(6)

122 F.Sugisaki

(2)(shiftoffinitetype)LetAbeanalphabet(afiniteset)andFbeasetof w o r d s w i t h a l p h a b e t A 、 F b r F , d e f i n e X ァ t o b e t h e s u b s e t o f s e q u e n c e s i n A z whichdonotcontainanywordinT.Wesayasubshift(X,<t)iss血峨of伽髄e type(SF乃ifXhastheformXtforsomeFandFisafiniteset.Wesayan SFTsubshift(Xァ,cr)isM‑step(MGN)ifFconsistsofblockswithlength M+l.Wesayasubshift(X,a)isin℃ducibleifforanyu,wGB(X),there existsvGB(X)suchthatuvwGB(X).

Remark2、2SupposeXCA*.ByTheorem6.1.21in[LM],

Xisashiftspaceiff3J"suchthatX=XtiffXisshift‑invariantandcompact.

Definition2.3(SubshiftassociatedwithB)SupposeB=(V,E,≧)isa properlyorderedBrattelidiagram・Letr:X*U(UieNW))‑→V(Vi)denote atruncationmap,thatis,γz=xiwherex=(xi,X2,…).

( 1 ) D e f i n e a s h i f t i n v a r i a n t s u b s e t X o q C V i Y i f " t o b e X 。 。 = { ( 丁 入 息 " z ) " e z l z E X g }

OnecanshowthatXqoiscompact.Let(Toodenotetherestrictionofshiftto

Aoo‑

(2)DefineafinitedirectedgraphGk=(V,)arisingfromVCVk)asfollows.Define aedgesetE=V{Vル)andavertexsetV={i{p),t(p)¥pG},wherei(p) ( t ( p ) , r e s p . ) i s t h e i n i t i a l ( t e r m i n a l , r e s p . ) v e r t e x o f p s a t i s f y i n g t h a t

p9E8,t(p)=i(9)iff

│蝋舞,:剛糖州

ItiseasytoseethatGkisairreduciblegraph.LetXkdenotetheedgeshift X<VI‑e‑,

X k = X c 脂 = { z = ( z f ) i E z E P ( 唾 ) z l t ( : r) = j ( z 愈 + , ) f b r a l l j E Z } . (See[LM]:Definition2.2.5.)Let&kdenotetheshiftonXk・Itiseasytosee that(Xk,ケた)isa1‑stepshiftoffinitetype.DefineXk=^k(Xk),wherethe mapTTfc:Xk‑→V(Vi)*isdefinedby

**:(…X‑i.XoXl…)=(…(γお‑l).(γ〃o){rxi)…).

LetびんdenotetheshiftonXk‑

F i r s t w e c o n s i d e r t h e r e l a t i o n s h i p b e t w e e n { X g , 入 直 ) a n d { X ・ ・ , ぴ 。 。 ) .

( 2 . 1 )

(7)

T h e o r e m 2 . 4 S u p p o s e B = ( V , E , を ) i s a p i ℃ p e 伽 o r d e r e d B r a t t e l i d i a g r a m s a t ‑ 蛾ノ畑Property1.5.Then(X*,入)istopologica"yconjugateto(Xoo,ぴ。。).

Proof.WewriteA=入0forshort.Definettoo:X息→Xooas 汀。。垂=(γ入"s)nez.

Wewillshowthat汀ooisaconjugacy.ClearlytTooissurjective、TTooO入=グーo汀函

holdsbecause

( T o o 入 勿 ) n = γ 入 " 入 勿 = γ 入 " " a ; = ( 7 『 。 。 z ) n + l = ( C o c T l o o z ) 沌 .

ThereforewewillshowthatTTooisinjective.Wecalltheargumentbelowtheone‑

to‑oneα噸秘ment.

Theone‑to‑oneargument、Chooseanyz=(垂i),y=(眺)EX息withz≠yandfix them・Itsu田cestoshowthatthereismEZsothat丁入mz≠丁入"VIfrz≠γり,

theclaimwouldhavebeenproven.Thereforeassumethatthereis/>1sothat

お 【 1 , 1 ] = y [ i , i ) a n d a : [ i , / + i j ≠ " [ 1 , 1 + 1 ] ( X [ 1 M = ( ^ l > ^ 2 , … , { ) ) . S u p p o s e n < 0 i s t h e m a x i m u m n u m b e r s o t h a t ( 入 " 麺 ) 1 , , 1 + , } l i e s i n t h e m i n i m a l p a t h i n P ( γ ( 毎 【 + i ) ) . T h i s i m p l i e s t h a t O r d e r ( ( 入 " a O n ‑ i ) = 1 a n d ( 入 " 毎 ) [ M ‑ 2 , 。 。 ) = a : [ / + 2 , o o ) ‑ T h e n w e c o n s i d e r

t h e f o l l o w i n g t w o c a s e s :

( i ) ( 入 " a O [ i , i ] = ( A " y ) i i , i ] ,

()(^x)lU]≠(入"!ノ)m‑

Inthecaseof(i),wenotethatOrder((¥"y)i+i)=1becauser(入.x)i=r(入"y)i=

vi..andProperty1.5(2)and(4).Letu=r(入"x)i+iandv=r(¥"y)t+i.

T h e n 秘 ≠ v b e c a u s e o f x n f + i ] ≠ y ¥ i , i + i ] ‑ S i n c e V J + i h a s d i s t i n c t o r d e r l i s t s , thereexisteEr‑1(私),ノEr−1(ひ)andtheminimumnumberl< ′<

m i n ( │ r ‑ * ( u ) │ , │ r* ( u ) │ ) s u c h t h a t s ( e ) ≠ * ( / ) a n d O r d e r ( e ) = O r d e r ( ノ ) = n ' .

L e t n = n + Y Z L i N ^ ( * ( c i ) ) l w h e r e e * G r ‑ i ( w ) w i t h O r d e r ( e i ) =T h e n s ( 入 " ) / + ! = s ( e ) a n d s ( 入 免 り ) i + i = s ( f ) . T h i s i m p l i e s t h a t ( 入 * z ) m ≠ ( 入 免 Z ノ ) m ‑

B o t h t h e c a S e ( i ) a n d ( i i ) i m p l y t h a t t h e r e e x i s t s Ⅳ E Z s u c h t h a t ( 入 " z ) [ M # ( 入 j ^ 2 / ) [ U ] h o l d s . B y r e p e a t i n g t h i s p r o c e d u r e , w e g e t T 入 、 〃 ≠ 丁 入 m y f b r s o m e

meZ.Sowefinishtheproof.

Definition2.5ForvGV¥Vq,definewords(orblocks)Con(v)andrCon(v)as C o n ( t ; ) = P 1 P 2 … P ¥ v ( v ) ¥ > r C o n ( v ) = ( t p i ) { t p 2 ) … { t P ¥ v ( v ) ¥ ) ,

where{pi│Order(pi)=i,1≦j≦¥vm=v(v).

(8)

124 P.Sugisaki

Remark2.6UsingCon(・)andTCon(・),weseethat

昨{…〃'ョ{僅嚇ご芸蒐鰯皇君:制 蕊‑{…〃'ョ琶鵜鰯繁謡酬鵡}

S o f J J f f c , け た ) a n d ( X k , ぴ k ) a r e r e n e w a l s y s t e m s w i t h t h e g e n e r a t i n g l i s t { C o n () │ U E V k h { r C o n ( v ) I t ノ 6 1 4 } r e s p e c t i v e l y ( s e e [ L M ] , 1 3 . 1 ) .

Weconsidertherelationshipbetween(Xk^ak)and(Xk,<7k)‑Thefollowingtheo‑

r e m i s i m p o r t a n t s o a s t o c a l c u l a t e t h e t o p o l o g i c a l p r e s s u r e o f { X q , 入 息 )

Theorem2、7SupposeB=(V,E,≧)isaprope吻orderedBrattelidiagramsat‑

isfyingProperty1.5.ThenforanyA;GN,(Xk,ケ上)α九diXk,<7k)α犯topologicα"y c o n j u g a t e .

Proof.WewillshowthatthemapTr/tisaconjugacy.ClearlyTrjtissurjective andTTkoo'k=o"fco汀齢Sowewillshowthatifkisinjective.Supposex=

M,z'=(x'i)GXksatisfiesthatz≠z'andxoissomeminimalpathinV(Vk).

