• 検索結果がありません。

ᩍ ᤵ㸸୕ࢶ▼ ᪉ஓ

ドキュメント内 研究業績・活動報告2017 (ページ 102-107)

ຓ ᩍ㸸ᒣᮏ ಇ௓, Huie Zhu, Ali Demirci

኱ Ꮫ 㝔 ⏕㸸Yida Liu, Md. Mahbubul Bashar, SoYeon Kim, YongJoon Im, ኱ཎ ᾈ᫂, ụඖ ᬛᣠ, ▼㷂 ⿱ஓ, ᶫᮏ ⯙, ௜ ᬸ, ᖹᔱ ዋ୍㑻, ⱝ஭ ຬ㥽

Ꮫ 㒊 Ꮫ ⏕㸸Younghyun Choi, Ώ㑓 ᬡᩯ,Tillman Jan Buchtal

◊ ✲ ⏕ : Manmian Chen, Weijie Ma

ᮏ◊✲ศ㔝࡛ࡣࠊ㧗ศᏊ࣭⏕యศᏊ࣭ࢼࣀ⢏Ꮚ࣭ࢼࣀ⤖ᬗ࡞࡝ࡢከᵝ࡞ࢼࣀ≀㉁ࢆᶵ⬟ศᢸ࡟ᚑ࠸⮬

ᅾ㞟✚࣭⤌⧊໬㸦࢔ࢭࣥࣈࣝᆺࡲࡓࡣ࣎ࢺ࣒࢔ࢵࣉᆺ㸧ࡋࠊࣁ࢖ࣈࣜࢵࢻ⼥ྜࡋࡓ᪂つ࡞㧗ศᏊࣁ࢖ࣈ

ࣜࢵࢻࢼࣀᮦᩱࡢ㛤Ⓨࢆ┠ᣦࡋ࡚࠸ࡿࠋ࠾ࡶ࡟ࣛࣥࢢ࣑ࣗ࢔࣮ࣈࣟࢪ࢙ࢵࢺ(LB)ἲ࡟ࡼࡾస〇ࡉࢀࡿ

㧗ศᏊࢼࣀࢩ࣮ࢺࢆᇶ┙≀㉁࡜ࡋ࡚⏝࠸ࠊ✀ࠎࡢࢼࣀ≀㉁ࢆ㝵ᒙⓗ࡟⤌⧊໬ࡋ࡚ࢹࣂ࢖ࢫ໬ࡍࡿࢼࣀ

㡿ᇦ࡟࠾ࡅࡿᇶ┙ᢏ⾡ࠊ࠾ࡼࡧࠕ࣎ࢺ࣒࢔ࢵࣉᆺࢼࣀࢸࢡࣀࣟࢪ࣮ࠖࡢⓎᒎࢆ┠ᣦࡋࡓ᪂⣲ᮦࡢ◊✲㛤

Ⓨࢆ⾜ࡗ࡚࠸ࡿࠋ

2017

ᖺࡢ◊✲άື࡜ࡋ࡚ࡣࠊ௨ୗࡢࡼ࠺࡟ᴫᣓࡉࢀࡿࠋ

1.

