1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1

全文

(1)

1

テンソル積

テンソルは座標変換により一定の変換をする幾何学量,物理学量を扱うた めに

Ricci

によって導入されたものです. テンソルはベクトル空間の多重線型写像という性質とベクトルの基底を定 めたとき,決まる数の組で,基底を変換したとき一定の規則で変換するとい う性質を持っています.これらの内容を説明するのが目的です 第1節ではまずテンソルをベクトルの基底を用いない抽象的な取り扱いを します.この方法は内容がすっきりしており理論を学ぶには向いています が,定義より読みとるべき内容を理解するにはある程度の慣れが必要です. 第2節ではテンソルの伝統的な方法に従った,ベクトルの基底を用いて, テンソルの成分の変換公式を中心に説明します.テンソルの成分表示の上 付き,下付きの方法と和のアインシュタインの表示法を理解すれば,テンソ ルの基底の取り替えの変換公式が思いのほか簡単に処理できるのが分かり ます. 第3節ではベクトル空間の計量テンソルを用いてテンソルの説明をしま す.テンソルの理解が深まると思います. 第4節ではテンソルの縮約を説明します.

第1節  テンソル積

V, Vi, W

がベクトル空間で

f : V

−→ W

が線型写像のとき,

f

の像

f (V ) = Imf

W

の部分ベクトル空間ですが 多重線型写像

(

双線型写像も含む

)

f : V

1

× · · · × V

k

−→ W

の像すなわち

(2)

{f(v

1

, . . . , v

k

)

|vi

∈ Vi}

W

の部分空間とは限らない.このときは生成したベクトル空間を考 え,

< Imf >

のように

< >

で多重線型写像

f

の像の生成した

W

の部分 ベクトル空間を表す. また,

V, Vi, W

がベクトル空間のとき 線型変換

f : U

−→ V

全体の作るベクトル空間を

L(U ; V )

と表し 多重線型写像

f : V

1

× · · · × V

r

−→ W

全体の作るベクトル空間を

L(V

1

, . . . , V

r

; W )

と表す.なお,ベクトル空 間

L(V

1

, . . . , Vr

; W )

における和,定数倍は

(f + g)(v

1

, . . . , v

r

) = f (v

1

, . . . , v

r

) + g(v

1

, . . . , v

r

)

(kf )(v

1

, . . . , v

r

) = kf (v

1

, . . . , v

r

)

で定義する. テンソルの定義から入る. 定義

U, V

をそれぞれベクトル空間とする. 下の条件(1),(2)を満たすベクトル空間

W

と双線型写像

⊗ : U × V −→ W

が存在する. (1)

W =< Im

⊗ >=< ⊗(U × V ) >

(2)任意のベクトル空間

X

と双線型写像   

f : U

× V −→ X

に対して,必ず線型写像

g : W

−→ X

(3)

が存在して

f = g

◦ ⊗

が成り立つ. ベクトル空間

W

をベクトル空間

U

とベクトル空間

V

の各ベクトルのテ ンソル積が生成するテンソル空間または簡単にべクトル空間

U

とベクトル 空間

V

のテンソル積といい

W = U

⊗ V

と表す.

U

× V

-

W (= U

⊗ V )

@

@

@

@

@

R X

?

g

f

以後,

⊗(u, v) = u ⊗ v, (u ∈ U, v ∈ V )

と表す. この定義を読んで内容が読みとれる人は相当のものです.定義から読みと るべき内容は後で説明するとしてまず定義が意味を持つことを証明する必要 があります.

(2)

において,このような

g

が存在するなら唯一つに限ることから示し ます.

g

1

, g

2

: W

−→ X

が共に条件を満たすと,すなわち

g

1

◦ ⊗ = g

2

◦ ⊗

とする.

u

∈ U, v ∈ V

に対して

g

1

(u

⊗ v) = f(u, v), g

2

(u

⊗ v) = f(u, v)

および,

W

u

⊗ v

で生成されたベクトル空間で,

g

1

, g

2が線型変換,

u, v

が任意であるから

g

1

= g

2 が成り立つ.したがって,

g

がただ一つに限るこ とが示された.

(4)

U

× V

から

W

への双線型写像全体よりなるベクトル空間を

L(U, V ; W )

であらわす. 以下

W

及び

を実際に構成する.

U, V

の双対空間をそれぞれ

U

, V

と する.

U

3 u, V 3 v

に対して

u

⊗ v ∈ L(U

, V

;

R)

を次のように定義する. 任意の

α

∈ U

, β

∈ V

に対して

u

⊗ v(α, β) = u(α)v(β)

ここで,

u(α), v(β)

はベクトル空間とその双対空間の自然な演算である.

⊗ : U × V −→ L(U

, V

;

R)

は双線型写像である.実際

(u

1

+ u

2

)

⊗ v(α, β) = (u

1

+ u

2

)(α)v(β) = u

1

(α)v(β) + u

2

(α)v(β) =

u

1

⊗ v(α, β) + u

2

⊗ v(α, β)

等.

によって定義された

u

⊗ v (u ∈ U, v ∈ V )

の生成する

L(U

, V

;

R)

の 部分空間を

W

とする.このとき

W

⊂ L(U

, V

;

R)

W

が定義の条件を満たすことを証明する.

{e

i

}, {f

i

}

をそれぞれ

U, V

の基底とし,

U

, V

{e

i

}, {f

i

}

に対応する 双対基底をそれぞれ

{e

i

}, {f

i

}

とする.