Ifra;o≠丁勿'0,thenwehavebeendone.ThereforeweassumeTz0=Tx'n.Then thereexist{n,},{'i}CZand{vi},{v'i}CVjtsuchthatforanyiGZ,

a ^ I n i , n , + o = C o n ( v i ) , x ' [ n ' i , n ' i + , ) = C o n ( v ' i ) , n o = 0 ,' 0 ≦ 0 <' ル

Here,letusconsiderthefollowingthreecases:

( i ) ひ ' 0 ≠ 妙 0 ,

(ii)v'o=vqandn'o≠0, (iii)v'o=Vqand'0=0.

I n t h e c a s e o f ( i ) a n d ( i i ) , t h e r e e x i s t s / w i t h I < l < k s u c h t h a t ( x o ) n , / ) = ( a : ' o ) [ i , i ] a n d ( a ; o ) [ i , / + i ) ≠ { x ' o ) l i , i + i ] . S o w e u s e t h e o n e ‑ t o ‑ o n e a r g u m e n t i n T h e o r e m 2 . 4 andobtainrx^≠Tx'mforsomem.Inthecaseof(iii),byz≠x'thereexists

/GNsuchthat

ofbranyjwithljl<I,Uf=u'f(therefbrei='iholds),

OUI≠v'iorv‑i≠tノ/

I f V / ≠ v ' i , b y P r o p e r t y 1 . 5 ( 2 ) , { x n , ) ¥ i , k ] a n d { x ' n j ) u k ] a r e t h e m i n i m a l p a t h i n V i v i ) a n d V { v ' i ) r e s p e c t i v e l y ( a n d h e n c e { x n i ) [ i , k ‑ i ] = ( a ; ' n / ) ( i . f c ‑ i ) ) a n d { X n , ) [ l , k ] ≠ ( 毎 ' n / ) [ i , f c ] ‑ S o u s i n g t h e o n e ‑ t o ‑ o n e a r g u m e n t i n T h e o r e m 2 . 4 , w e

haveTzm≠丁勿'mforsomem・Uv‑i≠v'‑i,basicallybythesameargumentwe

haveTz,、≠Tx'mforsomem.

Inthecasewherexoisnotsomeminimalpath,wemayconsidersomeminimal pathXninsteadofxq.Thereforewehaveaconclusionthat汀kisinjective.

(9)

3.Calculationoftopologicalpressure

T h e a i m o f t h i s s e c t i o n i s t o c a l c u l a t e t h e t o p o l o g i c a l p r e s s u r e o f a B r a t t e l i ‑ V e r s h i k s y s t e m i n a s p e c i a l c a s e . F i r s t w e i n t r o d u c e t h e d e f i n i t i o n o f t o p o l o g i c a l p r e s s u r e . T h e d e t a i l s o f d e f i n i t i o n s a n d n o t a t i o n s a r e w r i t t e n i n [ W l l .

3.1.Definitionsandpropertiesoftopologicalpressure

Definition3.1Let{X,T)beatopologicaldynamicalsystem.(I.e.Xisa compactmetricspaceandTisacontinuoustransformationonX.)ForノE

C{X,R)andneN,put低ノル)=E封/CTx).Fore>0,put

1"{悪鱈forA"I,

Q ( r ,, 倉 ) = ' 慨 p : ' ・ g Q 凧 ( r ,, ) ,

p(r,/)=iimQ(r,ノ,ey

ThenitiseasytoseethatP(T,f)existsbutcouldbeoo・ThemapP(T,.):

CiX,R)‑→RU{00}iscalledthetopologicalpressu泥ofT.

WhenTisanexpansivehomeomorphism,wecancalculateP(T,f)asthefollowing

way.Afiniteopencoverao(Xisage冗eratorforTifforeverybisequence

{A"}足‑..ofmembersofa,thesetn墨‑..T‑"A"containsatmostonepointof

X.Define

"{'"

Theorem3.2([Wl]:Lemma9.3,Theorem9.6)LetTbeanexpansive

homeomorphismofX.〃α15ageneratorforT,then

P ( 叩 = 蝿 : l o g , 蝿 ( r , 八 α ) = 磯 寿 ¥ o g P N { T J , a l

Inthecaseofasubshift(X,ぴ)withalphabetA,α={Ial8laEA}isgenerator

fora.Moreoverweseethat

。V封。‑iα={{Bl8llBEB鯉(X)}andhenceV封。*Qisafinitecoverof

X,

。 s i n c e { ( B 1 8 − 1 l B E B 沌 ( X ) } i s a d i s j o i n t f i n i t e c o v e r ( i 、 e , B ≠ B ' i m p l i e s [ B ] J " ^ n [ B %^ = 0 ) , i t h a s n o p r o p e r s u b c o v e r .

SobyTheorem3.2wehavethefollowing.

(10)

126 F・Sugisaki

Proposition3.3Supposethat(X,a)isasubsh蛾α ノEC(X,R)jspote7l"α

ん泥c虎on.Then

('

寿1(

3.2.TopologicalpressureofBratteli‑Vershiksystems

InthissubsectionweassumethatBsatisfiesProperty1.5.Firstwecalculatethe

t o p o l o g i c a l p r e s s u r e o f ( X k , ケ ん ) w i t h r e s p e c t t o s o m e s p e c i a l p o t e n t i a l f u n c t i o n s . Definition3.4SupposeBisaproperlyorderedBrattelidiagram・Wesaythat/

i s a s i m 此 ん 冗 c t i o n o n X q b a s e d o n V { V n ) i f f o r a n y x , 〃 ' E X B w i t h z I 1 , " l = z ' 1 , , " 1 , /(*)=ノ(毎')holds,ThenfbrpEP(Wjwecandefineノ{plB=ノ(z)ifzEIplB.

Remark3.5Sinceeachcylinderset[pisisaclopenset,/isacontinuousfunc‑

tion.

Fbr9EC(X9,R)andkEN,let9kdenoteasimplefUnctionbasedonP(砿)

satisfyinglimん一・.Ofc=gasthesupremumnorm.Wedefineacontinuousfunction OfconXktobe

§ k { x ) = g k [ x o U ,

where〃=(z")EXkandhence§kisasimplefimctiononXk.

Lemma3.6Inthes"秘α虎o αbove,uノehave P(けた,5k)=logafc,

whei℃αkistノiemaximumpos""esolutiono/仇eequα"o冗/brz9"enby

二淵−1,

UE脇

whereTOu)=exp

(,

Proof.ByTheorem2.7,(A*,or*)is1‑stepirreducibleSFT.LetAbetheadja‑

cencymatrixofthegraphGkdefinedby

4{;:

LetDbeadiagonalmatrixdefinedbyD=e9脂{PlB.PutS=AD・Let入S=

max{│A│:入isaneigenvalueofS}.AisanirreduciblematrixandsoisS.Then

(11)

u s i n g L e m m a 4 . 7 i n [ W 2 ] , w e h a v e P ( ケ k , 5 / b ) = l o g 入 s a n d t h e r e e x i s t s a n e i g e n v a l u e AsuchthatAs=入Nowwewillshow入s=αk.ByPerron‑FrebeniusTheorem ( S e e [ W l ] : p l 6 , T h e o r e m 0 . 1 6 . ) , A s i s a n e i g e n v a l u e a n d i t s e i g e n v e c t o r i s p o s i t i v e .

L e t O b e t h e r i g h t e i g e n v e co r o f 入 s , W e w r i t e e a s e = ( 8 " ) E R r) 1 , w h e r e

8 ツ ー ( 8 p ) p E p ( 。 ) . ( T 一 人 s ) 0 = 0 f o l l o w s t h a t

。 一 入 s 0 p + e t o M t O a = 0 , w h e r e r ( p ) = r ( q ) a n d O r d e r ( p ) + 1 = O r d e r ( q ) .

● 一 入 s 8 p + , e * * k k 0 = 0 , w h e r e O r d e r ( p ) = p ( r ( p ) ) │ a n d q i s t a k e n o v e r

Orderfa)=1.