㧗ศᏊⷧ⭷ࢆࢸࣥࣉ࣮ࣞࢺ࡜ࡋࡓ㔠ᒓ᭷ᶵᵓ㐀యࡢࣁ࢖ࣈࣜࢵࢻࢼࣀ✚ᒙ

᭷ᶵ↓ᶵࣁ࢖ࣈࣜࢵࢻᮦᩱస〇࡟࠾࠸࡚ࠊ᭷ᶵᮦᩱ࡜↓ᶵᮦᩱ⏺㠃࡛ࡢ྾╔ࢆࢼࣀ࣓࣮ࢺࣝࢫࢣ࣮

࡛ࣝไᚚࡍࡿࡇ࡜ࡀ㔜せ࡜࡞ࡿࠋ

PMMA

PVA

Nylon6

ࡢ㧗ศᏊⷧ⭷ୖ࡬

HKUST-1

ࢆ✚ᒙࡋࠊ㧗ศᏊ

ⷧ⭷⾲㠃࡛ࡢ⤖ᬗᡂ㛗㠃ࡸ⃰ᗘ࡟ࡼࡿᡂ㛗ᣲືࡢኚ໬ࢆホ౯ࡋࡓࠋ஺஫྾╔⿦⨨ࢆ౑⏝ࡋࠊ

Cu(OAc)2

⁐ᾮࠊ࢚ࢱࣀ࣮ࣝࠊbenzenetricarboxylate(btc)⁐ᾮࠊ࢚ࢱࣀ࣮ࣝࡢ㡰࡟⾜࠺ᇶᯈᾐₕࢆ1ࢧ࢖ࢡࣝ࡜ࡋࠊ

ྛ㧗ศᏊⷧ⭷ୖ࡬

HKUST-

㸯ࢆ✚ᒙࡋࡓࠋ

IR

ࡢ⤖ᯝ࠿ࡽࡣ

HKUST-1

ࡢ྾╔㔞ࡣ

PVA

࡛᭱ࡶከࡃࠊ

Nylon6

PMMA

ࡢ㡰࡛ኚ໬ࡋࡓࠋᡂ㛗ࡋࡓ

HKUST-1

ࡢ⭷ཌኚ໬ࡣ࡝ࡢ㧗ศᏊ࡛ࡶ኱ࡁ࡞ኚ໬ࡣ࡞࠿ࡗࡓࡓࡵࠊ

⭷ෆ㒊ࡢᐦᗘࡀኚ໬ࡋ࡚࠸ࡿ࡜⪃࠼ࡽࢀࡿࠋ⃰ᗘࢆኚ໬ࡉࡏ࡚✚ᒙࡋࡓሙྜࠊ㧗ศᏊ࡟ࡼࡗ࡚ᡂ㛗ᣲ

ື࡟ኚ໬ࡀぢࡽࢀࡓࠋPVA࡜PMMAୖ࡛ࡣᡂ㛗ࡋࡓ⤖ᬗࡢ኱ࡁࡉࡣ࠶ࡲࡾኚ໬ࡋ࡞࠿ࡗࡓࡶࡢࡢࠊ

Nylon6ୖ࡟ᡂ㛗ࡉࡏࡓሙྜࠊ௚ࡢ㧗ศᏊୖ࡟ᡂ㛗ࡉࡏࡓሙྜ࡟ẚ࡭⤖ᬗࡀᑠࡉࡃࠊ኱ࡁࡉࡢࡤࡽࡘࡁ

ࡶᑠࡉ࠸ࡇ࡜ࡀ☜ㄆ࡛ࡁࡓࠋ

2. Spontaneous formation of poly(vinylidene fluoride) nanoparticles with dominant electroactive phase

Poly(vinylidene fluoride)(PVDF) has obtained a widespread of advanced applications including infrared detectors, piezoelectric sensors, non-volatile memories, and energy-harvesting devices owing to its excellent electroactive properties. These properties derived from its polar phase, especially ȕ-phase, among at least five phases. Therefore, it’s of great importance to prepare PVDF nanomaterials with high content of electroactive phase.

In this study, DMF was chosen as good solvent and water as poor solvent, PVDF was dissolved in DMF and PVDF-DMF solution was mixed with water. According to SEM images, PVDF nanoparticles were prepared successfully by facile solution method. Moreover, the polymorphs were confirmed by FT-IR measurements and the fraction of electroactive phase was up to ~99.6%, and the results were further confirmed by XRD measurements.

研 究 活 動 報 告 100

◊ ✲ ά ື ሗ ࿌

3.

ࢩࣝࢭࢫ࢟࢜࢟ࢧࣥྵ᭷ࣈࣟࢵࢡඹ㔜ྜయ/%⭷ࢆ฼⏝ࡋࡓከᏍᛶ6L2

㉸ⷧ⭷ࡢస〇

ࡇ ࢀ ࡲ ࡛ ࡟ ࠊ ⚾ ࡓ ࡕ ࡣ ഃ 㙐 ࡟ ࠿ ࡈ ᆺ ࢩ ࣝ ࢭ ࢫ ࢟ ࢜ ࢟ ࢧ ࣥ(SQ)ࢆ ᭷ ࡍ ࡿ ࣈ ࣟ ࢵ ࢡ ඹ 㔜 ྜ య (p(DDA/SQ26)-b-pDDA)ࡀỈ㠃ୖ࡛Ᏻᐃ࡞༢ศᏊ⭷ࢆᙧᡂࡍࡿ࡜ඹ࡟ࠊLangmuir–Blodgett (LB)ἲࢆ⏝

࠸ࡿࡇ࡜࡛ᅛయᇶᯈୖ࡟༢ศᏊ⭷ࢆ⢭ᐦ㞟✚(2.3 nm layer–1)࡛ࡁࡿࡇ࡜ࢆሗ࿌ࡋࡓࠋᮏ◊✲࡛ࡣ

p(DDA/SQ26)-b-pDDA LB⭷ࡢග㓟໬཯ᛂ࡟ࡼࡗ࡚ࣈࣟࢵࢡඹ㔜ྜయࡢᙧᡂࡍࡿ┦ศ㞳ᵓ㐀ࢆࢸࣥࣉ

࣮ࣞࢺ࡜ࡋࡓSiO2㉸ⷧ⭷ࡢస〇ࢆ᳨ウࡋࡓࠋUV–ozoneࢡ࣮ࣜࢼ࣮ࢆ⏝࠸࡚p(DDA/SQ26)-b-pDDA LB

⭷ࡢග㓟໬཯ᛂࢆ⾜ࡗࡓࠋFT-IR࠾ࡼࡧXPS ᐃࡢ⤖ᯝ࠿ࡽࠊග㓟໬࡟ࡼࡗ࡚SiO2ࢿࢵࢺ࣮࣡ࢡᵓ㐀 ࡢᙧᡂࢆ☜ㄆࡋࡓࠋࡉࡽ࡟AFMࢆ⏝࠸࡚⾲㠃ᵓ㐀ほᐹࢆ⾜ࡗࡓ⤖ᯝࠊp(DDA/SQ26)-b-pDDA࠿ࡽᚓࡽ