は双線型写像であるから,

u

⊗ v = u(e

i

)e

i

⊗ v(f

j

)f

j

= u(e

i

)v(f

j

)e

i

⊗ f

j したがって,

e

i

⊗ fj

W

の基底となる. 一方,

g

∈ L(U

, V

;

R)

とする.

g(e

i

, f

j

) = g

ij とおけばすでに定義した

ei

⊗ e

j を用いて

g = g

ij

e

i

⊗ e

j と表せる.実際

g(α, β) = g(α

i

e

i

, β

j

e

j

) = α

i

β

j

g

ij

= g

ij

e

i

(α)e

j

(β) = g

ij

e

i

⊗ e

j

(α, β)

(5)

したがって,

L(U

, V

;

R) ⊂ W

ゆえに

W = L(U

, V

;

R)

が成り立つことが分かる. 以上で

W

が構成された.後は条件(2)を満たすことを証明することだ けである.

f : U

× V −→ X

の任意の双線型写像

f

について,任意の

u

∈ U, v ∈ V

に対して線型写像

g : W

−→ X

g(u

⊗ v) = f(u, v)

で定義すれば

f = g

◦ ⊗

を満たす.

g

の一意性はすでに示されているから以上で,定義を満たすベクトル空間

W = U

⊗ V

が存在することが証明された. 以上が2つのベクトル空間のテンソル積の定義およびその定義が意味があ ることの説明です. テンソル積とは,2つのベクトル空間

U, V

u

∈ U, v ∈ V

に対して

u, v

に関して双線型である積

u

⊗ v

すなわち

(u

1

+ u

2

)

⊗ v = u

1

⊗ v + u

2

⊗ v

u

⊗ (v

1

+ v

2

) = u

⊗ v

1

+ u

⊗ v

2

(ku)

⊗ v = u ⊗ (kv) = k(u ⊗ v)

を満たす演算

u

⊗ v

のことです.当然上の定義からこの演算が定義される ことを読みとる必要があります. まず,定義から

U

⊗V

は同型を除きただ一つに決まることが分かる.実際

⊗ : U × V −→ W

(6)

¯

⊗ : U × V −→ W

が共に定義の2条件を満たすとする.このとき線型写像

f : W

−→ W

g : W

−→ W

が存在し

f

◦ ⊗ = ¯⊗, g ◦ ¯⊗ = ⊗

U

× V

-

W

@

@

@

@

@

R W

?

6

f

g

¯

W, W

はそれぞれ

⊗, ¯⊗

の像の生成したベクトル空間であるから

f

◦ g, g ◦ f

はそれぞれ恒等写像,したがって,

(W,

⊗), (W , ¯⊗)

は同型で ある. したがって,

U

⊗ V (= W )

は条件を満たすベクトル空間を一つ見つけれ ばよく,証明の中で

U

⊗ V

構成されており,それは

L(U

, V

;

R)

である. 具体的にいえば

u

⊗ v(α, β) = α(u)β(v), α ∈ U

, β

∈ V

で定義される.

u, v

に関して線型であることは証明の中で述べてある. このように,

U

⊗ V

はテンソル積の定義のなかの

(1), (2)

の条件だけで一 意的

(

普遍的

)

に決まる.それで,この2条件

(1), (2)

をテンソル積の普遍 性という,ここで述べた定義をテンソルの普遍性による定義と呼ぶことも ある. テンソルの普遍性のダイアグラム

(7)

U

× V

-

W (= U

⊗ V )

@

@

@

@

@

R X

?

g

f

から分かる内容を調べよう.

f

∈ L(U, V : X)

に対して

g

∈ L(U ⊗ V ; X)

がただ一つ決まるからこの 対応による写像

Φ : L(U, V ; X)

−→ L(u ⊗ V ; X)

は1対1である.

Φ

が線型写像であり,2つのベクトル空間の次元が等し いから

L(U, V ; X) ∼

= L(U

⊗ V ; X)

がわかる. さらに

X

R

に替えれば

L(U, V ;

R) ∼

= L(U

⊗ V ; R) = (U ⊗ V )

また,

(U

⊗ V )

= U

⊗ V

が成り立つ.それは

U

⊗ V = L(U

, V

;

R)

より

U

⊗ V

= L(U, V ;

R) = (U ⊗ V )

となる. これらをまとめると

L(U, V ; W ) ∼

= L(U

⊗ V ; W ) ∼

= (U

⊗ V )

⊗ W ∼

= U

⊗ V

⊗ W

3つ以上のベクトル空間のテンソル積

V

1

⊗ V

2

⊗ · · · ⊗ V

k も同様に定義で きる.すなわち

V

1

, . . . , V

k をそれぞれベクトル空間とする. 下の条件(1),(2)を満たすベクトル空間

W

と多重線型写像

(8)

⊗ : V

1

× · · · × Vk

−→ W

が存在する. (1)

W =< Im

⊗ >=< ⊗(V

1

× · · · × V

k

) >

(2)任意のベクトル空間

X

と多重線型写像   

f : V

1

× · · · × V

k

−→ X

に対して,必ず線型写像

g : W

−→ X

が存在して

f = g

◦ ⊗

が成り立つ. このベクトル空間

W

W = V

1

⊗ · · · ⊗ V

k と表す.なお,

W = L(V

1

, . . . , V

k

;

R)

である.