Theseareequivalentto

。 8 , = 入 : 侭 d " ( p )l e x p ( ‑ E 9 〃 1 9 ) 0 , , w h e r e 『 ( p ) = 『 ( 9 ) , O r d e r ( 9 ) = 1 a n d

p ' i s t a k e n o v e r p ' E P ( 『 ( p ) ) w i t h l < O r d e r ( p ' ) ≦ O r d e r ( p ) .

● E , e " ' ' 1 息 8 。 = 入 r ( 『 ( , ) ) l e x p ( ‑ E p , 9 k { p ' } g ) 8 , , w h e r e O r d e r ( p ) = 1 , 9 i s

takenoverOrder(g)=1andp'istakenoverp'GVirCp))with1<

O r d e r ( p ' ) ≦ O r d e r ( p ) .

Thenwehave

;)P(L>9kW]8)"

wherep'istakenoverp'EP(γ(p))withl<Order(p')≦Order(p)and9'istaken overq'6VMq))with1<Order(q')≦Orderfq).Soweha八'e

=1.

Sowefinishtheproof.

Lemma3、7

P(グ。。Pot)=KmP{ok,9ko師F')(3.1)

Proof.Firstwewillshow

n^=x・・・

kEN

FbrkENandUE脇十,,thewordTCon(ひ)correspondstoconcatenatedwords rCon(wi)rCon(u2)…γCO、(秘"),

where(wi,U2,…,u")=List(u).ThenbyRemark2、6X1コ麺.…and

XooCflfceN‑Xfe‑Conversely,supposex6DfegN^fc‑Since

xexooifffbranynEN,thewordz(−m,lappearsinapointofX。。,

(12)

128 F・Sugisaki

w e w i l l s h o w z I ‑ " , " l E B 2 " + 1 ( X b . ) . I t s u 髄 c e s t o s h o w t h a t z I ‑ " , " l a p p e a r s i n TCon(v)forsomevertexv.SupposethatNGNsatisfiesmin{│P(t;)││vG15v}>

2 .Form≧Ⅳ,DefineAm,BmandCmas

A m = { v G V m │ X [ ‑ n , n ] a p p e a r s i n T C o n ( v ) } ,

m={(u,v)G晩×豚n│Z(‑n,n]appearsinaconcatenai Cm={(u,v)e賂×賂IrCon(u)rCon(v)GB(Xm+i)}‑

appearsinaconcatenatedwordTCon(w)TCon(v)},

SincexGn^tiXk,BmnCm≠0holdsforanym≧Ⅳ.SupposeAm=0for anym.If(u,v)GB^DCvwith(u,v)≠(ひ脇>^min)>thenthereexistwGVWi ande,/Gr*(w)suchthats(e)=u,s(/)=tノandOrder(/)=Order(e)+1.

ButthisimpliesthatwGAn+iandhenceBnHCn={(ひ船^min)}'NOW,for anyyGV)v+2,TCon(y)containsthewordrCon(u^)rCon(〃船).Becauseby Property1.5(2),anyconcatenatedwordTCon(ti)rCon(v)withu,vGVWicon‑

t a i n s r C o n ( ひ 総 J r C o n ^ J a n d r C o n ( t ノ ) c o n s i s t s o f c o n c a t e n a t i o n s o f r C o n ( t y ) ' s

(wGVn+i).ThereforeyGi4Ar+2holdsandhenceitisacontradiction.Therefore

" m ≠ O f b r s o m e m a n d : E ( ̲ " , " l a p p e a r s i n γ C o n ( ひ ) f b r s o m e v e r t e x U . DefineノinGC{Xq,R)basedonP(Ki)tobe

ノin{x)=max{0(y)│yG[pis)if^G[pis‑

Thenweseethatlim"一。。IIノIn‑pi1=0andhencelimfc‑。o¥¥hn‑gn¥¥=0.By Theorem9、7(iv)in[Wl]

¥ P ( < r k , 9 k O T T . ^ ) ‑ P ( < 7 f c , h k o 汀 億 ' ) l ≦ I I ノ i k ‑ 9 k ¥ ¥ → 0 a s f c ‑ → C O ・

Thereforewewillshow

P(。。。,5.曙)=limP(。雌,内晦。汀‑')

Clearly

P f a , ん l ) ≧ P { ^ 2 ^ 2 0 7 r r ' ) ≧ P i e r s , h z . 汀 亙 ' ) ≧ … ≧ P ( ぴ 。 。 . 5 . 汀 三 )

becauseXiコX2コ…。Xooandノinismonotonedecreasingwithrespectton.

ByProposition3、3foranye>0,chooseiVsatisfying

'(!)<'

ByHfegN‑Xfe=‑Xoo,thereexistsKGNsuchthatforanyk≧KandxGX*,

Bn{Xo。)=BviXk)andhk(x)<q{x)+‑e.

(13)

UsingProposition3.3again,foranyk≧Kwehave

・("

"(

<P(。。。,9.汀三)+e.

Theorem3、8SupposethatB=(V,E,≧)isaproperlyorderedBrattelidiagram sα"wmgProperty1.5,gisapotentialんnctiononX*and{g^}isasapienceof simpleん冗ctionsonXbasedonV(Vn)/'oreacノZsα"吻inglimn一。。Il5‑ffn││=0.

Supposeanistheuniquepositiveso此"o加Q/仇eequα"o /orxgivenby

(州)

α冗dliman=aexists.ThenP(A,ff)=logα・

Proof.ByTheorem2.4,入8andぴ。oareconjugateandhenceP(Ag,g)=P(ぴ。。,9 t t ‑ M . B y T h e o r e m 2 . 7 , ケ & a n d o ‑ f c a r e c o n j u g a t e a n d h e n c e P ( ケ k , 9 k ) = P { < r k , 9 k o t i y * ) . T h e r e f o r e b y L e m m a 3 . 6 a n d 3 . 7 w e h a v e

P ( 入 B ' 9 ) = l i m P ( 。 臆 , § k o 派 F * ) = l i m P ( ケ 態 , p f c ) = U r n l o g o ! * = l o g a .

4.ThemodificationofsimpleBrattelidiagrampreservingequivalence

relation

Inthissection,wegivetwomodificationsofdiagramspreservingtheequivalence

relationofBrattelidiagrams(seeNotation1.2(9)).Thefirstmodificationis

usefulfortheconstructionofabaseddiagramCinthemaintheorem.Usinga

g i v e n s i m p l e B r a t t e l i d i a g r a m B = { V , E , { M ^ } ) a n d a s e q u e n c e o f t e l e s c o p i n g d e p t h s { t " } " E z + , C = ( W ; R { ノ V ( " H ) i s c o n s t r u c t e d b y t h e f o l l o w i n g : ( W e c a l l t h e constructionbelowt旅Uertexam吻oma加冗.)

ThevertexamalgamationconstructionofC.Defineanequivalencerelation

onverticesof(B,{})as

u〜U(u,ひE脇")−

{鯨刷̲〃… い…

ifn=0,

Usingthisequivalencerelation,weconstructWby

Wn=VtJ〜.

(14)

130 F.Sugisaki

F b r 鯵 E W h ‑ 1 a n dE W h , d e f i n e ノ V f c > a s

j 噸 = Z M 総 '蝿 ‑+ ' ) , w h e r e u E " ・

vE韮

(Inthecaseof =1,weputuoEt"owhereWb={tuo},妬={Uo}.)Notethat

thisdefinitionisindependentofthechoiceofuG⑩.

Remark4、1

( 1 ) W e g i v e a n e x a m p l e o f ( s t a t i o n a r y ) B r a t t e l i d i a g r a m s s a t i s f y i n g t h e c o n d i t i o n s above、FbranyEN,sett"=泥,脇={1,2,3,4,5,6}andWh={,,t"2,"3}・

IncidencematricesM^andN^aredefinedby

""}M{

Thenweseethat1,2ewi,3,5Guノ2and4,6E 3

(2)Inthisexample,W2≠^3butN&}=N$

P r o p o s i t i o n 4 . 2 S u p p o s e B = ( V , E , { M ^ } ) i s a s i m p l e B r a t t e l i d i a g r a m a 卸 。 {t"}jSasee冗ceq/telescop卿。es"jSノシ町thα"M(t","−1+')もα花DOS‑

""em 7、ices・SupposeCistノiediagramconstructedabove.The冗娩e/'ollowing

statementshold:

(1)/brα ENa sEN,#{tUEWhルー'(")│≦s}<2*, (2)foranyvGuノGW,¥V(v)¥=¥V(uノ)¥,

(3)forany0≦r<1,仇e花函sjsKENsuch仇E"EwhrlP(u')│<1ノorα〃

≧K,

(4)5〜c.

