静穏状態におけるX線連星のスペクトルの物理的解釈と降着の描像
全文
(2) . . .
(3) . 739ῌ8526 1ῌ3ῌ1. e-mail: nagae@hep01.hepl.hiroshima-u.ac.jp. X
(4) . !"#$%. &' ()( *+,,- 0.1./0 X 12345 678 9:;!<=>?$%@!' A">?>? -BCD3EF GHI JKLMGN *+,,- 0.01./03O X 4U 1700 P24 G Q&R5S T"UV&;;W3 XMM-Newton TXY* ZG9(%(' [C D\]3^W _`)ab cd"#CD"&' e- fghij)akDlmno,p,qrst; Power-law st 2 st"* ZGuv& A;"#%(' % XMM-Newton T3wI JKxyG-z{(A;3w|}~ 0.4ῌ0.7 keV b3?$EI 3E$WJKxy&A;G($ ;a?%&'. ./01{| Mῌ }~{|!&' 345. !"#$%!. 1.. X . l {|* 1M ῌ LMS! L E 1038 X !"#$. erg/s !&' +,-./01{|EFGHC. %$!&' ()*+,-./0123. uvw?@# X !>s 10 M ῌ LMS. 45! 67()*89:!;<=>?@. ! LE1039 erg/s S. B&' X qM. ? A>B!CD>D>EFGHIJ!6 300. * L E !w eCLMCS#P. KLMNOPQ?@B&1), 2)' AR7SG. @7 X `Z!V. ! :TU*3452+,-./01. SM!&' CJ# qM* L E. VWXHCYZY> [\VW]^1_0`. `#l qMr #q. ab&#A! X ]^1_0cd!"#$. MrB&' C?@#. %$A*!eB&' @Q?6 fgC"#$. qM!6C@`&eC. S>#DJ!S$ %$ACRQ?hi#b. 7 ¡! "¢S£t. jkVW*O. l7]mnopoqM (LE) . rs>#gtqM*uvw LE LEx1.25y1038. M erg/s Mῌ. µ4·. ¦qM!#eC§@#A*¨@R7! &' A>Y7© ¦ª. (1). !zZY>B&' AA! M 3452+,µ 103 ¶. B¤¥*0.1 LE. « 1 C¬w?@#R7CU.p1a®2
(5) ¯°±*²?Y>?@#³)! CO@ ?BIR$DPQ?@S@*´!&' 263.
(6) 1. dO)*& EFG.¢£¤¥¦§2¨©2"# ªO)* & Power-law H5JN«¬ n &EFG.D+® N !"#.
(7) . !"# $%. & '(
(8) )* + X ,-. /0123456+72"#. 2. ῒΐ῏ῌ῎ῐῑ 4U 1700῍24 89:;<=>? @ABCD& EFG. M HI.-.5JK 4U 1700L24 CD"# @MJN& X ,O 0.01ῌ 0.0001P LE '(
(9) Q RSTU VW420 pc3) '( X YZ[\]^. N. + X ,-.E_QX ` KaCDTb c?d +T"# ef& $CD5 2007 g 8 h 22. 2. 4 u+ Newton 1 c¯# p °L±&:;²# ³´,&D µ, ³,1 2 /0^ N +¶ Gaussian # ·°&:;²¸²¹ º»¼#. i j"kl m.:;J!JK# n $CDO& :;op_Q
(10) (W0.00008P. Newton 1 |=< JN& " /}vw. LE) '( qrst5:;"+!. ~^. JK# $%& j"kl m. u+vw. w5Q JN JK=. N !"4)# 2 & 4 /}v. XMM-Newton m.x=yz{|=<ET. "# vw& -O 2 YE. 0.01P LE |=< 0.003P LE |=</. FG.DLOG. }vwQ~J!"# p 0.01P LE |=<. ` W0.5 keV 5EJKW0.2 keV . 5 Newton 1 Q5 Newton 2 J!"#. Gaussian | ¡+^. 264. C h~. N. 2010 g 4 h.
(11) 73. XMM-Newton =>?@ ¯o6 CDEF< 8n Newton 1, 2 =>?@ -./)* 8°ABZ [±, ², ³` Z [´}` Uµ T °U
(12) . 74. Newton 2 -./G 1 ¶·§¡~2 ¸16'( 8°ABZ [²¹` Z [´}` Uµ T°% º
(13) . Newton 1 Newton 2 W5*6{| X
(14) . }}n )1)6. 0.5 keV Gaussian . n e;<f.j{| X }6#.