第2節  反変ベクトルと共変ベクトル

第1節では,普遍性に基づいてテンソルを述べたが,これからは伝統的な ベクトルの基底を用いた取り扱いをする. まず,ベクトル空間

V

の定義を確認しよう. 実数

R

上のベクトル空間

V

とは,集合

V

に次の2つの演算が定義され

,

(1)

任意の

x, y

∈ V

に対して

V

の要素

x + y

がただ一つきまる.

(2)

任意の

x

∈ V, a ∈ R

に対して

V

の要素

ax

がただ一つきまる. さらに,これらの演算が任意の

x, y, z

∈ V, a, b ∈ R

に対して次の条件を 満足するものである.

• a(x + y) = ax + ay, (a + b)x = ax + bx

• (ab)x = a(bx)

(9)

ベクトル空間とはこのような抽象的な集合である.基底はベクトル空間

V

の要素を表現するためのものである.さらに,基底の選び方は幾らでもあ り,基底を変えたときの変換則があり規則に従う

(32

ページ参照

)

.ですか ら,ベクトル空間

V

上で何かを定義するとき,基底を用いるならば,他の 基底のとき規則に従った変形をするかどうかを調べる必要があり,これは案 外煩雑です.したがって,できるだけ基底を用いない方法をとる,これが数 学の特にリーマン幾何の基本的な立場です.このベクトルの基底によらない 扱い方を,ベクトルがもともと(生まれながら)持っている(稟性)の意味 の

Intrinsic

を用いて,

Intrinsic

な方法といいます.第1節で述べたテンソ ルの定義をもう一度見てみましょう.基底を用いていない

Intrinsic

な定義 であることが分かります. この

Intrinsic

な方法は取り扱いやすいのですが,実際に何かを計算しよ うとすると,ベクトル空間の基底を用いた成分計算が必要になり,成分計算 は避けては通れません.以下テンソルの伝統的な方法に従って解説します. ベクトル空間

V

を扱うのに基底

{e

1

, e

2

,

· · · , e

n

}

を用い

V

の要素

x

x = x

1

e

1

+ x

2

e

2

+

· · · + x

n

en

と 表 し 調 べ る の で あ る .こ こ で 大 事 な の は ,ベ ク ト ル 空 間 の 基 底

{e

1

, e

2

,

· · · , e

n

}

はベクトルの要素を表すためのものである.ベクトル空間 の基底のとり方は幾らでもあるので,基底を変えたときベクトルの成分

x = (x

1

, x

2

,

· · · , x

n

)

がどうなるかを調べる必要がある. それを調べよう.まずルールをはっきりさせます. ベクトル空間

V

の基底は

ei

のように添字は下に置き,ベクトルを基底を 用いて表すときの成分の添字は上に置く.たとえば

V

3 v = v

1

e

1

+

· · · v

n

e

n

= v

i

e

i

(10)

となる.一番右側はアインシュタイン規約に従った表示です.なおアイン シュタイン規約とは1つの項の中の上下に同じ添字があるとき,ここでは

i

, その添字が動く範囲全体の和をとることです. さらに

V

の要素は列ベクトルとして扱う. 次に

V

の双対空間

V

の基底は

e

i のように添字は上に置き,ベクトルを 基底を用いて表すときの成分の添字は下に置く.たとえば

V

3 w = w

1

e

1

+

· · · w

n

e

n

= w

i

e

i となる.なお,

V

の基底

{e

1

, . . . , e

n}の双対基底はここでは同じ文字を用 いて,

{e

1

,

· · · , e

n

}

とし,

V

の要素は行ベクトルとして扱う.

V

の要素と

V

の要素の自然な演算は行列の積として行う. このルールに従って計算すれば,ベクトル,双対ベクトル,テンソルの座 標変換による成分の変換公式がすっきり理解できる. ベクトル空間

V

の基底を1つとりそれを

{e

1

, . . . , e

n

}

とする.このとき,

v

∈ V

v = x

i

e

i より,

n

個の実数

{x

i

}

により

v = (x

1

, . . . , x

n

)

と表せる. 次に,

V

の別の基底

{f

1

, . . . , f

n

}

をとる.基底

{e

i

}

と基底

{f

i

}

の関係が

f

i

= a

j i

e

j のとき,すなわち

(11)

³

f

1

· · · fn

´

=

³

e

1

· · · en

´

a

11

· · · a

1n

..

.

..

.

..

.

a

n1

· · · a

nn

 · · · (])

のとき. ここで

A =

a

11

· · · a

1n

..

.

..

.

..

.

a

n1

· · · a

nn

とおく. 基底変換でベクトルの成分がどのように変換するか調べよう.

v = x

i

e

i

= y

i

f

i のとき,行列で表示すると

³

f

1

· · · f

n

´

y

1

..

.

y

n

 =

³

e

1

· · · e

n

´

x

1

..

.

x

n

上の

(])

を代入して

³

e

1

· · · en

´

A

y

1

..

.

y

n

 =

³

e

1

· · · en

´

x

1

..

.

x

n

³

e

1

· · · e

n

´

は逆行列を持つから,

A

y

1

..

.

y

n

 =

x

1

..