Proof.(1)Since

{ M M t " ," − 1 + ' ) │ u E v I " } 亡

lWn1+1

and

"}("

(15)

wehave

{('

Thenwehave

8

拶 { " e 鵬 ' ' ' 一 l ( " ) ' ≦ s ] ≦ D { ¥ V t n Z l ¥ ‑ l ) = (

j=│暁、‑,1

w h e r e w e u s e d t h e f b r m u l a ( 圏 ) = ( ¥ ) − ( " ? ' ) .

S

│ 脇 九 一 , ) 〈 2 , ,

s − 1

1畷‑ll‑l

(2)Inthecaseofn=1,¥V(v)¥=M^=A#&,=¥P(w)¥holdsforany

uE EWi、SupposethatfbranyuEzEWh‑,,│P(u)│=│P(毎)lholds・

ThenfbruEwEWh,wehave

州琴。昂州峨…‑雪見(雲州叫…)

=Ei^)i^"‑^=Epwi*無ノ=¥V(w)¥.

諺 E W f B ‑ , ひ E エ エE叱り−1

(3)Putp隅=min{│P(z)│|zEWh−,}・BythesimplicityofBand(2)above,it iseasytoseethatp^i",ismonotoneincreasingwithrespectton.Using(1),

wehave

逗 蔽 ' 戸 ( " ) ' ≦ E 『 , 湾 ' 癖 ‑( 。 ) ' < 量 『 , 渦 。 × 2 。 = ' ,−2γP調→0 『 ' 綱

山 E 1 " ウ 8 m E W h s = 1

a s → C O .

( 4 ) W e w i l l c o n s t r u c t a B r a t t e l i d i a g r a m 8 = ( ' , 白 , { 血 ( " ) } ) s o t h a t a v e n c o r r e ‐ s p o n d s t o ( B , { t " } ) a n d 8 b d d c o r r e s p o n d s t o C ・ F b rE N , w e p u t 喝 郷 ‑ 1 = W n , 喝 " = V I " a n d d e f i n e t h e i n c i d e n c e m a t r i x 血 ( " ) a s

ハ " 卿 − 1 ) = M M り , t " − 0 + ' ) , w h e r e u E ⑩ ,

必瀞)=珊,where6鮒=1if妙E ,and噸=Oift 任切・

WewillcheckthatM^^‑D=M<*‑'‑+i>andM(2+i.2)=w(n+i)

( M < ) = N W = [ 1 ] f o r c o n v e n i e n c e ) .

j雌"'2"−1)=E蝿靭>i雌ー')=E噸M#",蝿‑+')(E")

WZWn E眠り

^Wn‑l+l)(.,^jg切→Af(w‑+i)=M''‑'‑>),

(16)

132 F・Sugisaki

ハ " 鮮 + l , 2 n ) ̲ Y ^ A " 卿 + 1 ) 蝿 誓) = Z 雌 … ,癌 十 ' ) 螺 ) ( # E " )

秒 E V h T j E 暁 、

‑E蝿…'"+'>=*&+>(vtew).

UE垂

Remark4、3

( 1 ) I n t h e e x a m p l e o f R e m a r k 4 . 1 , M ^ i s t h e f o l l o w i n g .

( 2 )

血(1)= }"=^23456

(EN).

SupposeBandCareBrattelidiagramssatisfyingProposition4.2.Thenthere

isanontomapの:E'‐→F,whereE'=U経,Et風, "‑,+listheedgesetof { B , { t n } ) , s u c h t h a t

・の(Et",t"‑,+,)=島,

・fbranyeEE',s(e)ES(の(e))andr(e)Eγ(の(e)),

ofbranyteweWn,のgivesabijectionbetween{eEEtn,t恥‑,+,|γ(e)=

v } a n d r ^ { u ノ ) ,

●fbranygERande,e'Eの−1(9),s(e)=s(e').

Thenwecandefineamapの^:V(Vu)‑→V(Wn)as

^ ( l . t n l 骨 の ( z 1 , , t 1 1 ) の ( z ( t 1 , t 3 1 ) … の ( a ^ ( t n ‑ . . t n l ) ‑

Weseethat

(i)の"iss町ective,

(ii)therestrictedmapの¥‑p(y¥isabijectionbetweenP{v)andV{w)where

Vew,

( i i i ) f b r a n y p E P ( W h ) a n d z I 1 , t n l , z ' 1 , , t " l E ( の 沌 ) ‑ ' ( p ) , z 1 , , t " ‑ , 1 = 毎 ' [ l . t n ‑ l l

holds.

Usingの"'s,wedefine<:Xq‑→Xras

や((z")"EN)=(y")"EN等fbranyEN,の'"(3[l,u)=y(l,n]‑

Thenwecanshowthatやisbijective町thefbllowing・By(i)やissuIjective・

F o r a n y f i x e d y G X と , t h e n u m b e r o f p a t h s i n P ( Ⅵ 、 ) c o r r e s p o n d i n g t o y ( , , 宛 l v i a の( i 、 e 、 , │ ( の " )' ( y ( , , " l ) │ ) i s # { U E 脇| ひ E r ( y " ) } b e c a u s e o f ( i i ) . H o w e v e r , b y ( i i i ) s o u r c e v e r t i c e s o f e a c h e d g e i n & 、 + , , f " + , c o r r e s p o n d i n g t o Z ノ n + i v i a の a r e a s a m e v e r t e x ・ T h e r e f b r e c o n s i d e r i n g p r e i m a g e o f y I 1 , 冗 十 , l v i a の 沌 + i w e c a n c h o o s e u n i q u e l y t h e p a t h i n P ( V I n ) c o r r e s p o n d i n g t o g I 1 , " l v i a の n . T h i s

means<pisinjective.

(17)

( 3 ) y > p r e s e r v e s t h e c o f i n a l r e l a t i o n . I . e ,

z≠x'6XqandVn≧tⅣ,z"=z' 一V汎≧Ⅳ,P(〃) =や(釘').

Therefore,ifweassignanyproperorder≦B,≦conB,Crespectively,<pisan orbitequivalencemap・Moreoverif≦Band≦csatisfies^(x^in)=yminand v t e m a x ) = j / m a x . < p i s a s t r o n g o r b i t e q u i v a l e n c e m a p .

(4)SupposeノisasimplefimctiononXBbasedonP(VIn‑,).ThenfoP−isa simplefunctiononXcbutnotbasedonV(Wn‑i)ingeneral・Indeed,/ou>*

isbasedonVCWn‑i)ifandonlyif加}b=地'lBfbranyp,P'EP(VI"̲,)

withの"(p)=#"(p').However,focp'*isbasedonV(Wn).Weregard/asa simplefunctionbasedonV(V*)by

/(*)=/Iph,‑,i]8if^gbis.peWJ.

B y t h e c o n d i t i o n ( i i i ) , の * ( * [ l * . l ) = の( 毎 ' │ i , t ) ) i m p l i e s X [ i ^ . , ] = 毎 ' [ M n ‑ l l ‑

Therefore

ノ 。 や − 1 ( " ) = 加 1 , ," ̲ , l l B i f 〃 E I の " ( P ) ] c

doesnotdependonachoiceofpEP(脇,、)andisasimplefunctionbasedon P ( W h ) .

Hereweintroducethe"converse"constructionofthevertexamalgamation,which i s c a l l e d t h e i ノ e r t e x s p l i t t i n g .

ThevertexsplittingconstructionofB.SupposeC=(W,FJN^})isa s i m p l e B r a t t e l i d i a g r a m . S u p p o s e B = ( V , E , { M ^ } ) s a t i s f i e s

o脇=U"Ewn脇,ujasdiSjointunionand脇,≠0,(I.e,,wesplitulintoM,"|

v e r t i c e s i n K , . )

・fbrany 。E鴎,",蝿飛=M),

・fbrt",zEWhwithl"≠z,then秘")≠蝿")fbruE1/handひE脇,z

・ f b r a n yE 鵬 , " , Z 秒 E , h ‑ , , 雪 j 嘘 ) = j V 鯛 .