(15) . ~ o6 #g) rstuW5#??. !"#$ %.
(16) &'()* +, -.. )6 45o [4.2 ` =>. /#01 2&3
(17) 4516. ?@ -./ !"#*)6 n. 3. XMM-Newton .
(18) 7 3 89:;< Newton 1, 2 =>. % 0.5 keV cT}G
(19) #. 16. 4. . ?@ ABCDEF<GHIJF1 KL-.. 4.1 XMM-Newton # o. /#M1NOP Power-law Q-<. *
(20) PN 5) '(G* #L. fitting 16
(21) RGS1. T9:;. *CDEF<&G* 4.2 XMM-. < -./Q-<UG)6 #). Newton # o*
(22) !"#e;<f.. * 6V1 =>?@ -./ WX?. h* RGS 6)'(G* 7 3.
(23) 6Y#-./Z [\]^F_.F` G 20 a1. 0.4ῌ0.7 keV #W5*6tu#L*. Sb1. #&1 CDEF< ¡¢GY. 9g. 1 keV cTde;<f.. he;<f.9ijk1? l1. *
(24) mn GWopmn. 6 Newton 2 -./. tu#). 0.4ῌ0.7 keV qrs vwxyzw#g
(25) {| X. 4.1. . |R#* G~
(26) £\ ¤¥¦cTgj#*?Ln. |R. Sn§¡~ oG¨R16he. }~
(27) o . ;<f.©R#g
(28) ªr^HF^« |R. Newton 1 -./rstuW5#?. ¬©R#g
(29) ®^EIFI^~Xª. ?)*
(30) mn. r^HF^«x +, c8gj. » 103 ¼. »4½. o n. 265.
(31) K5. Newton 2 $
(32) GH$defgh fijZ[ .RNOP Q1 > Power-law .MNOP Q1 >?$67. K6. 8 9 .G H $ d e f g h f i j Power-law; 4.1 1 Newton 2 $ RGS $
(33) 2*C+67 0.65 keV > 0.5 keV st2TU *#$ "V<. K7. 8 9 2 p C 3 $ u v Newton 2 $
(34) 67 o<q<#, 89Z[$+K2?]Cn@ A K 6 opCnTU pCn<. K8. 89>K7"m3$uv Newton 1 $ RGS $
(35) $IJ6 7 0.60 keV, 0.57 keV, 0.46 keV *V2 \nTU TmCn<.
(36) . !"#$%&'. $()*# NH +, 0.04-10. => "V 5$67K 5 2L. ./0 71 234. < K 4 2opCnS?TU+qmCr. 5$67, 89+:;$+. V, 0.5 keV st$uv2w#xeyz{|}. < # = > ? @ A B > C. TU2mCn#$ "V< ~$
(37). Newton 2 $
(38) 2DC 1 EF$GH. .Newton 1 > <q1 2;nC. IJ>?$67K 4 2L< MN. 89<#=>2Z . OP Q>RNOP Q2S?TU *#. 4.2. 22. ῌ῎῍῏. => "V< WXY289+ 2 Z[$. K 6 +, 4.1 ]89$|}. \], 1 keV ^_+ Power-law ,. Newton 2 $ RGS $
(39) w>. 1 keV ^ ` + a b. $ G H .E F + c 1. $< 0.65 keV st2nTU TmCr. keV1 $defghfij klY2mCn#. V, 0.5 keV st2+Y$nTU Tm. 266. /. 2010 4 .
(40) xBTY
(41) L mCD.E': Power-law yz xBTY:{ | uj}k}u: |uj}k}u~.Muv ku: <[ SSC= rs :tMuvkuw
(42) <[ DBB-IC= 8 TY <5.1 =
(43) 3) fg3O 0.4ῌ0.7 keV $@ <3 8 6 = : 3 5Y Q Gaussian
(44) #9. # 8 1 2 $ ¸ 3 (0.60 keV, 0.57 keV, 0.46 keV) ¹B&'(/0 12
(45) Newton 1 ¨º 6 T$
(46).
(47) . 5.. qCD.E'nopers:UV"W T:xBTY$ YJK.
(48) 0.5 keV. g^smCD.E'n Power-law . 1 0.52 keV 0.49. :::{8
(49). keV 2 . mCD.E'n fgs@.
(50) !"# 7 $%
(51) # 8 Newton. ::{$) $. 1 RGS &'($) Newton 2 *)+.