ࢀࡓSiO2㉸ⷧ⭷ࡣࠊྠᵝࡢSQᑟධ⋡ࢆ᭷ࡍࡿࣛࣥࢲ࣒ඹ㔜ྜయ(p(DDA/SQ14)) LB⭷࠿ࡽᚓࡽࢀࡓ SiO2㉸ⷧ⭷ࡼࡾࡶ⢒࠸⾲㠃ᙧ≧ࢆ♧ࡍࡇ࡜ࡀศ࠿ࡗࡓࠋࡲࡓࠊQCM ᐃ࡟ࡼࡾ⭷ᐦᗘࢆぢ✚ࡶࡗࡓ

࡜ࡇࢁࠊp(DDA/SQ14)࠿ࡽᚓࡽࢀࡓSiO2㉸ⷧ⭷࡛ࡣ2.45 g cm–3ࠊp(DDA/SQ26)-b-pDDA࠿ࡽᚓࡽࢀࡓ SiO2㉸ⷧ⭷࡛ࡣ1.48 g cm–3࡛࠶ࡗࡓࡇ࡜࠿ࡽࠊp(DDA/SQ26)-b-pDDA࠿ࡽᚓࡽࢀࡓSiO2㉸ⷧ⭷ࡣపᐦ ᗘ࡛࠶ࡾࠊ⭷ෆ࡟✵Ꮝࢆ᭷ࡍࡿࡇ࡜ࡀ♧၀ࡉࢀࡓࠋCV ᐃ࡟ࡼࡗ࡚SiO2㉸ⷧ⭷୰ࡢᵓ㐀ࢆㄪᰝࡋࡓ

⤖ᯝࠊp(DDA/SQ14)࠿ࡽᚓࡽࢀࡓSiO2㉸ⷧ⭷ࡣᆒ㉁࡞SiO2㉸ⷧ⭷࡛࠶ࡾࠊp(DDA/SQ26)-b-pDDA࠿ࡽ

ᚓࡽࢀࡓSiO2㉸ⷧ⭷ࡣ࢖࢜ࣥ㏱㐣ᛶࢆ᭷ࡍࡿከᏍᛶSiO2㉸ⷧ⭷࡛࠶ࡿࡇ࡜ࡀศ࠿ࡗࡓࠋ௨ୖࡢ⤖ᯝ࠿

ࡽࢩࣝࢭࢫ࢟࢜࢟ࢧࣥྵ᭷ࣈࣟࢵࢡඹ㔜ྜయLB⭷ࡢග㓟໬࡟ࡼࡗ࡚ከᏍᛶࢆ᭷ࡍࡿSiO2㉸ⷧ⭷ࡢస

〇࡟ᡂຌࡋࡓࠋ

4.

ࣅࢳ࢜ࣇ࢙ࣥࢆྵࡴ୧ぶ፹ᛶ㧗ศᏊࡢ㧗ᐦᗘ஧ḟඖ㞟✚࡟㛵ࡍࡿ◊✲

᭷ᶵ༙ᑟయࡢᛂ⏝ࡢほⅬ࠿ࡽࠊ

ʌ

ඹᙺ⣔ᶵ⬟ᅋࢆపḟඖ࠿ࡘ㧗ᐦᗘ࡟㓄ิࡉࡏࡓᮦᩱࢆస〇ࡍࡿࡓ

ࡵࠊ

Langmuir-Blodgett(LB)

ἲࢆ⏝࠸࡚ࣅࢳ࢜ࣇ࢙ࣥࢆഃ㙐࡟᭷ࡍࡿ୧ぶ፹ᛶ㧗ศᏊ

p(mHBT)

ࢆྜᡂࡋ

ࡓࠋ

p(mHBT)

ࡣ㧗࠸〇⭷ᛶࢆ♧ࡍࡇ࡜ࡀ▱ࡽࢀࡿ

pDDA

࡜ඹᒎ㛤ࡍࡿࡇ࡜࡛ࠊ

80mol%

࡜࠸࠺㧗࠸ࣔࣝ

ศ⋡࡛Ᏻᐃ࡞༢ศᏊ⭷ࢆᙧᡂࡋࠊࡉࡽ࡟ᇶᯈୖ࡬ࡢつ๎ⓗ࡞⣼✚ࡀྍ⬟࡛࠶ࡗࡓࠋ

X⥺཯ᑕ⋡ ᐃࡢ

⤖ᯝࠊᇶᯈୖ࡟᫂☜࡞ᒙᵓ㐀ࢆಖᣢࡋ࡞ࡀࡽ⣼✚ࡉࢀ࡚࠸ࡿࡇ࡜ࡀ♧ࡉࢀࡓࠋࡲࡓࠊGIXD ᐃࡢ⤖

ᯝࠊ

p(mHBT)

