• 検索結果がありません。

磁気圏型プラズマ閉じ込め装置RT-1における自己組織化プラズマの密度限界の解明

N/A
N/A
Protected

Academic year: 2021

シェア "磁気圏型プラズマ閉じ込め装置RT-1における自己組織化プラズマの密度限界の解明"

Copied!
81
0
0

読み込み中.... (全文を見る)

全文

(1)

織化プラズマの密度限界の解明

著者 森 敬洋

学位授与年月日 2020-03-23

(2)

RT

2020 1 28

(3)

RT-1 (EC) 1 RT-1 2 RT-1 . 3 2 RT-1 EC 2.45GHz 8.2GHz 2 EC 4 ECH τE 5

(4)

1 1 1 1.1 . . . 1 1.2 . . . 3 1.2.1 . . . 3 1.2.2 . . . 4 1.2.3 . . . 5 1.3 RT-1 . . . 6 1.4 . . 7 1.5 . . . 10 1.6 . . . 11 2 12 2.1 RT-1 . . . 12 2.2 RT-1 . . . 15 2.3 RT-1 . . . 17 2.4 . . . 20 2.4.1 . . . 21 2.4.2 . . 23 2.5 . . . 25 2.5.1 Bi-Maxwellian . . . 28 2.5.2 . . . 29

(5)

2.5.3 . . . 30 2.6 . . . 31 3 34 3.1 . . . 34 3.2 . 34 3.3 RT-1 36 3.4 2.45GHz . . . 38 3.5 8.2GHz . . . 44 3.6 3 2.45GHz . . . 48 3.7 . . . 49 4 EC 51 4.1 . . . 51 4.2 ECH EC . . . 51 4.3 . . . 54 4.3.1 . . . 57 4.3.2 . . . 59 4.3.3 . . . 59 4.4 . . . 62 4.5 Hall . . . 63 4.6 . . . 66 5 68 70 72 74

(6)

1

1.1

2 ∆m ∆E = ∆mc2 D + D → T(1.01MeV) + p(3.03MeV) (1.1) D + D →3 He(0.82MeV) + n(2.45MeV) (1.2) D + T 4 He(3.52MeV) + n(14.06MeV) (1.3) D +3He →4 He(3.67MeV) + p(14.67MeV) (1.4) D T ( )

(7)

1.1. Rate cofficient of nuclear fusion reaction [1]. DT 1.1 [1] DT DT DT 30 6Li + n → T +4He (1.5) 7 Li + n → T +4He + n (1.6) DT DT

(8)

1.2

1.2.1 1.2. [2]. . Pb PL . Pheat PF . Q = PF/Pheat . Q = 1 Q = . .

(9)

1.2.2

2

1.3. [3].

(10)

1.4. ITER [4].

ITER 1.4

(11)

1.5. LHD [5].

Large Helical Device( LHD) [5]

1.3

RT-1

DT

(12)

. . β = p B2/2µ 0 (1.7) p β µ0 . β β Voyager β [6, 7] β [9, 10] [9, 10]. Ring Trap-1 (RT-1) RT-1 (EC) (ECH) β 1 β [11].

1.4

Coherent

(13)

1.6. [8].

• 2

• ( Π) (

Ω) kBT

(14)

1.7. RT-1 β [11].

(15)

• R L

R L

• (Ordinary Wave O ) (Extraordinary Wave X )

O X

• (Fast Wave) (Slow Wave)

v = ω/k(ω k )

(Neutron

Beam Injection: NBI) RT-1

ECH

1.5

RT-1

RT-1 8.2GHz

(16)

RT-1 RT-1

1.6

2 . 3 RT-1 COMSOL EC . 4 ECH . 5 .

(17)

2

2.1

RT-1

RT-1(Ring-Trap1) RT-1 ( a = 0.25m) He 30K . Bi-2223 2160 0.375m 0.18m (PCS) . 20K (2 )

(18)

(3 ) ( 2.2 ) . . ( a2 = 0.4m) z = 0.6m , . 3 RT-1 ( 2.1 ) 2.2 Null Separatrix . 2.1. RT-1 .

(19)

Levitation magnet 50G 100G 2930G 875G From 8.2GHz klystron From 2.45GHz Magnetron 2.2. RT-1 . 2.45GHz 1kw,1Hz Q ( ) . RT-1 (TG2400)2 10−6Pa RT-1 ECH 8.2GHz ( 100kW 1s) 2.45GHz ( 20kW 2s) 8.2GHz 2017 6 30

(20)

2.45GHz . 2.3 . 2.3. ( ) ( ) RT-1 . .