.

x

n

をえる. ここで行ったことをまとめると次のようになる. 命題 ベクトル空間

V

の基底

{e

1

, . . . , e

n}, {f1

, . . . , f

n}

(12)

³

f

1

· · · f

n

´

=

³

e

1

· · · e

n

´

A

の関係があるとき,

v

∈ V

に対して

v = x

i

e

i

= y

i

f

i なら

A

y

1

..

.

y

n

 =

x

1

..

.

x

n

である.すなわち

a

ji

y

i

= x

j 注意

1.

命題から分かるようにベクトルの基底には行列を右からかけ(右から作 用するという),ベクトルの成分には行列を左側からかける.これは,行列 が空間に作用するとき区別しなければならない重要なことです.

2.

命題をよく見ると,基底の変換と成分の変換の行列は変わりませんが, 基底では

{e

i

}

側にかけ,成分は反対の

{f

i

}

にかけます.これは後で説明す ることですが

V

を反転ベクトルというゆえんです.

3.

添字を上下に置くことで,変形が驚くほどうまくいきます.

4.

ここでは

{e

i

}

{f

i

}

の関係を基底は列ベクトルとし

³

f

1

· · · f

n

´

=

³

e

1

· · · e

n

´

A

とした.これを,両辺の転置をとった

,

すなわち基底を行ベクトルとみた

f

1

..

.

f

n

 = A

t

e

1

..

.

e

n

としても問題はないが,転置行列がでてきて混乱しおすすめできない.本 稿の内容は全く転置行列は出てこない.

(13)

次に

V

の双対空間

V

を考える.

V

の基底

{e

i

}

の双対基底を

{e

i

}

と文字をかえず添字を上にかく.さら に,

v

∈ V

v = xie

i より,

n

個の実数

{xi}

により

v = (x

1

, . . . , x

n

)

と表せる.このように,

V

の基底の添字は上に置き,成分の添字は下に 置く. ベクトル空間

V

の基底を

{e

i

}

から

{f

i

}

に変換したとき双対空間

V

の ベクトルの成分はどのように変換するかを調べよう.

³

f

1

· · · f

n

´

=

³

e

1

· · · e

n

´

A

とする.まず,双対基底の変換式を調べよう. まず,

e

1

..

.

e

n

³

e

1

· · · e

n

´

=

f

1

..

.

f

n

³

f

1

· · · f

n

´

= E

である.ただし

E

は単位行列.

e

1

..

.

e

n

³

f

1

· · · fn

´

=

e

1

..

.

e

n

³

e

1

· · · en

´

A = A

= A

f

1

..

.

f

n

³

f

1

· · · f

n

´

であり,行列

³

f

1

· · · f

n

´

は逆行列を持つから

(14)

A

f

1

..

.

f

n

 =

e

1

..

.

e

n

次に

v

∈ V

v = xie

i

= y

ifi のとき

³

x

1

· · · x

n

´

e

1

..

.

e

n

 =

³

y

1

· · · y

n

´

f

1

..

.

f

n

より

³

x

1

· · · x

n

´

A

f

1

..

.

f

n

 =

³

y

1

· · · y

n

´

f

1

..

.

f

n

³

x

1

· · · xn

´

A =

³

y

1

· · · yn

´

∴ x

i

a

ij

= y

j 以上の内容をまとめると次の命題になる. 命題 ベクトル空間

V

の基底

{e

1

, . . . , e

n

}, {f

1

, . . . , f

n

}

³

f

1

· · · f

n

´

=

³

e

1

· · · e

n

´

A

の関係があるとき,基底

{e

1

, . . . , e

n}, {f1

, . . . , f

n} の双対基底をそれぞれ

{e

1

, . . . , e

n

}, {f

1

, . . . , f

n

}

このとき

A

f

1

..

.

f

n

 =

e

1

..

.

e

n

が成り立ち,さらに

v

∈ V

に対して

(15)

v = x

i

e

i

= y

i

f

i なら

³

y

1

· · · y

n

´

=

³

x

1

· · · x

n

´

A

である.すなわち

yj

= a

ij

xi

ここで,

V

を反変ベクトル,

V

を共変ベクトルというわけが理解できる. すなわち ベクトル空間

V

の基底

{e

1

, . . . , en

}, {f

1

, . . . , fn

}

³

f

1

· · · f

n

´

=

³

e

1

· · · e

n

´

A

の関係があるとき

.

行列

A

の逆行列を

B = (b

ij

)

とおくと

v

∈ V

に対して

v = x

i

e

i

= y

i

f

i のとき

A

y

1

..

.

y

n

 =

x

1

..

.

x

n

すなわち

y

1

..

.

y

n

 = B

x

1

..

.

x

n

 · · · (1)

v

∈ V

に対して

v = x

i

e

i

= y

i

f

i のとき

³

y

1

· · · y

n

´

=

³

x

1

· · · x

n

´

A

· · · (2)

∴ y

i

= x

j

a

j i すなわち

V

の要素の基底の変換による成分の変換は基底の変換を定める

(16)

行列の逆行列を用いるが,

V

の要素は同じ行列を用いる.これが

V

を反転 ベクトル,

V

を共変ベクトルというゆえんです. つぎにテンソル積の説明に入ります.まず見慣れた線型変換を考え,その 後一般的な定義をする.なお,線型変換は次の節でも再度説明する. 線型変換

f : V

−→ V

V

の基底

{e

1

, . . . , e

n

}

を用いれば

f (ei

) = f

ij

ej

より定まる

n

2 個の実数の組

{f

ij

}

で決まる. もう一つの基底

{d

1

, . . . , dn

}

をとり

³

d

1

· · · d

n

´

=

³

e

1

· · · e

n

´

A

すなわち

d

i

= a

j i

e

j を満たすとき,

f (di

) = ¯

f

ij

dj

で定まる

{ ¯

f

ij

}

{f

ij

}

の関係を調べよう.