LB

⭷ࡣ㠃እ᪉ྥ࡟ࡣᒙᵓ㐀ࡢ⛛ᗎᛶࢆ᭷ࡍࡿࡶࡢࡢࠊ㠃ෆ᪉ྥ࡟ࡣ⛛ᗎᛶࢆࡶࡓࡎࠊ

ࣛࣥࢲ࣒࡞㓄ྥࢆྲྀࡗ࡚࠸ࡿࡇ࡜ࡀ᫂ࡽ࠿࡜࡞ࡗࡓࠋࡉࡽ࡟ࠊ㉥እ೫ගከゅධᑕศゎศග ᐃࡢ⤖ᯝ

࠿ࡽࠊഃ㙐ࡢศᏊ㓄ྥࢆぢ✚ࡶࡗࡓ࡜ࡇࢁࠊഃ㙐ࡢࣅࢳ࢜ࣇ࢙ࣥࡣᇶᯈἲ⥺᪉ྥ࠿ࡽ⣙30°ഴ࠸࡚㓄

ྥࡋ࡚࠸ࡿࡇ࡜ࡀ᫂ࡽ࠿࡜࡞ࡗࡓࠋ

5. A mussel-inspired cyclosiloxane supramolecule with long-term air-stability and robust adhesion A four-armed cyclosiloxane supramolecule (TMCS-tetra-Dopa) was successfully synthesized with a low-surface-energy tetramethylcyclotetrasiloxane (TMCS) core surrounded by four peripheral catechol groups and four carboxylic groups. DSC measurement proved that the product has a glass transition temperature (Tg) about 12.3oC, TMCS-tetra-Dopa is soluble in most polar organic solvents like Ethanol, THF, DMSO, and Acetone, which affords a lot of possibilities for it to be applied at various occasions. During the storage in air, the as-synthesized powder-form TMCS-tetra-Dopa adsorbed a small amount of water (saturating at 5 %) and gradually changed into viscous liquid. Irrespective of the matter state change, TMCS-tetra-Dopa molecules show remarkably long-term anti-oxidation durability up to 4 mons storage at ambient environment, suggesting the hydrophobicity from TMCS core

101 ◊ ✲研 究 活 動 報 告ά ື ሗ ࿌ was sufficient to prevent the oxidation and degradation of catechol groups. More interestingly, robust adhesion of the water-adsorbed sample was confirmed for a wide range of substrates including plastic (PP, PS, PMMA), Silicone elastomer, metal (Al). The samples were reversibly debonded through overloading and rebounded by water curing for many cycles.

6. Isolation of functional cellulose nanoparticles from jute fiber

The functional cellulose nanofiber (CNF) was synthesized from eco-friednly feed stock jute fiber by ammonium persulfate oxidation method. CNF with free carboxylic groups was isolated by APS oxidation without pretreatment.

The as-prepared carboxylated CNF exhibited higher amount of carboxylic group, which imparted the higher negative surface potential. As a practical evidence of carboxylation, modified CNF absorbed cationic methylene blue (MB) dye, removing completely from the 6.8 ppm dye solution, suggesting a very high potential application of CNF in environment cleaning. Moreover, highly pure cellulose nanocrystals (CNC) was also obtained by APS oxidation by combining a facile mechanical treatment. CNCs obtained by this method have an average diameter of 5.2 nm and length less than 500 nm. CNCs were also decorated with higher amount of carboxylic groups, yielding high surface potential. Due to smaller particle size and surface negative potentials CNCs were well dispersible in series of solvents including water, DMF, ethanol, DMSO, THF and toluene.

7.

