• 検索結果がありません。

Graduate School of Fundamental Science and Engineering Waseda University

N/A
N/A
Protected

Academic year: 2022

シェア "Graduate School of Fundamental Science and Engineering Waseda University "

Copied!
7
0
0

読み込み中.... (全文を見る)

全文

(1)

Graduate School of Fundamental Science and Engineering Waseda University

༤㻌 ኈ㻌 ㄽ㻌 ᩥ㻌 ᴫ㻌 せ

Doctoral Thesis Synopsis

ㄽ ᩥ 㢟 ┠ T h e s i s T h e m e

Verified numerical computation for elliptic partial differential equations and related

problems

ᴃ෇ᆺ೫ᚤศ᪉⛬ᘧ࡟ᑐࡍࡿ⢭ᗘಖド௜ࡁ

ᩘ್ィ⟬࡜㛵㐃ࡍࡿၥ㢟

⏦ ㄳ ⪅ (Applicant name)

Kazuaki TANAKA ⏣୰ ୍ᡂ

Department of Pure and Applied Mathematics Research on Numerical Analysis

December, 2016

(2)

ຊ࿦จͰ͸ҎԼͷପԁܕσΟϦΫϨڥք஋໰୊(1)ʹର͢Δਫ਼౓อূ෇͖਺஋ܭ

ࢉ ๏ Λ ߟ ͑ Δ ɽ

−Δu(x) =f(u(x)), x∈Ω,

u(x) = 0, x∈∂Ω. (1)

͜͜ͰɼΩ͸R2্ͷ༗քͳଟ֯ܗྖҬɼଈͪ༗քͳଟ֯ܗঢ়ͷ։ू߹ͱ͢Δɽ∂Ω

͸ͦͷڥքΛද͢ɽ·ͨɼΔ͸ϥϓϥε࡞༻ૉɼf :RR͸༩͑ΒΕͨඇઢܗࣸ૾

ͱ͢Δɽຊ࿦จʹ͓͍ͯ໰୊(1)ʹର͢Δਫ਼౓อূͱ͸ɼ(1)ͷۙࣅղuˆΛ਺஋త ʹ ٻ Ί ɼͦ Ε Λ த ৺ ͱ ͢ Δ ໌ ࣔ ͞ Ε ͨ ൒ ܘrͷ ด ٿB(ˆu, r)಺ ʹ ਅ ͷ ղ ͕ ଘ ࡏ ͢ Δ

͜ͱΛূ໌͢Δͱ͍͏͜ͱΛࢦ͢ɽͨͩ͠ɼຊ࿦จͰ͸H01ϊϧϜ(ଈͪ∇ · L2(Ω)) ͱLϊ ϧ Ϝ ͷ ҙ ຯ Ͱ ͷ ਫ਼ ౓ อ ূ Λ ߟ ͑ Δ ɽຊ ࿦ จ ͷ ର ৅ ͸ Ҏ Լ ͷ ໰ ୊(2)ͷ ղ ʹ ର ͢ Δ ਫ਼ ౓ อ ূ ෇ ͖ ਺ ஋ ܭ ࢉ Λ ؚ Ή ɽ

⎧⎪

⎪⎩

−Δu(x) =f(u(x)), xΩ, u(x)>0, x∈Ω, u(x) = 0, x∈∂Ω.

(2)

ଈͪɼඞཁͰ͋Δ৔߹͸(1)ͷਫ਼౓อূ͞Εͨղʹରͯ͠ɼͦͷਖ਼஋ੑ΋ಉ࣌ʹอ

ূ ͢ Δ ͜ ͱ Ͱ(2)ͷ ղ Λ ਫ਼ ౓ อ ূ ͢ Δ ɽ໰ ୊(1)ͷ ղu͕ ໰ ୊(2)ͷ ղ Ͱ ΋ ͋ Δ ͱ

͖ ɼuΛ(1)ͷ ਖ਼ ஋ ղ ͱ ͍ ͏ɽ໰ ୊ ͷ Մ ղ ੑ ΍ ਫ਼ ౓ อ ূ ෇ ͖ ਺ ஋ ܭ ࢉ Λ ߦ ͏ ೉ ͠ ͞

͸ඇઢܗࣸ૾fʹେ͖͘ґଘ͢Δ͕ɼຊ࿦จͰ͸୅දతͳྫͱͯ͠ɼf(t) =|t|p−1t (p >1)͓ Α ͼf(t) =ε−2(t−t3)Λ औ Γ ѻ ͏ɽ͜ ͜ Ͱ ɼε͸ ಛ ҟ ઁ ಈ ͱ ݺ ͹ Ε Δ ݱ ৅ ʹ ؔ ܎ ͢ Δ ਖ਼ ͷ খ ͞ ͍ ύ ϥ ϝ ʔ λ ʔ Ͱ ͋ Δ ɽຊ ࿦ จ ͷ ͍ ͘ ͭ ͔ ͷ Օ ॴ ʹ ͯΩͷ ತ

ੑ ͕ Ճ ͑ ͯ ཁ ٻ ͞ Ε Δ ɽ͜ Ε ͸ ਫ਼ ౓ อ ূ ͞ Ε ͨ(1)ͷ ऑ ղu ∈H01(Ω)ͷH2ਖ਼ ଇ ੑ

͕Lϊ ϧ Ϝ ͷ ҙ ຯ Ͱ ͷ ਫ਼ ౓ อ ূ Λ ߦ ͏ ࡍ ʹ ඞ ཁ ͱ ͳ Δ ͨ Ί Ͱ ͋ Δ ɽ

ࠓ ೔ ɼ਺ ஋ ܭ ࢉ ͸ ੜ ෺ ֶ ΍ ෺ ཧ ֶ ౳ ʹ ༝ དྷ ͢ Δ ༷ʑͳ ݱ ৅ Λ ཧ ղ ͢ Δ ͨ Ί ʹ Պ

ֶ ͓ Α ͼ ޻ ֶ ͷ ޿ ͍ ෼ ໺ Ͱ ॏ ཁ ͳ ໾ ׂ Λ ୲ͬͯ ͍ Δ ɽ͠ ͔ ͠ ै དྷ ͷ ਺ ஋ ܭ ࢉ ͸ Ұ ൠʹؙΊޡࠩ΍ଧ੾Γޡࠩɼ཭ࢄԽޡࠩΛ͸͡Ίͱ͢Δ༷ʑͳޡࠩΛ൐͍ɼͦΕΒ