f (di

) = f (a

ji

ej

) = a

ji

f

jk

ek

一方

f (d

i

) = ¯

f

ij

d

j

= ¯

f

ij

a

kj

e

k したがって,

¯

f

ij

a

kj

= a

ji

f

jk

(a

ji

)

の逆行列

(b

ji

)

b

lk を両辺にかけ

k

につぃての和をとると

¯

f

ij

a

kj

b

lk

= a

ji

f

jk

b

lk

∴ ¯

f

il

= f

jk

a

ji

b

lk

· · · (3)

すなわち,

{f

ij

}

は座標変換で上つきの添字は反変ベクトルの変換をし,下 つきの添字は共変ベクトルの変換をします.

(17)

ベクトル空間

V

の線型変換は次のように言うことができます.

V

の基底が定まればきまる

n

2 個の数字の組

{f

ij

}

で,基底の変換による 変換は

(3)

にしたがう. 次に1次変換

f : V

−→ V

に対して,双線型写像

F : V

× V −→ R

α

∈ V

, v

∈ V

のとき

F (α, v) = α(f (v))

で定義する.逆に,双線型写像

F

が与えられたとき,

V

の基底

{e

i

}

とそ の双対基底

{e

i

}

を用いて

f (v) = f (e

i

, v)e

i によって定義すると,この定義は基底を用いた定義であるが,基底の取り 方によらない.したがって,この定義は

well defined

(整合性がある)であ る(

30

ページ参照).

f

ij の定義は

f (ei

) = f

ij

ej

であった.

f (e

i

) = F (e

j

, e

i

)e

j より

f

ij

= F (e

j

, e

i

)

である. このことから,

f

ij

F (α, v) = α(f (v))

で定義した双線型写像

F : V

× V −→ R

(18)

で表せば

f

ij

= F (e

j

, e

i

)

となる.これが分かれば,

f

ij の基底変換による変換式はもっとわかりや すい.実際 2つの基底

{e

i

}, {d

i

}

の関係が

d

i

= a

j i

e

j のとき

d

i

= b

ij

e

j であるから

¯

f

ij

= F (d

j

, di

) = F (b

jk

e

k

, a

li

el

) = b

jk

a

li

f

lk となる.このように,線型写像で行った基底変換による変換式が双線型写 像と見れば自然に導き出される.これらの内容は第3節で詳しく説明して ある. 以上の準備の元で,改めてテンソルの定義をしよう. 定義

1

V

n

次元ベクトル空間,

V

をその双対空間とする.このとき

r + s

重 線型写像

f :

r

z

}|

{

V

× · · · × V

×

s

z

}|

{

V

×

· · · × V −→ R

r

階反変

,s

階共変テンソルまたは

(r,s)

型テンソルという.

V

の基底を

{e

i

}

その双対基底を

{e

i

}

とするとき

n

r+s 個の実数

f

i1...ir y1...js

= f (e

i1

, . . . , e

ir

, ej

1

, . . . , ej

r

)

をテンソル

f

の基底

{ei}

における成分という. 注意 テンソルの成分で添字は

f

i1...ir y1...js のように上にあればその真下はあけ ておき,下にあればその真上はあけておくのが一般的な書き方です.後で,

(19)

ユークリッド空間

(

内積が適されたベクトル空間

)

では,添字の上げ下げを 行うからです. もう一つのテンソルの定義をします. 定義

2

V

n

次元ベクトル空間とする.

V

上の基底を定めたとき

n

r+s 個の実 数の組が定まり,その実数の組が基底変換で次の条件を満たすとき,この

n

r+s 個の実数の組を

r

階反変

,s

階共変テンソルという 基底が

{ei}

のとき定まる

n

r+s 個の実数の組

{f

i1...ir y1...js

}

,基底が

{di}

のとき定まる

n

r+s 個の実数の組

f

¯

i1...ir j1...js,が基底変換

di

= a

ji

ej

のとき

¯

f

k1...kr l1...ls

= b

k1 i1

. . . b

kr ir

a

j1 l1

. . . a

js ls

f

i1...ir j1...js を満たす.ただし,

(b

ji

)

(a

ji

)

の逆行列. 定義1と定義2が同値であることを確認しよう. 定義

1

定義

2

d

i

= a

j i

e

j のとき

d

i

= b

ij

e

j であるから

¯

f

k1...kr l1...ls

= f (d

ki

, . . . , d

kr

, d

l1

, . . . , d

ls

)

= b

k1 i1

. . . b

kr ir

a

j1 l1

. . . a

js ls

f

i1...ir j1...js 定義

2

定義

1

記号が煩雑になるので,

(2, 2)

型のテンソルのとき示す.