ࣇ࢙ࣟࢭࣥᑟධ࣏࢚ࣜࢳࣞࣥ࢖࣑ࣥࢆ⏝࠸ࡓ஺஫✚ᒙ⭷ࡢస〇

ࢩࢼࣉࢫ⣲Ꮚ࡬ࡢᛂ⏝ࢆ┠ⓗ࡜ࡋ࡚ࠊ࣏࢚ࣜࢳࣞࣥ࢖࣑ࣥ(PEI)࡜࣏ࣜࢫࢳࣞࣥࢫࣝ࣍ࣥ㓟(PSS)ࡢ஺

஫✚ᒙ⭷ࡢస〇࡜ࣇ࢙ࣟࢭࣥಟ㣭PEI(Fc–PEI)ࡢྜᡂࢆヨࡳࡓࠋPEI⁐ᾮ࡟15 minࡲࡓࡣ5 minࠊὙίࡢࡓ

ࡵ⣧Ỉ࡟2 minࠊPSS⁐ᾮ࡟15 minࡲࡓࡣ5 minࠊࡲࡓὙίࡢࡓࡵ⣧Ỉ࡟2 minࡢ㡰࡟▼ⱥᇶᯈࢆᾐₕࡍࡿ

ᕤ⛬ࢆ1ࢧ࢖ࢡࣝ࡜ࡋࠊ3 ࢧ࢖ࢡࣝࡈ࡜࡟⣸እྍどศගࢆ ᐃࡋࡓࠋᾐₕ᫬㛫15 min࡛ࡣ227 nmࡢ྾཰

ࡀ⥺ᙧⓗ࡟ቑຍࡏࡎࠊ5 min࡛ࡣ⥺ᙧⓗ࡟ቑຍࡋࡓࡇ࡜࠿ࡽࠊᾐₕ᫬㛫ࡀ⭷ࡢᡂ㛗࡟ᙳ㡪ࢆ୚࠼࡚࠸ࡿ

࡜⪃࠼ࡽࢀࡿࠋFc–PEIࡣPEI࡜ࣇ࢙ࣟࢭࣥ࢝ࣝ࣎ࣥ㓟N–ࢫࢡࢩࣥ࢖࣑ࢪࣝ(FcCA–NHS)ࢆΰྜࡍࡿࡇ࡜

࡛ྜᡂࡋࡓࠋpHㄪ〇࡟ࡣNa2CO3ࡲࡓࡣHClࢆ⏝࠸ࡓࠋΰྜ᮲௳ࢆኚ࠼࡚Fc–PEIࢆྜᡂࡋࠊICP-AESࢆ  ᐃࡋࡓ⤖ᯝࠊࣇ࢙ࣟࢭࣥࡢᑟධ⋡ࡣヨ⸆ࡢΰྜ㡰ᗎ࡜཯ᛂ᫬ࡢpH࡟౫Ꮡࡍࡿࡇ࡜ࡀࢃ࠿ࡾࠊࡇࡢࡇ࡜

࠿ࡽ཯ᛂࡣFcCA–NHSࡢຍỈศゎ࡜➇ྜࡋ࡚࠸ࡿ࡜⪃࠼ࡽࢀࡿࠋ

8. Self-healing Polycyclosiloxanes Based on Siloxane Equilibration

Polycyclosiloxanes have prominent utility and prospect in the field of self-healing because of a polymer consisting cyclosiloxane that is able to form its dynamic network polymer system with ionically active chain ends through ring opening of cyclosiloxane with either acid or base catalysis. This network polymers bearing ionically active chain ends, i.e., silanolate, are exhibit an intrinsic system with dynamic nature that is lead to restore its integrity at the molecular level through inherent reversibility/reformation of the cleaved siloxane bonds and rearrangement of the networks as well as new anionic chain ends. Such intrinsic feature has potential to either heal and repair the formed cracks, deformations, fractures, scratches of materials that feature extend the lifespan and functions of material for a wide range of coatings and film applications. Here, functional polycyclosiloxane (PCs) were prepared using the previously developed one-step facile technique:2 the hydrosilylation reaction of

multi-研 究 活 動 報 告 102

◊ ✲ ά ື ሗ ࿌

vinyl functional tetramethylcyclosiloxane monomer/block with di-hydrosilane functional dimethyl siloxane comonomers under controlled synthetic conditions. Ultra-soft and compressible PC elastomers (PCEs) were obtained by base-catalyzed anionic ring opening polymerization that involved persistently active anionic chain ends/species at dynamic siloxane equilibration into polymer network, which entails self-healing feature due to the steady dynamic network-junction restructuring using appreciably siloxane equilibration reactions.

9.

ࢳ࢜ࣇ࢙ࣥࢆഃ㙐ᮎ➃࡟᭷ࡍࡿ୧ぶ፹ᛶ㧗ศᏊࡢ༢ศᏊ⭷స〇

ࢳ࢜ࣇ࢙ࣥࣔࣀ࣐࣮ࢆᣢࡘ㧗ศᏊࢼࣀࢩ࣮ࢺࢆLangmuir-Blodgett(LB)ἲ࡟ࡼࡗ࡚ᇶᯈୖ࡟స〇ࡋࠊ 㟁Ẽ㔜ྜࡍࡿࡇ࡜࡛㟁Ꮚ㍺㏦ᛶ஧ḟඖʌඹᙺ㧗ศᏊࢆస〇ࡍࡿࡇ࡜ࢆ┠ⓗ࡜ࡋ࡚ࠊ௒ᅇࡣഃ㙐࡟ࢳ࢜