͕ ࠷ ऴ త ͳ ਺ ஋ ݁ Ռ ʹ க ໋ త ͳ Ө ڹ Λ ٴ ΅ ͢ ͜ ͱ ͕ ͋ Δ ͨ Ί ɼ͜ ͷ ͜ ͱ ͸ ༧ ͯ Α Γ ໰ ୊ ࢹ ͞ Ε ͯ ͖ ͨ ɽҰ ํ Ͱ ਺ ஋ ܭ ࢉ ͷ ա ఔ Ͱ ൃ ੜ ͢ Δ શ ͯ ͷ ޡ ࠩ Λ ߟ ྀ ͠ ɼఆ

ྔ త ʹ ޡ ࠩ ্ ݶ Λ อ ূ ͢ Δ ਺ ஋ ܭ ࢉ ͷ ͜ ͱ Λ“ਫ਼ ౓ อ ূ ෇ ͖ ਺ ஋ ܭ ࢉ”ͱ ݺ Ϳ ɽ͜

͜ Ͱ“ਫ਼ ౓ อ ূ”ͱ ͍ ͏ ݴ ༿ ʹ ͸ ޡ ࠩ ͷ ೺ Ѳ Ҏ ֎ ʹ ɼର ৅ ͱ ͢ Δ ໰ ୊ ͷ ղ ͷ ଘ ࡏ ͷ อ ূ Λ ಉ ࣌ ʹ ߦ ͏ ͱ ͍ ͏ ҙ ຯ Λ ؚ Ή ɽͦ ͷ ͨ Ί ɼ਺ ֶ త ཱ ৔ ͔ Β ਺ ஋ త ݕ ূ ๏ ΍ ܭࢉػԉ༻(ଘࡏ)ূ໌ͱݺ͹ΕΔ͜ͱ΋͋Δɽઌߦݚڀͱͯ͠͸ʰେੴਐҰ,ਫ਼౓

อ ূ ෇ ͖ ਺ ஋ ܭ ࢉ ,ί ϩ φ ࣾ , 2000ʱ΍ʰ த ඌ ॆ ޺ ɼ౉ ෦ ળ ོ ,࣮ ྫ Ͱ ֶ Ϳ ਫ਼ ౓ อ

ূ ෇ ͖ ਺ ஋ ܭ ࢉ ཧ ࿦ ͱ ࣮ ૷ , α Π Τ ϯ ε ࣾ , 2011ʱ౳ ʹ · ͱ Ί ͯ ͋ Δ ख ๏ ͕ ༗ ໊ Ͱ ͋ Γɼਫ਼ ౓ อ ূ ෇ ͖ ਺ ஋ ܭ ࢉ ͸ ै དྷ ͷ ਺ ஋ ܭ ࢉ ʹ ͸ ͳ ͍ ಛ ௃ Λ ࣋ ͭ ͜ ͱ ͔ Β ۙ

೥ ੈ ք త ʹ ஫ ໨ Λ ू Ί ͯ ͍ Δ ٕ ज़ Ͱ ͋ Δ ɽ

ಛ ʹ զʑͷ ڵ ຯ ͸ ପ ԁ ܕ ڥ ք ஋ ໰ ୊(1)͓ Α ͼ(2)ʹ ର ͢ Δ ਫ਼ ౓ อ ূ ෇ ͖ ਺ ஋ ܭ

ࢉͰ͋Δɽ(1)͓Αͼ(2)͸ੜ෺ֶ΍෺ཧֶ౳ʹ༝དྷ͢Δ༷ʑͳϞσϧʹىҼ͢Δॏ

1

(3)

ཁ ͳ ภ ඍ ෼ ํ ఔ ࣜ Ͱ ͋ Δ ͨ Ί ɼ͜ Ε · Ͱ ղ ੳ త ɼ਺ ஋ త ྆ ํ ͷ ଆ ໘ ͔ Β ޿ ͘ ݚ ڀ

͞Ε͖ͯͨɽಛʹຊ࿦จͰର৅ͱ͢Δf(t) =|t|p−1t(p >1)͓Αͼf(t) =ε−2(t−t3)

(ε >0)ͷͲͪΒͷ৔߹΋(2)ͷղͷଘࡏੑɾ།Ұੑʹؔ͢Δ݁Ռ͕ภඍ෼ํఔࣜ࿦

ʹΑΓ஌ΒΕ͍ͯΔɽf(t) =|t|p−1t(p >1)ͷͱ͖͸ɼΩ͕׈Β͔Ͱ͔֤ͭ࣠ʹର͠

ͯ ର শ Ͱ ͋ Ε ͹(2)͸ ། Ұ ղ Λ ࣋ ͭ ɽ· ͨ ɼྖ Ҭ ͕ ׈ Β ͔ Ͱ ͳ ͍ ৔ ߹ ΋Ω = (0,1)2 ͷ ౳ ͷ ղ ͷ े ෼ ͳ ׈ Β ͔ ͞ ͕ อ ূ ͞ Ε Δ ର শ ྖ Ҭ Ͱ ͋ Ε ͹ ಉ ༷ ʹ ਖ਼ ஋ ղ ͷ ། Ұ ੑ