(52). ,) Gaussian -&./0. 5.1. 12 . 30.45 keV, 0.57 keV, 0.60 keV $45.
(53) . 4.2 P. >?$ UV"W W$z. 678
(54) 19 New-. 1 keV [` Power-law hijk.{. ton 1 $ 6 :;+. . |uj}k}u: SSC, DBB-IC $xBT. <# 9=
(55) >?$ @:. Y
(56) |uj}k}u:$). AB$ CD.E' F RGS G. [` ¡¢£. HIJK PN GHI # 3 0.4ῌ0.7. xBTY
(57) !Y ¤e¥¦§UV"W. keV L)MN>?$*B +. § ¨ ( 108 G) © " C D . E ' ( 100. 8+. O
(58) PQ 10 eV . keV) ª«. §¨ :5Y|uj}k}. 8 RS$Q+T UV"W. u:g"CD.E'1 eV 8 . X :5Y. Zcd5Y 1 keV :HT. ZZ.
(59) ¬$ SSC $)xB.
(60). §¨ 100 keV ©. [\12T ]$^UV"W W 4U. "tMuvkuw
(61) 1 w
(62). 1700_24 [`>?abZ+. g"CD.E' 2 ®$
(63) >+. cde$ . 1 eV ¯'°'|uj}k}ug" 1 keV.
(64) 1) fghijk.. 1 l mCD.E'nope. $±² . Power-law lqCD.E'nopers. mCD.E'n fgµL)8. :tMuvkuw
(65) l/05Y
(66) 2). ¶B
(67) ·$ DBB-IC $)xB
(68). rs: UV"W Trs:8. 5.2 P>?$UV"WT. » 103 ¼. »4½. $ 10 ³w
(69) 5YY´>. 267.
(70) 5.2. ῍ῐῒ῎ῌ῏ῑ. National Institute of Standards and Technology Atomic Spectra Databaseῌ1 RGS. |. }#~sLd 0.65 keV * O VIII Ka, 0.57 keV * O VII Ka CNewton 1 J|}D 0.52 keV * O I Ka, 0.49 keV * N VII Ka. $. 8;# 8msv) -
(71) +
(72) * H
(73)
(74) K 10 Newton 2 AEF>
(75) µ¶·B¸E ¹ Power-law º ¡ , DBB-IC > ? @ A B CCompPS @ A BD 9
(76) fitting h». 10) ]L+ _. s|}#&' b+_ CD +_+, k.& ' Fe L s C. $7py+. sD |}#
(77) + _ * +b. $. 1,500 km
(78) . s*e_V#
(79) . 8 . L_
(80) * 9W-$. $%. *c-Y- O VIII v O VII y. 1,500 km. !"#10 erg/s 33. &' ()*7 eV +, -. + O I s|}#
(81) . , 7 ./)012342#5 1 keV 6. #
(82) + . . )7 &_}
(83) #. 7 8. :; <=. ()9 7 eV . DBB-IC > ? @ A B. CCompPS @AB D 9). AEFGH9IJ. O I * . b9j
(84) . J+ X s L+&* Z. *8. . K 10 LGHMN . m s* O I ,*#v. OP%
(85) Q*. & +¡d9¢,£¤L+). 600 km +, 1,500 km R
(86) S#. . S# &
(87) . T()U"VW 012342. |}#R
(88) s*10 eV 9. #
(89) OX. Y%
(90) * .¥9¦. 7 %
(91) . DBB-IC YZ W-[ \]L+^_ 1 keV \` ab* SSC _ DBB-IC. $ c. Doppler broadening. $ 8. .¥§) v * v0.02 c Cc *b§D. $. ¨©Y ª3«E.. -Ld edfg_9h
(92) ij* k. ¥9
(93) +5 _. lm no CpqrsD tuvm!. ¬1,500 km. "tuwx
(94) y+z{ $. C10 kmD _*®
(95) ¡.
(96) . _, ¯b)<= °>
(97). $;# * *W. # ±²;³´ C1 M ῌ. ῌ1 http://physics.nist.gov/PhysRefData/ASD/lines form.html 268. !¼!. 2010 ½ 4 ¼.