ࣇ ࢙ ࣥ ࣔ ࣀ ࣐ ࣮ ࢆ ᑟ ධ ࡋ ࡓp(HTEA)ࡢ Ỉ 㠃 ୖ ࡢ ༢ ศ Ꮚ ⭷ ࡢ ᣲ ື ࢆ ᳨ ウ ࡋ ࡓ ࠋp(HTEA)࡜

p(HTEA)/pDDAΰྜ⁐ᾮࡢ⾲㠃ᅽʌ-㠃✚(A)➼ ⥺ࢆ ᐃࡋࡓ⤖ᯝࠊỈ㠃ୖ࡟p(HTEA)ࡀᏑᅾࡋ࡚࠸

ࡿࡇ࡜ࡀศ࠿ࡗࡓࠋp(HTEA)ࡢᴟ㝈༨᭷㠃✚ࡣ0.37 nm2࡜࡞ࡗࡓࠋp(HTEA)/pDDAΰྜ⁐ᾮࡢʌ-㠃✚

(A)➼ ⥺࠿ࡽࠊ࠾஫࠸ࡢᙳ㡪ࡣᑠࡉࡃ⊂❧ࡋࡓഴྥࢆぢࡏࡓࠋࡉࡽ࡟ࠊBrewsterゅ㢧ᚤ㙾(BAM)࡟ࡼ

ࡿỈ㠃ୖࡢp(HTEA)༢ศᏊ⭷ࡢほᐹࢆ⾜ࡗࡓ⤖ᯝࠊᅽ⦰๓ࡣpDDAࡢࡼ࠺࡞㠀⤖ᬗࡢ༢ศᏊ⭷࡜ࡋ࡚

Ꮡᅾࡍࡿࡇ࡜ࡀほᐹ࡛ࡁࠊ㠃✚࡟ᑐࡍࡿ⾲㠃ᅽࡢኚ໬ࡀᑠࡉࡃ࡞ࡿ࡜ࡇࢁ࠿ࡽ⤖ᬗ໬ࡀ㐍⾜ࡍࡿᵝ Ꮚࡀほᐹ࡛ࡁࡓࠋp(HTEA)/pDDAΰྜ⁐ᾮࡢBAM⏬ീ࠿ࡽࡣ┦ศ㞳ࡋ࡚࠸ࡿࡇ࡜ࡀ☜ㄆ࡛ࡁࡓࠋ

10.

༢ศᏊ⭷ᙧᡂྍ⬟࡞ࢼࣇࢱࣞࣥࢪ࢖࣑ࢻࢆྵࡴ୧ぶ፹ᛶ㧗ศᏊࡢྜᡂ࡜༢ศᏊ⭷ᣲື᳨ウ

NTCDA࡜ࢹࣥࢻ࣐࣮ࣜ࡜ࢻࢹࢩࣝ࢔࣑ࣥࡢ཯ᛂ࡟ࡼࡾ୧ぶ፹ᛶศᏊ࡛࠶ࡿPAMAM-NDI12ࢆྜᡂࡋ ࡓࠋࡉࡽ࡟ྜᡂࡋࡓPAMAM-NDI12,NDI8-C4-Boc,NDI8-TFA,NDI8ࢆ⏝࠸࡚⾲㠃ᅽ(ʌ)-㠃✚(A)➼ ⥺ࢆ

 ᐃࡋࡓࠋʌ-A➼ ⥺ࡢ ᐃ⤖ᯝࡼࡾᴟ㝈༨᭷㠃✚ࢆồࡵࡓ࡜ࡇࢁࠊNDI8࡛ࡣ࢔ࣝ࢟ࣝ㙐ࡢ␯Ỉᛶ࡟ࡼ

ࡾจ㞟ࡋࡓࠋNDI8-TFA࡛ࡣぶỈᛶࡀ኱ࡁࡍࡂࡿࡓࡵỈ୰࡟ỿࢇࡔࠋNDI8-C4-BocࠊPAMAM-NDI12࡛ࡣ ༢ศᏊ⭷ࡢᙧᡂࡀ♧၀ࡉࢀࡓࡀࠊNDI8-C4-Boc࡛ࡣᔂቯᅽࡀᑠࡉࡃࠊ୙Ᏻᐃ࡛࠶ࡗࡓࠋPAMAM-NDI12 ࡀ᭱ࡶᏳᐃࡋࡓᣲືࢆ♧ࡋࡓࡇ࡜࠿ࡽࠊぶỈᇶ࡜ࡋ࡚࢔࣑ࣥࢆ⏝࠸ࡓ࡜ࡁぶỈ࣭␯Ỉࡢࣂࣛࣥࢫࡀ᭱

ࡶⰋ࠸࡜♧၀ࡉࢀࡓࠋ

11.

࣎ࣟࣥ㓟ࢆ⏝࠸ࡓ⎔≧ࢩࣟ࢟ࢧ࣏࣐࣮ࣥࣜࡢྜᡂ

1,3,5,7-Tetramethylcyclotetrasiloxane(TMCS)࡜1,3-divinyltetramethyldisioloxane(DTMS)ࢆྜᡂ࡟ࡼࡾࠊᐊ  ࡛ᾮయ≧ࡢ⎔≧ࢩࣟ࢟ࢧ࣏࣐࣮ࣥࣜ㸦pCS㸧ࢆྜᡂࡋࡓࠋpCS୰࡟ࡣṧࡗ࡚࠸ࡿᮍ཯ᛂ㒊఩࡟ࠊືⓗ