Remark4、4Inthecaseofthevertexamalgamationconstruction,Cisuniquely determined.However,inthecaseofthevertexsplittingconstruction,thereisan ambiguityofanumberofverticesandhenceBisnotuniquelydetermined.

Proposition4.5B〜c.

Proof.ThisfollowsProposition4、2byputtingB=Band{t"}=Z+、

Remark4,6

(18)

134 F・Sugisaki

( 1 ) S u p p o s e B a n d C a r e s i m p l e B r a t t e l i d i a g r a m s s a t i s f y i n g t h e v e r t e x s p l i t t i n g construction.BysimilarargumentsofRemark4.3(2),weha八'eabijection の:蝿‑→Xcpreservingthecofinalrelation.SupposethatBandCaresimple BrattelidiagramssatisfyingthevertexamalgamationconstructionandBand B h a v e p r o p e r o r d e r s ≦ b , a n d ≦ 息 r e s p e c t i v e l y s a t i s f y i n g

や(Xmin)=ViXmin)and¥>(Xmax)=^(^max)‑

T h e n ( p * o i p i s a s t r o n g o r b i t e q u i v a l e n c e m a p b e t w e e n ( A s , 入 B ) a n d ( ^ . 入 息 ) . (2)Letの":P(路)‑→VCWn)beanontomapwhichinducesaconjugacy<p(see Remark4.3(2))andノibeasimplefunctiononXcbasedonV(Wn).Thenwe

s e e t h a t f o r a n y i , 毎 ' E X g w i t h の " ( 毎 1 , , , 1 ) = の * ( * i i . l > = 9 .

ん 。 。 ( 曇 ) = ノ Z 。 。 ( 毎 ' ) = ノ i [ q } c ‑

ThisimpliesthatfbranyU,u'E脇,

*。伽u‑Eん。伽]b=E%Jc.

p E P ( 秒 ) P E P ( U ' ) q E P ( 画 )

5.ProofofTheorem1.1

5.1.RequirementsofasimpleBrattelidiagramfor(Y^ip).

ByTheorem9.7in[Wl],foratopologicaldynamicalsystem(X,T)andpotential function/6C(X,R),

h(T)+infノ≦P(TJ)≦ん(T)+supノ

andsoP(T,ノ)=ooiぼん(T)=oo.Inthecaseofa=oc,thereexistsaCantor m i n i m a l s y s t e m ( Y , t / j ) s t r o n g l y o r b i t e q u i v a l e n t t o ( X , < f > ) s u c h t h a t ノ i ( i p ) = o o ( s e e [ S 2 ] ) . T h i s m e a n s

W , / O = 0 .

Soweonlyconsiderthecasewhereaisfinite.LetB=(V,E,{M^H,≧)be aproperlyorderedBrattelidiagramwhichisarepresentationof(X,<p).Sowe identify(X,<}>)with(Xb,入b)‑Fromthesimplicityofdiagram,wemayassume t h a t a l l M ^ ' s a r e p o s i t i v e m a t r i c e s . W e o n l y c o n s i d e r w i t h i n a s t r o n g o r b i t equivalenceclassof(X,<f)).SoapplyingProposition4.2toB,wemayalsoassume

that

W,sEN,#{ひE脇llr−1(U)│≦s}≦2',

0≦Vr<1,3KeNs.t.Vn≧k,y>i^>i<i.

UE晩3

( 5 . 1 )

( 5 . 2 )

(19)

C h o o s e a n y d e c r e a s i n g s e q u e n c e { e n } n e N s a t i s f y i n g 0 < ^ n < n + i < j n

andfixit.NowwewillconstructaproperlyorderedBrattelidiagramB=

( V , E , { M M } , ≦ ) w h i c h i s a r e p r e s e n t a t i o n o f ( V , ^ ) . F i r s t , a p p l y i n g t h e v e r t e x amalgamationconstructionto(B,Un})where{,}issomesuitabletelescoping depths,wehaveabasedBrattelidiagramC=(W,剛Ⅳ<">})withC〜B(see Proposition4.2).Second,applyingthevertexsplittingconstructiontoC,wehave BwithB〜C(seeProposition4.5

5.2.Preliminary

Inthissubsection,wewillintroducesomelemmas.

Lemma5、1SupposethatN,A,QeN切鋤A≧3,REZ+and1<r<2satisfy

仇eノollowingconditions:

(1)Ⅳ−2=(A‑2)Q+Rand0≦R<A‑2,

(2){r‑l)Q>A,(2‑r)Q≧1and立二幾二型>1.

Zソie冗仇e/'ollowingineq秘α"如加Ids.

j(n,)eN**"}(r)"

P r o o f L e t { I i } 告 3 b e a s e t o f n o n ‑ n e g a t i v e i n t e g e r s w i t h J i 〈 ( γ − 1 ) Q . D e f i n e { " * } f a i * C N a s

。。{鵜│畳:→

T h e n w e c a n e a s i l y v e r i f y t h a t { " i } s a t i s f i e s E 省 2 " , = L ‑ 2 a n d b y c o n d i t i o n

(2),1≦ t<rQholdsforeachi.Moreoveritiseasytocheckthatthemap (Jl.fe,…,^‑l)‑*(m,"2,…,n,4̲2)isinjective.Let[1denotetheGauss s y m b o l ( i . e . [ x ] i s t h e i n t e g e r p a r t o f x ) . S o w e g e t

JMgn^2iN}>¥li<(r

≧ ( [ ( r ‑ り ・ . j j r f ‑ s ^ m r ‑ l ) ( N ‑ 2 ‑ R ) ^ y ‑ * ≧ ( { 止 二 幾 二 4 1 )

≧ ( 竺 幾 二 型 − 1 ) " ‑ ( 止 二 幾 二 且 ‑ 『 ) "

Sowefinishtheproof.

A − 3

(20)

136 F.Sugisaki

Wewillusethefollowingnotations.

* < ‑ = 越E鴫一, m w , M < : ' = │ i │ .

L e m m a 5 . 2 S u p p o s e t h a t { V , E , { M ( " H ) i s a s i m p l e B r a t t e l i d i a g r a m w i t h p o s i ‑ tivematricesa冗dNeNisgiven.Thenther℃exists{culweViv‑i^**ノI0<Cu<1

sucノIthat

c 鯉 ≦ i n f { 蝿 W + ' ' ' ^ ) I V G V N + k , k G N } . ( 5 . 3 )

Proof.ForanyA;GNandvGVN+k,

蝿 』 V + / . . N ) < │ │ ^ ( i V ) │ │ x 蝿 N + k , N + i ) ^ h e r e │ │ M ( ^ ) │ │ = V M i i ' ) . ( 5 ‑ 4 )

皿,U

Also,thefollowinginequalityholds.

叫僻'")〉蝿"+k,N+l)×駅m/,y>(5.5)

F r o m ( 5 . 4 ) a n d ( 5 . 5 ) , w e g e t M i J ' ‑ ^ * ' ^ ^ > c w h e r e C u = ( m i n / g v ^ m / J ^ ^ ) / │ │ M ( ^ ) │ │ .

Itisclearthat0<Cu<1foralluGVn‑i.Therefore(5.3)holds.

L e m m a 5 . 3 F o 『 。 " n G N , ( ^ ) " < n ! < ( 2 a r ^ ' .

P r o ・ f . I f n = 1 , t h e i n e q u a l i t y h o l d s t r i v i a l l y . I f n ≧ 2 , t h e n e " = E r = o ^ > S ‑

Thereforetheleftpartoftheinequalityholds・Next,wecancalculate

11+1"lo(n+1).

Sincelog(n+1)>1for ≧2,weget

logn¥<{n+2)log(n+2)‑(n+1)一log(n+1)

< ( n + 2 ) { l o g ( n + 2 ) ‑ 1 } = l o g ( ( n + 2 ) / e ) " + ^ .

Sotherightpartoftheinequalityalsoholds.