͕อূ͞ΕΔɽf(t) =ε−2(t−t3) (ε >0)ͷͱ͖͸ɼλ1Λ−ΔͷσΟϦΫϨ৚݅Λ՝

ͨ͠Ω্Ͱͷऑ͍ҙຯͰͷ࠷খݻ༗஋ͱ͢Δͱ͖ɼε−2> λ1Ͱ͋Ε͹(2)͸།Ұղ Λ ࣋ ͭ ͱ ͍ ͏ ͜ ͱ ͕ ೚ ҙ ͷ ༗ ք ྖ Ҭ ʹ ର ͠ ͯ ಘ Β Ε Δ ɽ͜ ͷ Α ͏ ͳ ݁ Ռ ͕ ஌ Β Ε

ͯ ͍ Δ ʹ ΋ ؔ Θ Β ͣɼղ ͷ ఆ ྔ త ͳ ৘ ใ(֤ ఺ Ͱ ͷ ஋ ΍ ࠷ େ ஋ ɼ࠷ খ ஋ ౳)΍ ͦ ͜

͔ Β ؍ ଌ ͞ Ε Δ ղ ͷ ܗ ঢ় ౳ ͸ ɼݱ ঢ় ͷ ղ ੳ త ख ๏ ͷ Έ ͔ Β Ͱ ͸ ໌ Β ͔ ʹ ͞ Ε ͯ ͍ ͳ ͍ ɽਫ਼ ౓ อ ূ ෇ ͖ ਺ ஋ ܭ ࢉ ͸ ɼਅ ͷ ղ ͷ ఆ ྔ త ͳ ৘ ใ Λ ͦ ͷ ਺ ஋ త ʹ ಘ ͨ ۙ ࣅ ղ ͱ ͷ ࠩ Λ ද ͢ ෆ ౳ ࣜ ͷ ܗ Ͱ ಘ Δ ͜ ͱ ͕ Ͱ ͖ Δ ͱ ͍ ͏ ఺ Ͱ ༗ ༻ Ͱ ͋ Δ ͱ ݴ ͑ Δ ɽ

Ҏ Լ ɼຊ ࿦ จ ͷ ֤ ষ ͷ ֓ ཁ Λ ड़ ΂ Δ ɽ

1ষͰ͸ຊ࿦จͷର৅ͱ͢Δ໰୊΍Ϟνϕʔγϣϯɼഎܠɼઌߦݚڀ౳ʹ͍ͭͯ

ه ड़ ͢ Δ ɽ

2ষ Ͱ ͸ · ͣ ຊ ࿦ จ Ͱ ࢖ ༻ ͢ Δ ه ߸ ͷ ४ උ Λ ߦ ͏ɽ࣍ ʹ ໰ ୊(1)ʹ ର ͢ ΔH01ϊ ϧϜͷҙຯͰͷਫ਼౓อূ෇͖਺஋ܭࢉͷͨΊʹ༻͍ΔχϡʔτϯɾΧϯτϩϏον ͷఆཧ͓Αͼͦͷվྑ͞ΕͨఆཧΛ঺հ͢Δɽ͜ΕΒͷఆཧ͸(1)ͷۙࣅղuˆ͕͋

Δछͷ“ྑ͍”৚ ݅Λ ຬ ͨͤ ͹ ͦ ͷ ۙ͘ ʹਅ ͷղ ͕ଘ ࡏ͢ Δͱ ͍͏ ͜ͱ Λओ ு͢ Δ

΋ͷͰ͋Δɽ·ͨɼͦ͜ʹߋʹ৚݅ΛՃ͑Δ͜ͱʹΑΓ(2)ʹର͢Δ(ଈͪ(1)ͷਖ਼

஋ղʹର͢Δ)ਫ਼౓อূ΋ՄೳʹͳΔͱ͍͏͜ͱ΋ड़΂ΔɽྖҬ͕ತͰ͋Δ৔߹͸

໰ ୊(1)ͷ ऑ ղ ͷH2ਖ਼ ଇ ੑ ͕ อ ূ ͞ Ε Δ ͨ Ί ɼH2(Ω)͔ ΒL(Ω)΁ ͷ ຒ Ί ࠐ Έ ఆ

਺Λ۩ମతʹධՁ͢Δ͜ͱʹΑΓɼ্هख๏ʹΑΓಘΒΕͨH01ϊϧϜͷҙຯͰͷ ղ ͷ แ ؚ ͔ Β ɼL(Ω)ͷ ҙ ຯ Ͱ ͷ ղ ͷ แ ؚ ͕ ಘ Β Ε Δ ͜ ͱ ΋ ड़ ΂ Δ ɽຊ ষ Ͱ ঺ հ

͢ Δ ఆ ཧ ͷ ཁ ٻ ͢ Δ ۙ ࣅ ղuˆͷ ຬ ͨ ͢ ΂ ͖ ৚ ݅ Λ νΣοΫ ͢ Δ ͨ Ί ʹ ͸ ɼ໰ ୊( ҬΩ΍ ඇ ઢ ܗ ࣸ ૾f)΍uˆʹ ґ ଘ ͢ Δ ͍ ͘ ͭ ͔ ͷ ఆ ਺ Λ ۩ ମ త ʹ ධ Ձ ͢ Δ ඞ ཁ ͕ ͋ Δ ɽྫ ͑ ͹ ɼ໰ ୊ Λ ه ड़ ͢ Δ ࡞ ༻ ૉ ͷuˆʹ ͓ ͚ Δ ઢ ܗ Խ ࡞ ༻ ૉ ͷ ٯ ࡞ ༻ ૉ ϊ ϧ Ϝ