2.2 RT-1

MHD (2.1) . . ∇p = j × B (2.1) ( ) MHD Grad-Shafranov ( )

(21)

RTEQ RT-1 [20] RT-1 WE7000 2.4 RT-1 2.4. RT-1 4 r = 1.01m z = ±0.20m z = ±0.36m p [20] . . 2.5 .

(22)

2.5. [20] Seapratrix .

2.3 RT-1

RT-1 3 Mach-Zehnder (= ) [14] RT-1 3 2.6

(Phase Locked Oscillator : PLO)

PLO 18.752GHz

(23)

Phase different IF signal 2.6. [22] 75MHz Multiplier 4 75.308GHz 300MHz (IF) . IF (Local

Oscillator Unit : LOU) 300MHz

∆φ .

(24)

[13]. N ne N = ! 1 ωe ωc "1/2 (2.2) = ! 1 ne nc "1/2 (2.3) nc ω nc ≡ ω2meε e2 (2.4) ∆φ ∆φ = # (kp− k0) dl (2.5) = # (N − 1) ω cdl (2.6) ≈ − ω 2cnc # nedl (2.7) ∆φ 2π 2π . 2π(1 ) (2.5) = 2π # nedl = 7.46× 106f m−2 (2.8) RT-1 f = 75GHz # nedl = 5.6× 1017m−2 (2.9)

(25)

2.7(a),(b) IF1(r=450mm) IF2(r=620mm) IF3(r=700mm) 3 r L#1 L#2 Levitation magnet Center stack Pumps From 8.2GHz klystron Interferometer1 Levitation magnet Interferometer2 vertical chord (r=60cm) Interferometer3 vertical chord (r=70cm) 50G 100G 2930G 875G (a) (b) From 8.2GHz klystron From 2.45GHz magnetron L#3 2.7. RT-1 (a) RT-1 (b) RT-1 Separatrix (φ = 0.006) IF1 1.60m,IF2 0.87m,IF3 0.76m IF1-3

2.4

0

(26)

1 K 0 K 2.4.1 n B 1 exp i(k · r − ωt) vph = ω/k k E B1 vk (k ) j j = $ k nkqkvk (2.10) nk qk k D D = ε0E + P , (2.11) j = ∂P ∂t = −iωP (2.12) E P ε0

(27)

D D = ε0E − i ωj ≡ ε0K · E. (2.13) K k mk dvk dt = qk(E + vk × B) (2.14) B = B0+ B1 vk, E, B1 1 1 1 −iωmkvk = qk(E + vk × B) (2.15) B0 z vk,x = −iE x B0 Ωkω ω2 − Ω2 k − Ey B0 Ω2k ω2− Ω2 k , vk,y = Ex B0 Ω2 k ω2− Ω2 k − iEy B0 Ωkω ω2 − Ω2 k , (2.16) vk,z = −iE z B0 Ωk ω Ωk k Ωk = −q kB0 mk (2.17) (2.16) vk E j (2.10) D (2.13) STIX parameter[13] ϵ· E = ε0K · E = ⎛ ⎜ ⎝ S −iD 0 iD S 0 0 0 P ⎞ ⎟ ⎠ ⎛ ⎜ ⎝ Ex Ey Ez ⎞ ⎟ ⎠ (2.18)

(28)

S = 1 2(R + L), D = 1 2(R − L), R ≡ 1 −$ k ω2 pk ω (ω− Ωs) , L ≡ 1 −$ k ω2 pk ω (ω + Ωs) , P ≡ 1 −$ k ωpk2 ω2 , ωpk2 ≡ nkq2k ε0mk 2.4.2 ∇ × E = −∂B ∂t , (2.19) ∇ × H = j + ϵ0 ∂E ∂t = ∂D ∂t (2.20) k× E = ωB1, k× H = −ωϵ0K · E k× (k × E) + ω 2 c2ϵ· E = 0 (2.21) n kc ω (c ) n = |n| n (2.21) n× (n × E) + ϵ · E = 0 (2.22)

(29)

n B0 θ n zx

x (2.22)