V

上の基底

{e

i

}

を定めたとき

n

2+2 個の実数の組

f

i1i2j1j2 が定まり,そ の実数の組が基底変換により

(20)

¯

f

k1k2 l1l2

= b

k1 i1

b

k2 i2

a

j1 l1

a

j2 l2

f

i1i2 j1j2 を満たす

.

u, v

∈ V, α, β ∈ V

に対して,

u = u

i

e

i

, v = v

i

e

i

, α = α

i

e

i

, β = β

i

e

i のとき

,

多重線型写像

f (α, β, u, v)

f (α, β, u, v) = α

i1

β

i2

u

j1

v

j2

f

i1i2 j1j2 で定義する.この定義が基底変換で矛盾がないためには

V

の別の基底で も同じであることを示せばよい.

d

i

= a

j i

e

i のとき

v

i

e

i

= ¯

v

i

d

i のとき

¯

v

i

= b

ij

v

j

α

i

e

i

= ¯

α

i

d

i のとき

¯

α

i

= a

j i

α

j から

¯

α

i1

β

¯

i2

u

¯

j1

v

¯

j2

f

¯

i1i2 j1j2

= (a

k1 i1

α

k1

)(a

k2 i2

β

k2

)(b

j1 l1

u

l1

)(b

j 2 l2

v

l2

) ¯

f

i1i2 j1j2

= α

k1

β

k2

u

l1

v

l2

f

k1k2 l1l2 したがって証明された. ここまでである程度の慣れが必要ですがテンソルの計算は自由にできると 思います.

(21)

多重線型写像

f :

r

z

}|

{

V

× · · · × V

×

s

z

}|

{

V

× · · · × V −→ R

全体が作るベクトル空間を

L(

r

z

}|

{

V

,

· · · , V

,

s

z }| {

V,

· · · , V ; R)

または

V

sr と表 し,このベクトル空間を

r

階反変,

s

階共変テンソル空間という. なお,

f, g

∈ V

sr

, k

∈ R

に対して

(f + g)(v) = f (v) + g(v)

(kf )(v) = kf (v)

f + g, kf

を定義すれば

V

sr がベクトル空間になることは容易に分かる. ベクトル空間

V

sr

= L(

r

z

}|

{

V

,

· · · , V

,

s

z }| {

V,

· · · , V ; R)

の基底や次元を調べよう. 一般の場合は文字が煩雑になるので,ここでは

r = 2, s = 2

すなわち

V

22

= L(V

, V

, V, V ;

R)

で考える.

V

の基底として

{ei}

をとり,さらに双対空間

V

の双対基底を

{e

i

}

と する. このとき

e

i

⊗ e

j

⊗ e

k

⊗ e

l

∈ V

22 である. なお,

α = αi

e

i

, β = βi

e

i

, u = u

i

ei, v = v

i

ei,

のとき

e

i

⊗ e

j

⊗ e

k

⊗ e

l

(α, β, u, v) = α(e

i

)β(e

j

)e

k

(u)e

l

(v)

で定義し

= α

i

β

j

u

k

v

l

(22)

次に,任意の

f

∈ V

22 が

e

i

⊗ ej

⊗ e

k

⊗ e

l で表せることを示す.

f (α, β, u, v)

= f (α

iei

, βj

e

j

, u

k

ek, v

l

el

)

= f

klij

α

i

β

j

u

k

v

l ただし,

f (e

i

, e

j

.ek, el

) = f

klij とおいた.

= f

klij

e

i

⊗ ej

⊗ e

k

⊗ e

l

(α, β, u, v)

任意の

α, β, u, v

で成り立つから

f = f

klij

e

i

⊗ ej

⊗ e

k

⊗ e

l と表せる.すなわち,任意の

f

∈ V

22 は

n

4 個の

{e

i

⊗ e

j

⊗ e

k

⊗ e

l

}

の1 次結合で表せる. 次に

V

22 において,

{e

i

⊗ e

j

⊗ e

k

⊗ e

l

}

が1次独立であることをしめそう.

f

klij

e

i

⊗ e

j

⊗ e

k

⊗ e

l

= 0

とすると

f

klij

= f (e

i

, e

j

, e

k

, e

l

) = 0

であるから1次独立であることが分かる. すなわち

{e

i

⊗ e

j

⊗ e

k

⊗ e

l

}

がベクトル空間

V

22 の基底であり,次元は

dim V

22

= n

4 である. ここでいいたいことは,テンソルの普遍性より

L(V

, V

, V, V ) ∼

= V

⊗ V ⊗ V

⊗ V

· · · (])

を示すことが一般的である.しかし

u

⊗ v ⊗ α ⊗ β(u, v ∈ V, α, β ∈ V

)

が生成するベクトル空間が

V

⊗ V ⊗ V

⊗ V

であるから普遍性を用いずと も

(])

が理解できる. 一般の場合で説明したわけではないが,ベクトル空間

V

sr においては

e

i1

⊗ · · · e

ir

⊗ e

j1

⊗ . . . e

js が基底で,任意の

f

∈ V

sr

(23)

f

i1...ir j1...js

e

i1

⊗ · · · ei

r

⊗ e

j1

⊗ . . . e

js と一意的に表せることがわかるであろう. また

dim V

sr

= n

r+s が成り立つ. ここでテンソル計算の公式をまとめておくのでご利用下さい.

テンソル計算の公式

V

をベクトル空間,

{e

i

}, {f

i

}

を基底,それぞれの双対基底を

{e

i

}, {f

i

}

とする.

fj

= a

ij

ei

のとき行列

A

A = (a

ij

)

A

の逆行列

B

B = (b

ij

)

とする.すなわち,行列

A

の第

i

行第

j

成分が

a

ij であり,つねに,上付 きの添字が行で下付の添字が列である. ベクトルやテンソルの成分のとき用いる添字は上付きが反変成分で下付が 共変成分で,基底を変えたとき反変成分は

b

ij を用い共変成分は

a

ij を用いて 変換する. すなわち次のようになる.