΍ɼຒΊࠐΈH01(Ω)→Lp(Ω)ͷෆ౳ࣜʹݱΕΔఆ਺Cp(Ω)౳Ͱ͋Δɽ2ষͷ࠷ޙͰ

͸Cp(Ω)ͷ ্ ͔ Β ͷ ૈ ͍ ධ Ձ Λ ಘ Δ ͨ Ί ͷ ݹ య త ͳ ख ๏ Ͱ ͋ Δ λ ϥ ϯ ςΟͷ ࠷ ྑ ఆ ਺ ͱ ϔ ϧ μ ʔ ͷ ෆ ౳ ࣜ Λ ༻ ͍ ͨ ධ Ձ ํ ๏ ʹ ͭ ͍ ͯ ΋ ݴ ٴ ͢ Δ ɽ

3ষ Ͱ ͸ ɼର ৅ ͱ ͢ Δ ໰ ୊(1)Λ ऑ ܗ ࣜ Խ ͠ ࡞ ༻ ૉF : H01(Ω) H−1(Ω) (u

−Δu−f(u))Λ༻͍ͯF(u) = 0ͱॻ͍ͨͱ͖ʹɼͦͷۙࣅղuˆʹ͓͚ΔFͷϑϨο γΣඍ෼Fuˆͷٯ࡞༻ૉϊϧϜFuˆ−1

B(H−1(Ω),H01(Ω))ͷධՁ๏ʹ͍ͭͯड़΂Δɽ͜͜

ͰH−1(Ω)͸H01(Ω)ͷ ڞ ໾ ۭ ؒ Λ ද ͠ ɼ௨ ৗ ͷsupϊ ϧ Ϝ Λ ಋ ೖ ͠ ͨ ΋ ͷ ͱ ͢ Δ ɽ

͜ ͷ ٯ ࡞ ༻ ૉ ϊ ϧ Ϝ ͸uˆʹ Α Γ ઁ ಈ ͞ Ε ͨ ͋ Δ ପ ԁ ܕ ࣗ ݾ ڞ ໾ ࡞ ༻ ૉ ͷ ࠷ খ ݻ ༗

஋ ͔ Β ܭ ࢉ ͢ Δ ͜ ͱ ͕ Ͱ ͖ ɼͦ ͷ ࠷ খ ݻ ༗ ஋ Λ ཱུɾେ ੴ ͷ ख ๏ Ͱ ্ Լ ͔ Β ۩ ମ త

(4)

ʹ ධ Ձ ͢ Δ ͜ ͱ Ͱ ॴ ๬ ͷ ϊ ϧ Ϝ ධ Ձ Λ ࣮ ݱ ͢ Δ ɽཱུɾେ ੴ ͷ ख ๏ ͸H01(Ω)ͷ ͋ Δ

༗ݶ࣍ݩ෦෼ۭؒVN্Ͱۙࣅ͞Εͨݻ༗஋ͱɼݩͷແݶ࣍ݩۭؒH01(Ω)Ͱܭࢉ͞

Ε ͨ ݻ ༗ ஋ ͷ ࠩ Λ ධ Ձ ͢ Δ ɽ͜ ͜ ͰN ͸VN ͷH01(Ω)ʹ ର ͢ Δ ۙ ࣅ ౓ Λ ද ͢ ਖ਼ ͷ ύ ϥ ϝ ʔ λ Ͱ ͋ Δ ɽྫ ͑ ͹ ຊ ࿦ จ Ͱ ͸i}i=1 ΛH01(Ω)Λ ு Δ ج ఈ ͱ ͠ ͨ ͱ ͖ ʹ ɼ VN =span{φi :i= 1,2,· · ·, N}ͷΑ͏ʹVNΛબͼɼ͜ͷͱ͖N͸VNΛுΔجఈؔ

਺ ͷ ਺ Λ ද ͢ ͜ ͱ ʹ ͳ Δ ɽཱུɾେ ੴ ͷ ख ๏ Λ ༻ ͍ ͯ ର ৅ ͱ ͢ Δ ݻ ༗ ஋ Λ ධ Ձ ͢ Δ ʹ͸VN ͷH01(Ω)ʹର͢Δۙࣅ౓Λ൓ө͢Δิ׬ޡࠩఆ਺CN Λ۩ମతʹධՁ͢Δ ඞཁ͕͋Δɽଈͪɼh∈L2(Ω)ʹରͯ͠ɼͦΕʹରԠ͢ΔϙΞιϯํఔࣜ−Δu=h ͷ σΟϦ Ϋ Ϩ ڥ ք ஋ ໰ ୊ ͷ ऑ ղ Λuhͱ ॻ ͍ ͨ ͱ ͖ ʹ

uh−PNuhV ≤CNhL2(Ω) (3) Λ ೚ ҙ ͷh L2(Ω)ʹ ର ͠ ͯ ຬ ͨ ͢ ਖ਼ ఆ ਺CN Ͱ ͋ Δ ɽ͜ ͜ Ͱ ɼPN ͸H01(Ω)͔ Β VN ΁ ͷ ௚ ަ ࣹ Ө Ͱ ͋ Γɼ(PNu−u, vN)H01(Ω) = 0 for all u H01(Ω) andvN VN Ͱ ఆ ٛ ͞ Ε Δ ɽ3ষ ͷ ࠷ ޙ Ͱ ͸VN Λ ϧ δϟϯ υ ϧ ଟ ߲ ࣜ ͔ Β ߏ ੒ ͞ Ε Δ ج ఈ Ͱ ு Β Ε ͨ ۭ ؒ ͱ ͠ ͨ ͱ ͖ ͷCNͷ ධ Ձ ๏ Λ ड़ ΂ Δ ɽ