࡞ඹ᭷⤖ྜࢆᙧᡂࡍࡿ≉ᛶࢆࡶࡘࡓࡵᖜᗈࡃ◊✲ࡉࢀ࡚࠸ࡿ࣎ࣟࣥ㓟ࢆᑟධࡋࡓ㸦཰⋡ࡣ90%௨ୖ㸧ࠋ

ࡲࡎࠊᑟධ⋡ࡢయ⣔ⓗ࡞◊✲ࡢࡓࡵࠊ࣎ࣟࣥ㓟㸦ABPE㸧ࡢ๭ྜࢆኚ໬ࡋ࡞ࡀࡽ㔜ྜࢆ⾜ࡗࡓࠋᑟධ⋡

ࡀ⥺ᙧⓗ࡟ቑຍࡋࠊṧࡗ࡚࠸ࡿᮍ཯ᛂ㒊఩࡟࣎ࣟࣥ㓟ࡀ100%ࡲ࡛ᑟධᡂຌࡋࡓࠋࡲࡓࠊ㠀ಖㆤࡢ࣎ࣟ

ࣥ㓟ࢆᚓࡽࢀࡿࡓࡵࠊຍỈศゎࢆ⾜ࡗࡓࠋຍỈศゎࡣTHF㸦Tetrahydrofuran㸧࡜2Mࡢሷ㓟ࢆ5㸸1㸦v/v㸧 ࡢ๭ྜࡢ⁐ᾮ୰࡟pCS-ABPE࡜㐣๫ࡢ࣎ࣟࣥ㓟ࢆධࢀࠊᐊ ࡛18᫬㛫཯ᛂࡉࡏࡓ⤖ᯝࠊ41.4%ࡢຍỈศ ゎ㸦pCS-AB㸧ࡀ࡛ࡁࡓࡇ࡜ࢆ☜ㄆࡋࡓࠋ⥆࠸࡚FT-IRศᯒ࠿ࡽࡶ3300~3600cm-1ࡢ⠊ᅖ࡛ᗈ࠸ࣆ࣮ࢡࡀ ぢࡽࢀࠊຍỈศゎࡀ࡛ࡁࡓࡇ࡜ࢆ᫂ࡽ࠿࡟ࡋࡓࠋpCS-AB࡜pCS-ABPEࡢ⇕Ᏻᐃᛶࢆ☜ㄆࡍࡿࡓࡵࠊTGA ศᯒࢆ⾜ࡗࡓ⤖ᯝࠊpCS-ABࡀTd5 ႏࠊpCS-ABPEࡢTd5 ႏ࡟᫂ࡽ࠿࡟ࡋࡓ࠿ࡘࠊṧవ≀ࡶpCS-AB ࡣ13%ࠊpCS-ABࡢሙྜࡣ31%࡛࠶ࡾࠊpCS-ABࡢ⇕Ᏻᐃᛶࡀ㧗ࡵࡿࡇ࡜ࢆ☜ㄆ࡛ࡁࡓࠋ

103 ◊ ✲研 究 活 動 報 告ά ື ሗ ࿌ 12. Fluorescence properties of pyrene containing amphiphilic fluorinated polymer nanoparticle films

Polymerization of p(C7F15MAA) and copolymerization of p(C7F15MAA/PyMMA0.4) were conducted via free radical polymerization with AIBN initiator in a THF/AK-225 (hydrochlorofluorocarbon) solvent mixture. The films were prepared by dropcasting a mixed solution of p(C7F15MAA) or p(C7F15MAA)/p(C7F15MAA/PyMMA1) or p(C7F15MAA/PyMMA0.4) with AK-225 and acetic acid (AA) onto hydrophobic silicon substrates (solvent ratio 4:1 ~ 1:4). Characteristics of fluorinated films water contact angles were measured using contact angle machine.

The films nanoparticle conformation was investigated by SEM. The fluorescent properties of p(C7F15MAA/PyMMA0.4) was investigated in solution and in films. The fluorescence spectra of p(C7F15MAA/PyMMA0.4) and p(C7F15MAA)/ p(C7F15MAA/PyMMA1) were measured before and after argon gas bubbling in AK-225 and AA with different ratios of 1:0, 1:0.5, 1:1, 1:1.5, 1:2, 1:3, and 1:4 were measured.

The fluorescence spectra of p(C7F15MAA/PyMMA0.4) excimer emission was suppressed than p(C7F15MAA/PyMMA1).

13.