LetノbeafunctionofXb・ForXeXbandmGN,put

S { f , x , m ) =

j=O

龍 ' ( い )

Lemma5,4SupposeB={V,E,≧)isaproperlyorderedBrattelidiagram,fis asimpleん抑c"・no"XB伽sedo"P(Wv).Fbrα"yβ>exp(sup{〃d似|似E ル!(XB,入B)}),仇e'℃existsⅣ'>NsueノIthatforany ≧Ⅳ'α九dvGK.,

β l P ( u ) │ > e x p

(

(21)

ProofSupposethislemmaisfalse、Thenthereareinfinitelymany冗'sandU E Vj,sothat

Q ¥ ‑ P { V n ) ¥ ≦ e x p

('

今exp(logβ−S(ノ¥Xn,¥P{Vn)¥))≦1, where⑳"EXBisintheminimalpathofP(u").Define〃 EルUXb)as

,P(Wn)│‑l

似聡=両可雲 …

C h o o s e s u b s e q u e n c e { r i i } s o t h a t { S ( / , 釘 ", │ P ( U ") │ ) } i s c o n v e r g e n t a n d い " , } i s convergentintheweak*topologyon人4(Xb)‑Letfj.=limi‑ooHm.ByTheorem 6,9in{W11,weseethat似EM(XB,入B)and

, ( 加 瀬 " K ) l ) = 御 鋤 一 か U { i → 。 。

Thereforewehave

。 " ( l o g β ‑ / 伽 ) ≦ ,

T h … " 。 i " 鼠 β > e " ( " p { 〃 ' " e " ( x 職 入 圃 ' } )

5.3.TheconstructionofabaseddiagramC.

I f { t n } i s d e c i d e d , w e c a n c o n s t r u c t C b y t h e v e r t e x a m a l g a m a t i o n c o n s t r u c t i o n . Then,wedefinetp:Xb‑→XbasRemark4.3(2)andasimplefunction/nonXb basedonP(脇")as

A(z)=min{/(y)lyE(plB}wherezE{plBandpEP(脇").

(SetV(Vo)=0and[%=Xb‑Thenノb(z)=min{鮒)IvEXB}.)Weseethat

。{ん}ismonotoneincreasingandlim"一。。IIノー九11=0,

●ん‑,oや−1isasimplefimctiononXbbasedonP(Wh)(Remark4、3(4)),

●fbranyUET〃EWh,

E 九 一 l b ' 1 , ,鰯 ̲ 1 , 1= E 九 一・ や ‑ ' { 9 1 c 5 . 6

P E P ( U ) q E P ( w )

(SeeRemark4.3(4).Putpn01=0.)‑

(22)

138 F・Sugisaki

Definer"Mas

『蝿(tu)=exp勲伽‑ills㈹

wherevGwGWn‑Now,wewilldecide{tn}byinduction.

The1ststep・Putto=0.ApplyingLemma5、4toノoandB,thereexistsUGN

s a t i s f y i n g

(")',([i.o]])

()'(>

f o r a l l v G V i , . ( T h e s e c o n d p a r t o f i n e q u a l i t y a b o v e h o l d s b e c a u s e m i n v g v i [ P i t ノ ) l ismonotoneincreasingwithrespecttoti.)Wefixti.ThenwecanconstructWi

a n d N t o o f C b y t h e v e r t e x a m a l g a m a t i o n c o n s t r u c t i o n . S i n c e │ P ( i u ) │ = │ > ( v ) │ h o l d s f o r v G t o , t h e f i r s t p a r t o f i n e q u a l i t y a b o v e i s e q u i v a l e n t t o ( a + k e i ) >

TiHforanywGWi.Let{A^GN│wGWAsatisfy

$ ' > 2 … { ( α 芸 普 型 ' M } ,

whereV*,^={vGVi,│vGty}.Thenthereexistsauniquenumberai>a+Ei

suchthat

=1.

Chooseanyen>ai−aandfixit.

Then‑thstep.For冗≧2,supposethe(丸−l)‑thstepdataaregivenbythe following:ForanywGWn‑i,

P n ‑ l ‑ l ) ( 蓋 芸 ラ ) ¥ n * > ) ¥ > 2 ,

( D " ‑ , ‑ 2 ) ( α + e " ̲ , ) l P ( " ) l 〈 ( A− 1 ) − 2 ) r " ̲ 1 M , ( D " ‑ , ‑ 3 ) ' 1 / I " ̲, u , │ 〈 A 断 − 1 ) − 2

C h o o s e r ^ G R s a t i s f y i n g ( 5 . 8 ) a n d f i x i t .

…"蝿(;(鴨畿誌│叫)側

F b r a n y f i x e d t> t " ‑ , , w e c a n t e m p o r a r i l y c o n s t r u c t W h a n d Ⅳ ( " ) b y t h e v e r t e x amalgamationconstruction.DefineQxwGNandR垂、〃GZ+tobetheunique

numberssuchthat

jV期−2=(A聯 ')−2)Q霊"+R露 andO≦/U<4r'>‑2.(5.9)

(23)

DefineBx,CxwandD‑was

峠、…揺裂;綜赫"(剛‑劃晶噸)

{(''

"{'""

NowwewillshowthatClaim5、5holdsfbrsu田cientlylarget .

Claim5、5Foγα九yzeWn,

( ' ) r " { z } 〈 ( α + ; g " ) ' P ( 錘 ) ' , ( 2 ) B 毎 r " I z l ( α + E " ̲ , ) ‑ │ P ( 露 ) l > 1 , (3)fora孔ywWn‑i,│CxJ<U>ェto;

( 4 ) M 恋 , 諺 │ r " { 錘 } < ( α + g 河 ) I ア ( 麺 ) │ ,

( 5 ) E , 6 w r 誕 畿 碧 掃 計 < 1 ,

( 6 ) ( 釜 詩 3 ) l " < * > l > 2 .

(1)/n̲iisasimplefunctionbasedonP(昭八‑1).SoapplyingLemma5、4toA−1

andB,thereexistsT>tn‑1suchthatfbranyt >Tsatisfying

)"(

forallveV*.Thereforeby(5.7)and¥V(i)│=│P(毎)lwhereUEz,wehave

'<(¥l*<

( 2 ) S i n c e

'"()

P53fn2[q[l,tI>

(24)

140 F・Sugisaki

Ⅱ ( r " ‑ , M ) 噸 ,

E脚ら、−,

==

wehave

… i x ( ^ ‑ + 2 ) ( a 黒 等 ¥ V ( w ) ¥ J N鮒 島 r " { 麺 }

( α + E " ‑ , ) l P ( エ ) 1

w h " e 島 = { ( ( 鮒 ) ‑ 2 ) / e ) , Ⅱ . 直 w }̲ 伽 Q 壷 " + 2 ) / e ) 蝿" }' C h o o s o

asmallnumbere>0satisfying(5.10)andfixit(See(5.8)).

( 鵜 劣 識 ' 一 霞 参 5 . 1 0

SinceminzEwhQz ‑→ooastn‑→CO,町(5.9)fbrasu缶cientlylarget",

M票諾裂裂ァ(。,,参(鵜望満]̲二剛

FromLemma5,2,thereexists{c luE脇"̲,}withO<c <lsuchthat

蝿 # ,唾 ‑+ ' ) ≧ c of b r a n yE 1 / 1 , 、 、 P u t 砥 W = j V 4 3 / j W ) . F b r U E z , w e

have

* < > = ‑ 帳 謡 憲 異 亦 逗 篭 蝶 芸 巽 , ( 5 . 1 2 )

‑E*&"^‑1*"≧E趣三CIM.

uE 狸E

Then0<d*,<1and(5.12)isindependentoft andzEWh.As

l i m " → 。 。 丸 ' /= 1 , i t f b l l o w s t h a t ( 凡 ) ' / j V A " ) ‐ → 1 a s t ‑ → o o . T h e r e f o r e b y

( 5 . 1 0 ) , ( 5 . 1 1 ) a n d ( 5 . 1 2 ) , t h e f o l l o w i n g i n e q u a l i t y h o l d s f o r s u f f i c i e n t l y l a r g e

t 兜 :

側 " " 芦 品 ( ( 鵜 望 識 ' ‑ ) …

Finallyweget

砥W‑c'

( ( 。 黙 坐 修 , , ) 叩 " 参 鋤 瓢 ( 鵜 皇 満 ' ‑ >1.