4ষ Ͱ ͸ ؔ ਺ ۭ ؒ ؒ ͷ ຒ Ί ࠐ ΈH01(Ω) Lp(Ω)ͷ ࠷ ྑ ఆ ਺Cp(Ω)ͷ ධ Ձ ๏ ʹ ͭ

͍ ͯ ड़ ΂ Δ ɽΑ Γ ਖ਼ ֬ ʹ ͸Cp(Ω)͸

uLp(Ω)≤Cp(Ω)uH01(Ω) for allu∈H01(Ω). (4) Λ ຬ ͨ ͢ ਖ਼ ఆ ਺ ͱ ͠ ͯ ఆ ٛ ͞ Ε Δ ɽ͜ ͷ ࠷ ྑ ஋(ଈ ͪ ۃ ஋)Λ ୡ ੒ ͞ ͤ Δ ؔ ਺u͸ ପ ԁ ܕ ڥ ք ஋ ໰ ୊

⎧⎪

⎪⎩

−Δu=up−1 in Ω, u >0 in Ω,

u= 0 on ∂Ω

(5)

Λ ຬ ͨ ͢ ͜ ͱ Λ ࣔ ͢ɽߋ ʹ ໰ ୊(5)ͷ ղ ͷ ། Ұ ੑ ʹ ͭ ͍ ͯΩ = (0,1)2ͷ ৔ ߹ ʹ ٞ ࿦

͠ ɼ2ষ Ͱ ड़ ΂ ͨ ํ ๏ Ͱ ͦ ͷ ղ ͷ ਫ਼ ౓ อ ূ Λ ߦ ͏ ͜ ͱ ʹ Α ΓɼCp(Ω)ͷ ࠷ ྑ ஋ Λ λ Π τ ʹ ධ Ձ ͢ Δ ɽಛ ʹ ຊ ষ Ͱ ͸p = 3,4,5,6,7ͷ ৔ ߹ ͷ ݁ Ռ Λ ༩ ͑ ɼCp(Ω)ͷ ࠷ ྑ

஋ Λ12ʙ13ܻ ͷ ਫ਼ ౓ Ͱ ධ Ձ ͠ ͨ ݁ Ռ Λ · ͱ Ί Δ ɽ

5ষ Ͱ ͸f(t) =ε−2(t−t3)ͷ ৔ ߹ ɼଈ ͪ Ξ Ϩ ϯɾΧ ʔ ϯ ํ ఔ ࣜ ͷ ఆ ৗ ໰ ୊ −Δu=ε−2(u−u3) in Ω,

u= 0 on ∂Ω (6)

ʹର͢Δਫ਼౓อূ෇͖਺஋ܭࢉΛߟ͑Δɽ͜ͷ໰୊ͷղ͸ε >0͕খ͘͞ͳΔʹͭ

Ε ͯ ಛ ҟ ઁ ಈ ͱ ͍ ͏ ݱ ৅ Λ ى ͜ ͢ɽ· ͨ ɼෳ ࡶ ͳ ղ ͷ ෼ ذ Λ Ҿ ͖ ى ͜ ͢ ͜ ͱ Ͱ ΋

஌ΒΕΔɽ͜ͷ͜ͱ͔ΒҰൠʹε͕খ͍͞΄Ͳղͷਫ਼౓อূ͸೉͘͠ͳΔɽ5ষͰ

͸εΛ ม Խ ͞ ͤ ͨ ৔ ߹ ʹ ਫ਼ ౓ อ ূ ʹ ඞ ཁ ͳ ֤ छ ఆ ਺ ΍ ղ ͷ ܗ ͕ Ͳ ͷ Α ͏ ʹ ม Խ ͢ Δ͔Λ۩ମతͳྫͱڞʹ঺հ͢Δɽ·ͨɼ2ষͰड़΂ͨํ๏ΛԠ༻͠ɼͦͷਖ਼஋ղ ͷ ਫ਼ ౓ อ ূ Λ ߦͬͨ ྫ ΋ ซ ͤ ͯ ঺ հ ͢ Δ ɽ

6ষ Ͱ ͸ ຊ ࿦ จ Ͱ ड़ ΂ ͨ ख ๏ɾ݁ Ռ Λ ૯ ׅ ͠ ɼࠓ ޙ ͷ ల ๬ Λ ड़ ΂ Δ ɽ

3

(5)

㹌㹭

᪩✄⏣኱Ꮫ ༤ኈ㸦ᕤᏛ㸧 Ꮫ఩⏦ㄳ ◊✲ᴗ⦼᭩

Ặྡ ⏣୰ ୍ᡂ ༳

㸦 ᖺ ᭶ ⌧ᅾ㸧

✀㢮ู 㢟ྡࠊ Ⓨ⾲࣭Ⓨ⾜ᥖ㍕ㄅྡࠊ Ⓨ⾲࣭Ⓨ⾜ᖺ᭶ࠊ 㐃ྡ⪅㸦⏦ㄳ⪅ྵࡴ㸧

ㄽᩥ

ㅮ₇

[1] Akitoshi Takayasu, Kaname Matsue, Takiko Sasaki, Kazuaki Tanaka, Makoto Mizuguchi, Shin'ichi Oishi: Numerical validation of blow-up solutions for ODEs, to appear in Journal of Computational and Applied Mathematics.

[2] Kazuaki Tanaka, Kouta Sekine, Makoto Mizuguchi, and Shin'ichi Oishi: Sharp numerical inclusion of the best constant for embedding on bounded convex domain, Journal of Computational and Applied Mathematics, 311, 306–313 (2017), to appear.

Electronically published in doi.org/10.1016/j.cam.2016.07.021.