• V

の要素

(

反変ベクトル

)

x

i

ei

= y

i

fj

のとき

y

i

= b

ij

x

j

• V

の要素

(

共変ベクトル

)

x

i

e

i

= y

i

f

i

(24)

のとき

y

i

= a

j i

x

j

テンソル

(2,2)

型のテンソルで説明する テンソル

T

V

の基底

{e

i

}, {f

i

}

で表した成分がそれぞれ

T

klij

, ¯

T

rspq の とき

¯

T

rspq

= b

pi

b

qj

a

kr

a

ls

T

klij となる. なお,逆行列

(b

ij

)

を用いない 反変ベクトルは

y

i

= b

ij

x

j のかわりに

a

ji

y

i

= x

j を用い,テンソルは

¯

T

rspq

= b

pi

b

qj

a

kr

a

ls

T

klij のかわりに

a

ip

a

jq

T

¯

rspq

= a

kr

a

ls

T

klij を用いることも多い. これらが分かればテンソルは怖くありません,上付,下付の添字および和 に関するアインシュタインの規約が優れた内容であることが分かります.

第3節 計量テンソル

今までの説明でテンソルが分かったでしょうか.まだ漠然としているかも しれません.ここで,計量テンソルやその逆行列で決まるテンソル,ベクト ル空間の線型変換を用いて再度テンソルの説明をします.ちなみに私は計量 テンソルをいじってテンソルの理解が深まりました.皆さんにも役に立つの ではないかと思います.

(25)

ベクトル空間で定義された内積を 

(u, v) = g(u, v) (u, v

∈ V )

と表せば,

g : V

× V −→ R, (u, v) 7→ g(u, v)

について

(1) g

は双線型写像.すなわち

g

は2階共変テンソル.

(2) g

は対称テンソル,すなわち

g(u, v) = g(v, u),

∀u, v ∈ V

(3) g

は正値である.すなわち,

g(u, u)

= 0, ∀u ∈ V

等号が成り立つの

u = 0

に限る. の3条件を満たす. 言い方を変えれば,ベクトル空間に内積を与えるとは,2階正値共変対称 テンソル

g

を1つ与えることであり,

g

を(リーマン)計量テンソルという. これから,計量テンソル

g

の性質を調べることでテンソルの持つ性質を学 びます. ベクトル空間

V

の計量テンソル

g

V

の基底

{e

1

, . . . e

n

}

および,その 双対基底

1

, . . . , ω

n

}

を用いて表そう.

g

は2階共変テンソルであるから

g = gij

ω

i

⊗ ω

j と表せる.ただし

gij

= g(e

i.ej

)

である.

(26)

g(u, v) = g(u

i

e

i

, v

j

e

j

) = u

i

v

j

g(e

i

, e

j

) = g

ij

u

i

v

j

= g

ij

ω

i

(u)ω

j

(v) = g

ij

ω

i

⊗ ω

j

(u, v)

すなわち,

g

は基底

{e

i

}

用いて

n

2 個の実数の組

{g

ij

}

で表せる. 次に

g

を別の基底

¯

e

i およびその双対基底

ω

¯

i を用いて表そう.

¯

ei

= a

ji

ej

· · · (A)

とする

.

g = ¯

g

ij

ω

¯

i

⊗ ¯ω

j であり,

¯

g

ij

= g(¯

e

i

, ¯

e

j

) = g(a

ki

e

k

, a

lj

e

l

) = a

ki

a

lj

g

kl

· · · (B)

となる. すなわち,2階の共変テンソル

g

を基底

{e

i

}

で表せば

n

2 個の実数の組

{g

ij

},

基底

{¯e

i

}

で表せば

n

2 個の実数

{¯g

ij

}

となり,基底間に

(A)

の関係が あるとき

g

ij

g

¯

ij には

(B)

の関係がある.この関係を共変ベクトルの基底 の変換式と見比べて見ましょう.添え字が2つになっただけということが分 かると思います. 逆に基底

{e

i

}

のもとで定義された

n

2 個の実数の組

{g

ij

}

と基底

{¯e

i

}

の もとで定義された

n

2 個の実数の組

{¯g

ij

}

(B)

の関係があるとき

V

上の 双線型写像

g : V

× V −→ R

が矛盾なく定義できる.実際 ベクトル空間

V

の基底を

{e

1

, . . . , e

n

}, {¯e

1

, . . . , ¯

e

n

}

2つの基底の関係式が

¯

e

i

= a

j i

e

j のとき

u, v

∈ V

に対して

u = u

i

e

i

= ¯

u

i

e

¯

i

, v = v

i

e

i

= ¯

v

i

e

¯

i なら

u

i

= a

ij

u

¯

j

, v

i

= a

ij

v

¯

j 満たす.このとき

(27)

g(u, v) = g

ij

u

i

v

j

= g

ij

a

ik

u

¯

k

a

j l

u

¯

l

= ¯

g

kl

u

¯

k

v

¯

l したがって

g(u, v)