(98) { 11 A)1*+ij/01 4U 1700724 G, µ
(99) 1R=S& h2TUVWGV ¶·¸!vw '$!^_A , > +'$1qd66 7)Akl!)Ano +$'¹1vw*'$!º» ,. 10 km
(100) ! "#$%&'$!()
(101) *+,. 6. ῍. ῌ. |pNO=c2e*o ! $* "A. , ". 1 IGR J16194ῌ. 2810 $r=892C. , '=. 4U 1700724 q
(102) > ! 1 o >. ῎. /0$ij/0)$&qr&=. ,. - 0.01ῌ0.0001. LE /01. |}+#!#H)2DK* ij/0. 2345 X 6 4U 1700724 89:;. 1 X 61 82CH+. 2<* *+, = > ?1 . $^_. ,. !
(103) @)AB ! (420 pc) +C D EFG!'$!H !I X 6J/02DK M . ῐ. 1L&=. , NO+ 1 keV PQEFG. ῏. . o NO2*+5+. Suzaku Working Group $1 . R=S2TUVWGVX . 2C &%2*+5H *+. YH 1 keV PZEFG Power-. o&*Q. law [EFG "S\] SSC ). M*. DBB-IC 5$^_A. , RGS `ab:;). +¢/0£¤¥¦e8u . A c d6 (O VIII, O VII, N VII) e. &§¨2*o5~+10£23©¦1. fg&hd62`a* *+, 'A:. oª«+*. ;)A ij/0klm1,500. +5+4°±²³´ 5¦1&*Q. km $ ?1no p*'$2A). , '(). , + ,-o ¡.*o5~. , + -¬"2®¯. ,. * *+, PQqr1 ij/0EFG 2st189* 8u2_+'$e k lvw2xyH+zC. , { 11. 1 |}A)$&~+&G 2 $CH *+, 8 103 ¼. 84½. 269.
(104) ῎῍῏ῌ 1) 2) 3) 4) 5) 6) 7) 8) 9) 10). 270. Liu Q. Z., et al., 2007, A&A 469, 807 Liu Q. Z., et al., 2006, A&A 455, L1165 Masseti N., et al., 2002, A&A 382, 104 Tiengo, A., et al., 2005, A&A 441, 283 Briel, U. G., et al., 2000, SPIE 4012, 154 den Herder, J.-W., 2001, A&A 365, L7 Dickey, J. M., Lockman, F. J., 1990, ARA&A 28, 215 Mitsuda, K., et al., 1984, PASJ 36, 741 Poutanen, J., Svensson, R., 1996, ApJ 470, 249 Nagae, O., et al., 2010, PASJ, submitted. Physical Interpretation of the Spectra and Accretion Picture of X-ray Binary in Its Quiescent State Osamu NAGAE Department of Physical Science, School of Science, Hiroshima University, 1ῌ3ῌ1 Kagamiyama, Higashi-hiroshima, Hiroshima 739ῌ8526, Japan Abstract : Physical interpretations of energy spectra of high luminous X-ray binaries have been developed owing to their accurate spectra. However, the spectra below 0.1῍ Eddington luminosity (LE) do not have enough quality, and detailed spectral analysis have not been done. Thus, using Suzaku satellite, we observed an X-ray binary, 4U 1700ῌ24, of which the luminosity is always below 0.01῍ of LE, and we analyzed archival data of XMM-Newton satellite to study a physical interpretation of the spectra and accretion picture. The continuum spectra are represented by Comptonized black body arisen from the neutron-star surface and the Power-law component. Several emission lines are also detected by XMM-Newton, which ar thought to be arisen from the photoionized accretion disk. This infers that the accretion disk still exists even in quiescent state.. ῏ῑ῎ῒ. 2010 ῐ 4 ῎.
(105)
関連したドキュメント
Whereas tube voltages and HVLs for these four X-ray units did not significantly change over the 103-week course, the outputs of these four X-ray units increased gradually as
Standard domino tableaux have already been considered by many authors [33], [6], [34], [8], [1], but, to the best of our knowledge, the expression of the
The edges terminating in a correspond to the generators, i.e., the south-west cor- ners of the respective Ferrers diagram, whereas the edges originating in a correspond to the
* Department of Mathematical Science, School of Fundamental Science and Engineering, Waseda University, 3‐4‐1 Okubo, Shinjuku, Tokyo 169‐8555, Japan... \mathrm{e}
More general problem of evaluation of higher derivatives of Bessel and Macdonald functions of arbitrary order has been solved by Brychkov in [7].. However, much more
We have introduced this section in order to suggest how the rather sophis- ticated stability conditions from the linear cases with delay could be used in interaction with
By studying the electromagnetic field associated with a uniformly accelerated charge Boulware 34 made in 1980 an important discovery that he summarized in the following way:
[r]