[3] Kazuaki Tanaka, Kouta Sekine, Makoto Mizuguchi, and Shin'ichi Oishi: Estimation of the Sobolev embedding constant on domains with minimally smooth boundary using extension operator, Journal of Inequalities and Applications, 1, 1-23 (2015).

[4] Kazuaki Tanaka, Kouta Sekine, Makoto Mizuguchi, and Shin'ichi Oishi: Numerical verification of positiveness for solutions to semilinear elliptic problems, JSIAM Letters 7, 73-76 (2015).

[5] Kazuaki Tanaka, Akitoshi Takayasu, Xuefeng Liu, and Shin'ichi Oishi: Verified norm estimation for the inverse of linear elliptic operators using eigenvalue evaluation, Japan Journal of Industrial and Applied Mathematics, 31, 665-679 (2014).

[6] ⏣୰୍ᡂ, 㛵᰿᫭ኴ, ኱▼㐍୍㸸ᴃ෇ᆺᚤศ᪉⛬ᘧࡢṇ್ゎ࡟ᑐࡍࡿ⢭ᗘಖド௜ࡁᩘ

್ ィ ⟬ ἲ 㸦Verified numerical computation method for positive solutions to elliptic differential equations㸧, RIMS◊✲㞟఍ࠕ⌧㇟ゎ᫂࡟ྥࡅࡓᩘ್ゎᯒᏛࡢ᪂ᒎ㛤IIࠖ, 2016ᖺ10᭶19᪥㹼10᭶21᪥㸬

[7] 㛵᰿᫭ኴ, ⏣୰୍ᡂ, ኱▼㐍୍㸸࠶ࡿ↓㝈ḟඖᅛ᭷್ࢆ⏝࠸ࡓᴃ෇ᆺ೫ᚤศ᪉⛬ᘧࡢ ゎࡢᏑᅾᛶ࡟ᑐࡍࡿィ⟬ᶵ᥼⏝ド᫂ἲ 㸦Computer-assisted proof for existence of solutions to PDEs using an infinite eigenvalue㸧, RIMS◊✲㞟఍ࠕ⌧㇟ゎ᫂࡟ྥࡅࡓᩘ

್ゎᯒᏛࡢ᪂ᒎ㛤IIࠖ, 2016ᖺ10᭶19᪥㹼10᭶21᪥㸬

[8] 㛵᰿᫭ኴ, ⏣୰୍ᡂ, ኱▼㐍୍㸸᭷⏺࡞ฝ㡿ᇦ࡟࠾ࡅࡿ㐃❧ᴃ෇ᆺ೫ᚤศ᪉⛬ᘧࡢゎ ࡢィ⟬ᶵ᥼⏝Ꮡᅾド᫂ἲ㸦Computer assisted existence proof of solutions to system of partial differential equations with bounded convex polygonal domains㸧, The Twenty-Eighth RAMP Symposium, 2016ᖺ10᭶13᪥㹼10᭶14᪥㸬

[9] Kazuaki Tanaka, Kouta Sekine, Shin'ichi Oishi: On verified numerical computation for positive solutions to elliptic boundary value problems, Computer Arithmetic and Validated Numerics, SCAN2016, Sep. 26-29, 2016.

[10] Kouta Sekine, Kazuaki Tanaka, Shin'ichi Oishi: A norm estimation for an inverse of linear operator using a minimal eigenvalue, Computer Arithmetic and Validated Numerics, SCAN2016, Sep. 26-29, 2016.

[11] Akitoshi Takayasu, Kaname Matsue, Takiko Sasaki, Kazuaki Tanaka, Makoto Mizuguchi, and Shin’ichi Oishi: Verified numerical computations for blow-up solutions of ODEs, Computer Arithmetic and Validated Numerics, SCAN2016, Sep. 26-29, 2016.

(6)

㹌㹭

᪩✄⏣኱Ꮫ ༤ኈ㸦ᕤᏛ㸧 Ꮫ఩⏦ㄳ ◊✲ᴗ⦼᭩

✀㢮ู 㢟ྡࠊ Ⓨ⾲࣭Ⓨ⾜ᥖ㍕ㄅྡࠊ Ⓨ⾲࣭Ⓨ⾜ᖺ᭶ࠊ 㐃ྡ⪅㸦⏦ㄳ⪅ྵࡴ㸧

ㅮ₇

[12] Kazuaki Tanaka, Shin'ichi Oishi: On verified numerical computation for elliptic Dirichlet boundary value problems using sub- and super-solution method, The fifth Asian conference on Nonlinear Analysis and Optimization, Toki Messe, Niigata, Japan, August 1-6, 2016.

[13] Kouta Sekine, Kazuaki Tanaka, Shin'ichi Oishi: Estimation for optimal constant satisfying an inequality for linear operator using minimal eigenvalue, The fifth Asian conference on Nonlinear Analysis and Optimization, Toki Messe, Niigata, Japan, August 1-6, 2016.

[14] Kaname Matsue, Akitoshi Takayasu, Takiko Sasaki, Kazuaki Tanaka, Makoto Mizuguchi, and Shin’ichi Oishi: Rigorous numerics of blowup solutions for ODEs, The 11th AIMS Conference on Dynamical Systems, Differential Equations and Applications, July 1-5, 2016.

[15] Kazuaki Tanaka, Kouta Sekine, Shin'ichi Oishi: Numerically verifiable condition for positivity of solution to elliptic equation, The 11th East Asia SIAM. June, 20-22, 2016.