が矛盾なく定義できることが分かった. もう少し付け加えるならば,この2階共変テンソル

g

は,基底

{e

i

}

の双 対基底

i

}

を用いれば

g = gij

ω

i

⊗ ω

j となる.実際

g

ij

ω

i

⊗ ω

j

(u

k

e

k

, v

l

e

l

) = g

ij

ω

i

(u

k

e

k

j

(v

l

e

l

) = g

ij

u

i

u

j である. 基底

{¯e

i

}

の双対基底を

ω

¯

i とすると

g = gij

ω

i

⊗ ω

j

= ¯

gkl

ω

¯

k

⊗ ¯ω

l であり,

gij

ω

i

⊗ ω

j

= g

ij

a

ki

a

jl

ω

¯

k

⊗ ¯ω

l より

¯

g

kl

= g

ij

a

ik

a

jl このようにテンソルの成分

g

ij

, ¯

g

ij の関係式を求めてもよい. 次に計量テンソル

{g

ij

}

の逆行列

{g

ij

}

が2階反変テンソルであることを 示そう.

{g

ij

}

はベクトル空間

V

の基底

{e

i

}

を決めれば定まる

n

2 個の実数の組 である.基底を変換したとき,どのように変換するかを調べればよい. もう一つの基底を

{¯e

i

}

とし

e

¯

i

= e

j

a

j i を満たすとする.

g

ij

= g(e

i

, e

j

), ¯

g

ij

= g(¯

e

i

, ¯

e

j

)

とし行列

{g

ij

}, {¯g

ij

}

の逆行列をそれぞれ

{g

ij

}, {¯g

ij

}

とする.さらに,行列

{a

i j

}

の逆行列を

{b

i j

}

とする. なお,和のアインシュタイン表記は,たとえば

a

i

b

i

i

は考えている範囲 のすべてをとるだけで,文字は何でもよい.すなわち

a

i

b

i

= a

j

b

j

= a

p

b

p であり,使う文字は変形にあわせて変えられる.

(28)

¯

g

kl

= g

ij

a

ik

a

j l の両辺に

b

ki をかける.

b

ki

gkl

¯

= b

ki

gsta

sk

a

tl

= δ

is

a

tl

gst

= a

jl

gij

さらに

g

¯

lr

g

si をかける.

b

ki

gkl

¯

g

¯

lr

g

si

= b

ki

δ

kr

g

si

= b

ri

g

si

a

jl

g

ij

g

¯

lr

g

si

= a

j l

δ

s j

g

¯

lr

= a

sl

g

¯

lr したがって

b

ri

g

si

= a

sl

g

¯

lr 両辺に

a

kr をかけると

g

sk

= a

sl

a

kr

g

¯

lr を得る.

{g

ij

}, {g

ij

}

の基底を変換したときの変換式を書くと

g

ij

= a

ik

a

jl

g

¯

kl

· · · (1)

¯

g

ij

= a

ki

a

j l

g

kl

· · · (2)

となる. 次に,

{g

ij

}

(1)

を満たすことより,

V

上の双線型写像

G : V

× V

−→ R

が矛盾なく定義できること確認しよう. 基底

{e

i

}

の双対基底を

i

},{¯e

i

}

の双対基底を

{¯ω

i

}

とする. ここで

ei

¯

= a

ji

ej

のとき

ω

i

= a

ij

ω

¯

j であることに注意する,

α, β

∈ V

α = α

i

ω

i

= ¯

α

i

ω

¯

i

, β = β

i

ω

i

= ¯

β

i

ω

¯

i のとき.

¯

α

i

= α

j

a

j i

, ¯

β

i

= β

j

a

j i である. したがって

G(α, β) = g

ij

αiβj

= a

ik

a

jl

g

¯

kl

αiβj

= ¯

g

kl

αk

¯

βl

¯

が成り立つ. テンソル

G

(29)

G = g

ij

e

i

⊗ ej

と表すこともできる. ここで行った議論は可逆であり計量テンソルに限る必要はない.

{g

ij

}

が2階共変テンソルなら,その逆行列で定まる

{g

ij

}

は2階反変 テンソルである.逆に

{g

ij

}

が2階反変テンソルならその逆行列で決まる

{gij

}

は2階共変テンソルである. 次に,ベクトル空間

V

の線型写像

f : V

−→ V

を考えよう.

V

の基底

{e

i

}

を用いて

f (ei

) = f

ij

ej

によって

n

2 個の実数

{f

ij

}

を定義する.

V

のもう一つの基底

{¯e

i

}

をとり

¯

e

i

= e

j

a

j i のとき

f (¯

ei

) = ¯

f

ij

ej

¯

f (¯

e

i

) = f (a

ki

e

k

) = a

ki

f

j k

e

j

¯

f

ik

¯

ek

= ¯

f

ik

a

jk

ej

∴ a

k i

f

j k

= a

j k

f

¯

k i

· · · (1)

逆に

{f

ij

}, { ¯

f

ij

}

(1)

を満たすとき,矛盾なく

V

上の線型写像が定義で きる. 実際

v = v

i

e

i

= ¯

v

i

e

¯

i に対して

f (v) = v

i

f

ij

ej

で定義すれば

= a

ik

v

¯

k

f

ij

ej

= ¯

f

kl

a

jl

v

¯

k

ej

= ¯

f

kl

¯

v

k

el

¯

となり矛盾なく定義できた.

(1)

を見よう.下付の添字は共変ベクトルの変換式,上付きの添字は反変

Updating...

参照

Updating...

Scan and read on 1LIB APP