■ ■ ■ ■

(3)Itiseasilyseenthat

lq"│=

1ト ー叩 の四町

J1毒一

Ⅳ恥

)<()'‑"'

( 5 . 1 3

(25)

andr,areconstant,

Since.A^'ant

TwiUixw≧1and

wehave(『妙−1)Q霊〉A"'),(2−

>1fbrsu価cientlylarget .Therefbre byLemma5.1,weseethat

",((''.)噸"・

Using(D"‑,‑3),weobtainthefbllowinginequalityfbrsu髄cientlylarget":

<((")" 剛

B y ( 5 . 1 3 ) , ( 5 . 1 4 ) a n d ( 5 . 1 5 ) , w e g e t t h e i n e q u a l i t y o f ( 3 ) .

( 4 ) A s │ r ‑ i ( v ) │ = M i ' " ^ ≦ 耐 f 価 ' t 侭 ‑ l + ' ) = l r − 1 ( z ) l h o l d s f b rE 畷 , 、 , a ; , b y u s i n g

( 5 . 1 ) w e h a 八 ' e

l v I " , 霊 │ ≦ # { U E 1 / I " l l r − 1 ( U ) │ ≦ ¥ r ‑ H x ) ¥ } ≦ 2 │ r ‑ ( x ) │

By(D"‑,‑1)andClaim5、5(1),fbranyt >T(whereTisdefinedinthe proofofClaim5.5(1))wehave

( α + 躍 ) ' 頓 に Ⅲ > r " 1 忽 ' " 黒 ̲ ( 無 ) ' 頓 州 ,

〉 r " I 露 l Ⅱ 2 1 v 期 = r " ( z l 2 I r' ( 霊 ) 1 .

W^Wn‑i

T h e r e f b r e w e g e t M " , " │ r " I 毎 1 < ( α + g " ) │ ア ( 垂 ) 1 .

( 5 ) C h ・ o s e a n y n u m b e r 叩 w i t h 0 < り < ^ n ‑ i a n d f i x i t . P u t r = 窯 誓 . T h e n

O<r<1.By(5.2)fbrasu伍cientlylargetn,

Trl^'t")!<1.

UE暁冗

Clearly¥Wn¥≦IV*│.ByProposition4.2(3),wehave Vrl^WI<1.

諺E砿、

S i n c e ¥ V ( x ) ¥ ‑ → 0 0 h o l d s a s t n → 0 0 , f o r s u f f i c i e n t l y l a r g e t n , 2 ( a + n ) ^ ア ( : = ) l <

( α + E " + 叩 ) l P ( 韮 ) │ h o l d s ・ T h e r e f o r e w e h a v e t h e i n e q u a l i t y o f ( 5 ) .

(6)Sinceg"+,isindependentwithrespecttot andlP(z)|‐→ooholdsas

t n → 。 o , ( 釜 鴛 ナ 面 ) l ^ ( = = ) l > 2 f o l l o w s .

(26)

142 F.Sugisaki

P u t t n s a t i s f y i n g C l a i m 5 、 5 . T h e n w e c a n d e f i n e A ^ G N a s

( A ' ) − 3 ) r 弧 { 砥 } ≦ ( α + g " ) │ P ( 諺 ) │ 〈 ( A r ) − 2 ) r " { z } 〈 A # ) r " { 鰯 l 〈 2 ( α + g " ) │ P ( 垂 ) |

( 5 . 1 6 ) becauseofClaim5.5(1).Sowehavethen‑thstepdatabythefollowing:Forany

zEWh,

( D 狐 ‑ 1 ) ( 詳 窯 論 ) P ( * ) I > 2 ,

( D " ‑ 2 ) ( α + g 禰 ) │ P ( 垂 ) │ 〈 ( A # ) − 2 ) r n I z l , ( D 漉 ‑ 3 ) l V I 魂 , 垂 │ 〈 A r ) − 2 .

5.4.TheconstructionofB.

I n t h i s s u b s e c t i o n w e w i l l c o n s t r u c t B = ( V " , E , { M ^ } , ≦ ) s a t i s f y i n g P r o p e r t y 1 . 5

andforeachnGN,

. +綱 く α " < … 卿 ‑ i a n d ェEWru T ) ! 為 踏 1 ‑ 1 . 5 . 1 7

Theconstructionof脇.ForxGWn,weset

| 脇 , 露 │ = 婚 ) . 5 . 1 8 Bythecondition(D"‑3),Mu,│≧3holds、Let*EWh(**EWhresp)denotethe vertexsatisfyingthattheminimalpathXminXb(themaximalpathXmaxXg r e s p . ) g o e s t h r o u g h s o m e v e r t e x i n 畷 " , 掌 ( 脇 癒 , * * r e s p . ) . W e c a n c h o o s e a n y d i s t i n c t verticesu船inE脇,*andUHiaxE脇,態*(becauseofl脇,u,│≧3)andfixthem.Then P r o p e r t y 1 . 5 ( 3 ) h o l d s .

TheconstructionofM^KInthecaseofn=1,forvGVi,wedefine

^VVn^WWa

whereVo={vq}andWq={wq}.Inthecaseof汎≧2,weconsiderthefollowing c o n d i t i o n s w i t h r e s p e c t t o M ^ :

( c . O ) I f x . x ' G W n w i t h x ≠ 錘 ' , t h e n M j ^ ≠ 蝿 ? ¥ w h e r e v G K , , x a n d v ' G V ? , 霧 , . ( c . l ) F o r a n y v , U ' e 典 。 窓 , 刷 施 ) ̲ 秘 ? )

(c.2)ForanyvGVn,x,

(、 ) ) u E 鴎 ̲ , . " E D 諺 幽

whereD^^isdefinedby

Dz山=

{(‑刺

(27)

and

SJuノ)=

{;順:州‑{;聴鴛

(c.3),==1ibrany"E

I t i s e a s y t o c o n s t r u c t M ^ " ' s a t i s f y i n g t h e c o n d i t i o n s ( c . l ) , ( c . 2 ) a n d ( c . 3 ) a n d

theseconditionsimplythatBsatisfiestheassumptionsofthevertexsplitting

constructionandProperty1.5(1),(4).Nowwewillshowthatwecanconstruct i t s a t i s f y i n g a l s o t h e c o n d i t i o n ( c 、 0 ) .

S u p p o s e t h a t M ^ ^ ^ s a t i s f i e s o n l y t h e c o n d i t i o n s ( c . l ) , ( c . 2 ) a n d ( c . 3 ) . I t i s c l e a r t h a t i f i V i " ^ ≠ N i ' ' ¥ t h e n M i " > ≠" ) w h e r e Ⅷ E V ; 腿 , " a n d り E 鴎 , a ; . I n g e n e r a l , z ≠ z ' e W h d o e s n o t i m p l y j V 4 " ) ≠ n ! . ? ' ( s e e R e m a r k 4 . 1 ( 2 ) ) a n d s o w e w i l l s h o w t h a t f o r a n y x ≠ 懇 ' e W h w i t h 雌 " ) = j V 4 ? ) , w e c a n r e c o n s t r u c t 蝿 " ) a n d M ^ r ^ s a t i s f y i n g M ^ T ^ ≠ 蝿 ? ) f b m e 魚 , 露 a n d' e V h , 錘 , B y t h e c o n s t r u c t i o n o f

i V < " ¥ w e s e e t h a t

#{sewwvf)=雌)}≦Ⅱ│C.,│.(5.19)

⑩EW冗一,

A s M i " ^ a n d 必 『 ^ ' s a t i s f y t h e c o n d i t i o n ( c . 2 ) , b y C l a i m 5 . 5 ( 3 ) a n d ( 5 . 1 9 ) w e h a v e

拶{swwv:凧)=蝿")}≦ⅡP.tx.1≦Ⅱ¥DxJ.(5.20)

w E W h ‑ , u J E W h ‑ , ・

Therightpartoftheinequality(5.20)meanswhatthemaximumpossiblevalue f o r i n c i d e n c e v e c t o r s i n N ' ^ " ‑ i I s a t i s f y i n g t h e c o n d i t i o n ( c 、 2 ) i s ・ T h e r e f o r e , w e c a n

c h o o s e i n c i d e n c e v e c t o r s s a t i s f y i n g M v ≠ 蝿 n )