[16] 㧗Ᏻு⣖, ᯇỤせ, బࠎᮌከᕼᏊ, ⏣୰୍ᡂ, Ỉཱྀಙ, ኱▼㐍୍㸸ᨺ≀㠃ࢥࣥࣃࢡࢺ

໬ࢆ⏝࠸ࡿᖖᚤศ᪉⛬ᘧࡢ⇿Ⓨゎࡢᩘ್ⓗ᳨ドἲ㸪᪥ᮏᛂ⏝ᩘ⌮Ꮫ఍2015ᖺᗘ㐃ྜ

Ⓨ⾲఍㸪⚄ᡞᏛ㝔኱Ꮫ࣏࣮ࢺ࢔࢖ࣛࣥࢻ࢟ࣕࣥࣃࢫ㸪2016ᖺ3᭶4᪥㹼3᭶5᪥㸬

[17] Kazuaki Tanaka, Kouta Sekine, Makoto Mizuguchi, Shin'ichi Oishi: Numerical verification for positiveness of solutions to self-adjoint elliptic problems, JSST 2015 International Conference on Simulation Technology, Oct. 12-14, 2015.

[18] Kazuaki Tanaka and Shin'ichi Oishi: Computer-assisted analysis for solutions to nonlinear elliptic Neumann problems, JSST 2014 International Conference on Simulation Technology, Oct. 29-31, 2014.

[19] Kazuaki Tanaka and Shin'ichi Oishi: Numerical verification for periodic stationary solutions to the Allen-Cahn equation, The16th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, SCAN2014, Sep. 21-26, 2014.

[20] 㧗Ᏻு⣖, ᯇỤせ㸪బࠎᮌከᕼᏊ㸪⏣୰୍ᡂ㸪Ỉཱྀಙ㸪኱▼㐍୍㸸Verified numerical

enclosure of blow-up time for ODEs㸪᪥ᮏᩘᏛ఍2015ᖺᗘᖺ఍㸪ி㒔⏘ᴗ኱Ꮫ㸪2015 ᖺ9᭶13᪥㹼9᭶16᪥㸬

[21] ⏣୰୍ᡂ, 㛵᰿᫭ኴ, Ỉཱྀಙ, ኱▼㐍୍㸸ᴃ෇ᆺ೫ᚤศ᪉⛬ᘧࡢゎࡢṇ್ᛶ࡟ᑐࡍࡿ

ᩘ್ⓗ᳨ドἲ㸪᪥ᮏᛂ⏝ᩘ⌮Ꮫ఍2015ᖺᗘᖺ఍㸪㔠ἑ኱Ꮫ㸪2015ᖺ9᭶9᪥㹼9᭶ 11᪥㸬

[22] ⱝᒣ㤾ኴ, ⏣୰୍ᡂ, 㛵᰿᫭ኴ, ᑿᓮඞஂ, ኱▼㐍୍㸸㏲ḟῧຍἲ࡟ࡼࡿ୕ゅᙧศ๭

ࡢDelaunay ᛶ࡟ᑐࡍࡿᩘ್ⓗ᳨ドἲ㸪᪥ᮏᛂ⏝ᩘ⌮Ꮫ఍2015ᖺᗘᖺ఍㸪㔠ἑ኱Ꮫ㸪

2015ᖺ9᭶9᪥㹼9᭶11᪥㸬

[23] 㧗Ᏻு⣖, ᯇỤせ㸪బࠎᮌከᕼᏊ㸪⏣୰୍ᡂ㸪Ỉཱྀಙ㸪኱▼㐍୍㸸ᖖᚤศ᪉⛬ᘧࡢ

⇿Ⓨゎ࡟ᑐࡍࡿ⢭ᗘಖド௜ࡁᩘ್ィ⟬㸪᪥ᮏᛂ⏝ᩘ⌮Ꮫ఍2015ᖺᗘᖺ఍㸪㔠ἑ኱Ꮫ㸪 2015ᖺ9᭶9᪥㹼9᭶11᪥㸬

(7)

㹌㹭

᪩✄⏣኱Ꮫ ༤ኈ㸦ᕤᏛ㸧 Ꮫ఩⏦ㄳ ◊✲ᴗ⦼᭩

✀㢮ู 㢟ྡࠊ Ⓨ⾲࣭Ⓨ⾜ᥖ㍕ㄅྡࠊ Ⓨ⾲࣭Ⓨ⾜ᖺ᭶ࠊ 㐃ྡ⪅㸦⏦ㄳ⪅ྵࡴ㸧

ㅮ₇

ࡑࡢ௚

㸦 ࣏ ࢫ ࢱ

࣮Ⓨ⾲㸧

ࡑࡢ௚

㸦ཷ㈹㸧

[24] 㛵᰿᫭ኴ㸪⏣୰୍ᡂ㸪㧗Ᏻு⣖㸪ᒣᓮ᠇㸸ࢩࢢ࣐ࣀ࣒ࣝࢆ฼⏝ࡋࡓ⢭ᗘಖド௜ࡁᩘ

್ィ⟬ἲࡢ㐃❧ᴃ෇ᆺ೫ᚤศ᪉⛬ᘧ࡬ࡢᛂ⏝㸪➨㸲㸵ᅇ᪥ᮏ኱Ꮫ⏕⏘ᕤᏛ㒊Ꮫ⾡ㅮ

₇఍㸪᪥ᮏ኱Ꮫ㸪2014ᖺ12᭶6᪥㸬

[25] ⏣୰୍ᡂ㸪Ỉཱྀಙ㸪㛵᰿᫭ኴ㸪኱▼㐍୍㸸An a priori estimation of the Sobolev embedding constant and its application to numerical verification for solutions to PDEs, ➨10ᅇ᪥ᮏᛂ

⏝⌮Ꮫ఍◊✲㒊఍㐃ྜⓎ⾲఍㸪ி㒔኱Ꮫྜྷ⏣࢟ࣕࣥࣃࢫ⥲ྜ◊✲㸶ྕ㤋㸪 2014ᖺ3

᭶19᪥㹼3᭶20᪥㸬

[26] Kazuaki Tanaka and Shin'ichi Oishi: Numerical verification for stationary solutions to the Allen-Cahn equation, The International Workshop on Numerical Verification and its Applications, Waseda Univ. Nishiwaseda campus, Japan, March, 2014.