ࢳ࣮࢜ࣝࢆ㓄఩Ꮚ࡜ࡋࡓ㔠ࢼࣀࢡࣛࢫࢱ࣮ࡢస〇࡜Ⓨග≉ᛶホ౯

Į-࣏ࣜ㓟ࢆ㓄఩Ꮚ࡜ࡋࡓ㔠ࢼࣀࢡࣛࢫࢱ࣮(AuNC)ࢆస〇ࡋࠊࡑࡢホ౯ࢆ⾜ࡗࡓࠋሷ໬㔠㓟Ỉ⁐ᾮ࡜

Į-࣏ࣜ㓟Ỉ⁐ᾮࢆΰྜࡋࠊᙉຊ࡞㑏ඖ๣࡛࠶ࡿ NaBH4

ࢆຍ࠼࡚⃭ࡋࡃᨩᢾࡋࡓࠋᚓࡽࢀࡓ⁐ᾮࡣ㐲ᚰ 㝈እࢁ㐣ࢆ⧞ࡾ㏉ࡋ⾜࠺ࡇ࡜࡛⢭〇ࡋࠊ

TEM

ࠊ㉁㔞ศᯒࠊ⺯ගࢫ࣌ࢡࢺࣝ࡟ࡼࡾస〇ࡋࡓヨᩱࡢホ౯

ࢆ⾜ࡗࡓࠋヨᩱࡢ྾཰ࢫ࣌ࢡࢺࣝࡀࣉࣛࢬࣔࣥ྾཰ࢆ♧ࡉ࡞࠿ࡗࡓࡇ࡜࠿ࡽࠊࡼࡾ኱ࡁ࡞ࢼࣀ⢏Ꮚࡢ

⏕ᡂࡀ↓࠿ࡗࡓࡇ࡜ࢆ☜ㄆࡋࡓࠋࡲࡓヨᩱࡢ

TEM

ീࡼࡾ⢏Ꮚࡢᖹᆒ⢏ᚄࢆồࡵࡿ࡜┤ᚄ

2.4 nm

࡛࠶

ࡗࡓࡇ࡜࠿ࡽࠊAuNC ࡀᚓࡽࢀࡓࡇ࡜ࢆ☜ㄆࡋࡓࠋ⺯ගࢫ࣌ࢡࢺࣝ ᐃࡼࡾࠊస〇ࡋࡓ

AuNC

ࡣἼ㛗

720 nm

810 nm

ࢆࣆ࣮ࢡ࡜ࡋ࡚㉥㹼㏆㉥እ㡿ᇦ࡛ࣈ࣮ࣟࢻ࡞Ⓨගࢆ♧ࡍࡇ࡜ࡀ᫂ࡽ࠿࡟࡞ࡗࡓࠋࡲ

ࡓࠊస〇᫬ࡢ

pH

᮲௳࡟ࡼࡾⓎගᙉᗘ࡟㐪࠸ࡀぢࡽࢀࡓࡇ࡜࠿ࡽࠊ⢏Ꮚࡢ⏕ᡂ᮲௳࡟

pH

ࡀ኱ࡁࡃᙳ㡪

ࢆཷࡅࡿࡇ࡜ࡀศ࠿ࡗࡓࠋᚓࡽࢀࡓ

AuNC

࡟ᑐࡋ࢔ࢡࣜࣝ࢔࣑ࢻࢤࣝࡸ࢔࣮࢞ࣟࢫࢤࣝ࡟ࡼࡿ㟁ẼὋ

ືࢆ⾜ࡗࡓ࡜ࡇࢁࠊస〇᫬ࡢ

pH

࡟ࡼࡗ࡚Ὃື㊥㞳࡟㐪࠸ࡀぢࡽࢀࡓࠋࡇࡢࡇ࡜࠿ࡽࠊ⢏ᚄศᕸࡢ㐪࠸

ࢆ⡆౽࡟☜ㄆࡍࡿࡇ࡜ࡀ࡛ࡁࡓࠋ

14.

ș㸫ࢪࢣࢺࣥྵ᭷㧗ศᏊⷧ⭷ୖ࡬ࡢ㔠ᒓᵓ㐀యᡂ㛗

᭷ᶵ࣭↓ᶵࣁ࢖ࣈࣜࢵࢻᮦᩱࡣࠊ↓ᶵᮦᩱࡢᶵ⬟ᛶ࡜᭷ᶵᮦᩱࡢᰂ㌾ᛶࢆ࠶ࢃࡏࡶࡘḟୡ௦ࡢᮦᩱ

࡜ࡋ࡚ὀ┠ࡉࢀ࡚࠾ࡾࠊሬᕸᆺኴ㝧㟁ụࡸࣇࣞ࢟ࢩࣈࣝࢹ࢕ࢫࣉࣞ࢖࡞࡝࡬ࡢᛂ⏝◊✲ࡀࡍࡍࡵࡽࢀ

࡚࠸ࡿࠋᮏ◊✲࡛ࡣࠊ

ȕ

㸫ࢪࢣࢺࣥ࡬ࡢ㔠ᒓ࢖࢜ࣥ㓄఩ࢆ฼⏝ࡋ࡚ࠊỈ⁐ᾮ୰࡛㧗ศᏊⷧ⭷࡬ࡢ㔠ᒓᵓ 㐀యᡂ㛗ࢆヨࡳࡓࠋࣇ࣮ࣜࣛࢪ࢝ࣝ㔜ྜ࡟ࡼࡾ㔜ྜࡋࡓp(BMA/EMAacac)ࢆࢩࣜࢥࣥᇶᯈ࡟ࢫࣆࣥࢥ࣮

ࢺࡋࠊ➼ࣔࣝࡢ◪㓟ள㖄࡜࣊࢟ࢧ࣓ࢳࣞࣥࢪ࢔࣑ࣥࢆධࢀࡓỈ⁐ᾮ୰࡛90°C୍࡛ᬌ཯ᛂࡉࡏࡓ࡜ࡇࢁࠊ

඲㛗

ȝP

ࠊ┤ᚄ

500 nm

⛬ᗘࡢࢼࣀࣟࢵࢻࡢ㞟ྜ⭷ࡀᚓࡽࢀࡓࠋ

研 究 活 動 報 告 104

◊ ✲ ά ື ሗ ࿌

࠙◊✲άືሗ࿌ࠚ ᭷ᶵࣁ࢖ࣈࣜࢵࢻࢼࣀ⤖ᬗᮦᩱ◊✲ศ㔝

ドキュメント内 研究業績・活動報告2017 (ページ 102-107)