Theconstructionof>.Wewillcheckthatwecanconstruct>on"withthe

propertythateachEnhastheminimal/maximalvertexproperty(Property1.5 (2))andeach脇hasdistinctorderlists(Property1.5(5)).FbrzEWh,define Distfo)6Nas

o'(!

whereUEVh,霊andV;:−,=脇̲,/{U耐,ひ臓}・Distfo)meansthemaximal

possiblenumberoforderlistsof0E脇,露satisfyingProperty1.5(2).Suppose m≠垂,秘GVnwandvGK*,*.Bythecondition(c.O),ifweassignanyorderon r * ‑ ( u ) , r V v ) r e s p e c t i v e l y , L i s t ( u ) ≠ L i s t ( v ) a l w a y s h o l d s . T h e r e f o r e V n c a n h a 八 ' e

distinctorderlistsifandonlyif

Dist(x)≧脇灘

(28)

即切目胃呂の民具目︒胃昌$ず兵員こ︶

園目ご葛①箸琶普o言吾農吾のog8目口旨冒堅豊里①日︵ק蔀︶ず具〆邑8号牙切 言のoopQ旨︒目印具弓彦の︒﹃の日﹄﹄ロの津冒の︒ ×国︲←×何画切罰の目色烏合②︵二・弓彦の口 金Ⅱe1房◎も ×国︲←×回一切伊切言◎眉◎3審2巳く巴の目︒①目四℃冨冒﹃の①目︵×も︶色目・

︵気色.ロの言の昏目昌目の書画且垣opx画画切

曾Ⅱデー﹄・もI﹄・写Ⅱデー戸o︑岸秒且写Ⅱ︑OSI﹄oやⅡ︑o守再・

弓冨目寄一吻画の冒号昏冒§◎冒︒昌轟gm8o園も︵宗︶色目冒昌一一浄 三一ⅡP旨︒園の︲

葛l8

oぐの﹃︾切言oのデー﹄OSI壷︑色切目豆の言昌昌◎口︒巨序gm8opも︵弓峯さ同色星Sm弓誹 的且e︾ご応示・巳誤﹃の胃くの

弓冨葛︲吾爵己gge高︲里言︺吾の切言農︵Q十句葛︶一寸︵圏︶一八一隷妻繍言菖亙.弓冨﹃の胃① 吾閏の①×厨房巨冒菖巨のQ冨考毒壷Q+句菖八Q菖八Q+m葛I停め崖︒言計画喜

刻j一宗雪箇弓菖宜.

ロ︵言bH賃一十画︶青︶息亀十噌一課︲﹄・g−j子1く目I垣

芦︾m一室ゴー﹄

Ⅱ叩国噺弓三目一V岸

巽言の愚ごm宗間.︵重の宮︑の吾の胃言冨ご﹃富Ⅳ今︾言①口皇IいV︵也菖冒匡の.︶

弓匿の吊昏扇

豆呉臼︶V︵︒+旬ご︶|も︵周︶一県亙︲樟十四Ⅳ一宗言H一

ヶの○画旨のの︒︷︵函.﹄・︶四国且︵m・樺の︶︒

弓昏①a彦の︒天︒由命・弓︶.国望宙・岳︶︾命・民︶騨口Qo盲冒︺働函︵9︶言の琴画くの

胃騨ご筒閣且富国︒の一雪の号の︒胃三m旨の管巴辱.盟邑︒の尋︵劇︶切農恩の 吾の8且昼o目

︵o・里画冒且︵︒.ご雪巨の言︑g巴目餌函宙︶騨目旦伊の日日秒画輿署の彦智くの

︵ロ異圏︶−号夢一圏一〃︵︵融冨︶︲画︶旦綴副︶︲噛

司詞︷萄一

:急1重︲︲イ︲一寸︵H二 程心心

︵Q十町葛︶言︵日︶一

同︒葛専Ⅱ門野亭ⅡH酢︲﹄・も︲﹈写

も︑寸言︶画mも︵己︑︶○mも︵9︶

V V

ロ︵︵量率︶+暑価︶尋電十園︲

賃︑ぐ率!﹄

︵︵鼠菖︶ 四︶ヘ︒︶摸冒︾︲蝉

弓冒一目一

s小訊忍︵Q+nコ−緯︶一℃︵卿︶一

卜L︵Q己言︵間︶一

目︑辱くゴー

一宗・閣言冨亙

句︒︑回四mp蚕

II

八房

×︵Q+旬再︶I一寸︵H︶一

×︵Q+阿冨I﹄︶I一寸︵制︶一

・画﹄︶

(29)

1■■

(seeRemark4、6(2)).Sowedefiner"(。)(UEI4)as

r"(ひ)=exp

(,)

thenfortノE脇,",r"(ひ)=r"Mbecauseof(5.21).

followingconditions:ForeachnGN,

ThereforeBsatisfiesthe

("‑(m

( 2 ) B s a t i s f i e s P r o p e r t y 1 . 5 .

ApplyingTheorem3.8to5,wehave

P(沙,ノoO‑')=P(入9,9)=limlogα"=logα・

祁 一 → O C

F i n a l l y b y T h e o r e m 2 . 4 , ( Y , i p ) i s t o p o l o g i c a l l y c o n j u g a t e t o a s u b s h i f t .

References

[BH]M.BoyleandD.Handelman,EntropyVも応usOrbitEquivalenceForMinimal Homeomom航sms,PacificJ.Math、164(1994),1‑13

[ D y l ] H . D y e , O n g r o u p s o f m e a s u r ℃ p r e s e r v i n g t r a n s f o r m a t i o n s I , A m e r . J . M a t h 81(1959),119‑159

[ D y 2 ] H ・ D y e , O n g r o u p s o f m e a s u r e p r e s e r v i n g t r a n s f o r m α " os / / , A m e r . J . M a t h 85(1963),551‑576

[ G P S ] T . G i o r d a n o , I . F . P u t n a m a n d C . F . S k a u , T o p o l o g i c a l o r b i t e q u i v a l e n c e a n d C*crossed抑℃血cts,J.ReineAngew.Math.469(1995),51‑111

[HPS]R.H.Herman,I.F.PutnamandC.F.Skau,OrderedBrattelidia‑

grams,dimensiong7℃ups,andtopologicaldynamics,Internat.J.Math.3

( 1 9 9 2 ) , 8 2 78 6 4

[ J e ] R . J e w e t t , T h e p 泥 砂 α l e n c e o f u n i q u e l y e r g o d i c s y s t e m s , J ・ M a t h . M e c h . 1 9

( 1 9 6 9 / 1 9 7 0 ) , 7 1 77 2 9 .

[ K r l ] W . K r i e g e r , 0 冗 冗 o n ‑ s i n g u j a r 加 冗 s f o r m a i i o n s o / α m e a s u r e s p a c e s , I , I I , Z . Wahrsch.Th.11(1969),83‑97;98‑119.

[Kr2]W・Krieger,Onergodicflowsandisomom航smoffac加汚,Math.Ann.223

( 1 9 7 6 ) , 1 9 ‑ 7 0 .

[LM]D.LindandB.Marcus,A冗伽troductiontoSymbolicDynamicsandCoding,

CambridgeUniversityPress,1995

参照

関連したドキュメント

“Breuil-M´ezard conjecture and modularity lifting for potentially semistable deformations after

S., Oxford Advanced Learner's Dictionary of Current English, Oxford University Press, Oxford

The advection-diffusion equation approximation to the dispersion in the pipe has generated a considera- bly more ill-posed inverse problem than the corre- sponding

Keywords Catalyst, reactant, measure-valued branching, interactive branching, state-dependent branch- ing, two-dimensional process, absolute continuity, self-similarity,

Hugh Woodin pointed out to us that the Embedding Theorem can be derived from Theorem 3.4 of [FM], which in turn follows from the Embedding Theorem for higher models of determinacy

At the end of the section, we will be in the position to present the main result of this work: a representation of the inverse of T under certain conditions on the H¨older

In the operator formalism, we study how to make noncommutative instantons by using the ADHM method, and we review the relation between topological charges and noncommutativity.. In

In fact, one could quite easily establish stickiness at every scale δ ≤ σ ≤ 1 from the Minkowski dimension hypothesis, but we shall not need to do so here.. We also remark that