[27] Kazuaki Tanaka, Makoto Mizuguchi, Kouta Sekine, Akitoshi Takayasu, Shin'ichi Oishi:

Estimation of an embedding constant on Lipschitz domains using extension operators, JSST 2013 International Conference on Simulation Technology. Sep. 11-13, 2013.

[28] ⏣୰୍ᡂ, 㧗Ᏻு⣖, ๽㞷ᓠ, ኱▼㐍୍㸸⥺ᙧᴃ෇ᆺస⏝⣲ࡢNeumann᮲௳ୗ࡟࠾ࡅ

ࡿ⢭ᗘಖド௜ࡁ㏫స⏝⣲ࣀ࣒ࣝホ౯, ᪥ᮏᛂ⏝ᩘ⌮Ꮫ఍ 2013ᖺᗘᖺ఍, ࢔ࢡࣟࢫ⚟

ᒸ, ⚟ᒸ┴⚟ᒸᕷ, 2013ᖺ9᭶9᪥㹼9᭶11᪥.

[29] Kazuaki Tanaka, Akitoshi Takayasu, Xuefeng Liu, Shin'ichi Oishi: Verified norm estimation for the inverse of linear elliptic operators and its application, The 9th East Asia SIAM. June 18-20, 2013.

[30] ⏣୰୍ᡂ, 㧗Ᏻு⣖, ๽㞷ᓠ, ኱▼㐍୍㸸㏫స⏝⣲ࣀ࣒ࣝホ౯ࢆ⏝࠸ࡓᴃ෇ᆺ

Neumannቃ⏺್ၥ㢟ࡢゎ࡟ᑐࡍࡿ⢭ᗘಖド௜ࡁᩘ್ィ⟬, ᪥ᮏᛂ⏝ᩘ⌮Ꮫ఍2013ᖺ

ᗘ㐃ྜⓎ⾲఍, ᮾὒ኱Ꮫⓑᒣ࢟ࣕࣥࣃࢫ, 2013ᖺ3᭶14᪥㹼3᭶15᪥.

[31] ⏣୰୍ᡂ, 㧗Ᏻு⣖, ๽㞷ᓠ, ኱▼㐍୍㸸⥺ᙧᴃ෇ᆺస⏝⣲ࡢNeumann᮲௳ୗ࡟࠾ࡅ

ࡿ⢭ᗘಖド௜ࡁ㏫స⏝⣲ࣀ࣒ࣝホ౯, ᪥ᮏᛂ⏝ᩘ⌮Ꮫ఍ 2012ᖺᗘᖺ఍, ⛶ෆ඲᪥✵

࣍ࢸࣝ, ໭ᾏ㐨⛶ෆᕷ, 2012ᖺ8᭶28᪥㹼9᭶2᪥. 㸦ࡑࡢ௚ㅮ₇㸳௳㸧

[32] ⱝᒣ㤾ኴ, ⏣୰୍ᡂ, 㛵᰿᫭ኴ, ᑿᓮඞஂ, ኱▼㐍୍㸸Delaunay ୕ゅᙧศ๭ࡢ⢭ᗘಖ

ド௜ࡁᩘ್ィ⟬ᡭἲ࡟ᑐࡍࡿ⪃ᐹ㸪᪥ᮏᛂ⏝ᩘ⌮Ꮫ఍2016ᖺᗘᖺ఍㸪໭஑ᕞᅜ㝿఍

㆟ሙ㸪2016ᖺ9᭶12᪥㹼9᭶14᪥㸬 㸦ࡑࡢ௚࣏ࢫࢱ࣮Ⓨ⾲㸰௳㸧

[33] ⱝᒣ㤾ኴ, ⏣୰୍ᡂ, 㛵᰿᫭ኴ, ᑿᓮඞஂ, ኱▼㐍୍, ᪥ᮏᛂ⏝ᩘ⌮Ꮫ఍2016ᖺᗘᖺ

఍㸪ඃ⚽࣏ࢫࢱ࣮㈹ ཷ㈹㸬

[34] ⏣୰୍ᡂ㸪2016ᖺᗘ኱ᕝຌグᛕ≉ูඃ⚽㈹ ཷ㈹㸬

[35] Kazuaki Tanaka, JSST 2014 International Conference, Student Presentation Award ཷ㈹㸬

[36] Kazuaki Tanaka, JSST 2013 International Conference, Student Presentation Award ཷ㈹㸬

参照

関連したドキュメント

Katsura (Graduate School of Informatics, Kyoto University) Numerical simulation of the transport equation by upwind scheme..

* Department of Mathematical Science, School of Fundamental Science and Engineering, Waseda University, 3‐4‐1 Okubo, Shinjuku, Tokyo 169‐8555, Japan... \mathrm{e}

Homotopy perturbation method HPM and boundary element method BEM for calculating the exact and numerical solutions of Poisson equation with appropriate boundary and initial

Thus, if we color red the preimage by ζ of the negative real half axis and let black the preimage of the positive real half axis, then all the components of the preimage of the

Arnold This paper deals with recent applications of fractional calculus to dynamical sys- tems in control theory, electrical circuits with fractance, generalized voltage di-

Arnold This paper deals with recent applications of fractional calculus to dynamical sys- tems in control theory, electrical circuits with fractance, generalized voltage di-

Besides the number of blow-up points for the numerical solutions, it is worth mentioning that Groisman also proved that the blow-up rate for his numerical solution is

Condition (1.2) and especially the monotonicity property of K suggest that both the above steady-state problems are equivalent with respect to the existence and to the multiplicity