⎛ ⎜ ⎝

S − n2cos2θ −iD n2cos θ sin θ

iD S − n2 0

n2cos θ sin θ 0 P − n2sin2

θ ⎞ ⎟ ⎠ ⎛ ⎜ ⎝ Ex Ey Ez ⎞ ⎟ ⎠ = 0 (2.23) E ̸= 0 0 An4 − Bn2+ C = 0, (2.24) A = S sin2θ + P cos2θ, (2.25) B = RL sin2θ + P S(1 + cos2θ), (2.26) C = P RL. (2.27) (2.24) k ω k ω θ = 0 (2.24) P = 0, n2 = R, n2 = L (2.28) n2 = R R n2 = L L θ = π/2 (2.24) n2 = RL S , n 2 = P (2.29)

n2 = P (Ordinary mode wave) n2 = RL/S

(Extraordinary mode wave)

n 0 n2 = 0 vph = ω k = c n (2.30)

(30)

P = 0 or R = 0 or L = 0 (2.31) n2 = ∞ 0 tan2θ =−P S (2.32)

2.5

K k fk(r, v, t) . ∂fk ∂t + v · ∇rfk + qk mk (E + v × B) · ∇vfk = 0 (2.33)

(31)

. ∇ · E = 1 ϵ0 $ k qk # fkdv (2.34) 1 µ0∇ × B = ϵ0 ∂E ∂t + $ k qk # vfkdv (2.35) ∇ × E = −∂B ∂t (2.36) ∇ · B = 0 (2.37) fk, B, E 0 exp i(k· r − ωt) fk = fk0(r, v) + fk1 (2.38) B = B0+ B1 (2.39) E = 0 + E1 (2.40)

(32)

. v · ∇rfk0 + qk mk (v× B0)· ∇vfk0 = 0 (2.41) $ k qk # fk0dv = 0 (2.42) 1 µ0∇ × B 0 = $ k qk # vfk0dv = j0 (2.43) ∂fk1 ∂t + v · ∇rfk1 + qk mk (v × B0)· ∇vfk = − qk mk (E1+ v × B1)· ∇vfk0 (2.44) ik· E1 = 1 ϵ0 $ k qk # fk1dv (2.45) 1 µ0 k× B1 = −ω + ϵ0E1+ i ω $ k qk # fk1dv , (2.46) B1 = 1 ω (k× E1) (2.47) K(D = ϵ0K · E) . D = ϵ0E + P (2.48) j = ∂P ∂t = −iωP (2.49) 1 ϵ0 D = E1+ i ϵ0ω $ k qk # vfk1dv ≡ K · E1 (2.50) fk1 K .

(33)

2.5.1 Bi-Maxwellian 0 Bi-Maxwellian f0(v, vz) = n0F(v) Fz(vz) (2.51) F(v) = m 2πT exp ! −mv 2 ⊥ 2T " (2.52) Fz(vz) = ! m 2πTz "1/2 exp ! −m(vz − V ) 2 Tz " (2.53) . K . K = I +$ i,e Π2 ω2 + $ n ! ζ0Z (ζn)− ! 1− 1 λT " (1 + ζnZ (ζn)) " e−bXn + 2η02λTL , (2.54) Xn = ⎡ ⎢ ⎣ n2I n/b in(In′ − In) −(2λT)1/2ηnαnIn −in(I′

n − In) (n2/b + 2b)In − 2bIn′ i(2λT)1/2ηnα(In′ − In)

−(2λT)1/2ηnnαIn −i(2λT)1/2ηnα(In′ − In) 2λTη2nIn ⎤ ⎥ ⎦ (2.55) Z (ζ) 1 π1/2 # −∞ exp(−β2) β − ζ dβ, In(b) is the modified Bessel function

ηn ≡ ω + nΩ 21/2k zvTz , ζn ≡ ω− kzV + nΩ 21/2k zvTz λT ≡ Tz T, b ≡ ! kxvT⊥ Ω "2 , α ≡ kxvT⊥ Ω v2Tz Tz m, v 2 T ≡ T m L Lzz = 1 .

(34)

(Tz = T⊥) V = 0 ηn = ζn, λT = 1 . K = I +$ i,e Π2 ω2 3 $ n=−∞ (ζ0Z (ζn)) e−bXn + 2ζ02L 4 (2.56) 2.5.2 K (k, ω) = KH(k, ω) + iKI(k, ω) (2.57) . ∂W0 ∂t = −ωr 1 2ϵ0E ∗ 0 · KI · E0− ∇ · P (2.58) ( ). Pab Pab = ωr ϵ0 2E ∗· K I · E (2.59) Pab = ωϵ0 2{|Ex| 2

ImKxx +|Ey|2ImKyy +|Ez|2ImKzz

+ 2Im (Ex∗Ey) ReKxy + 2Im

5 Ey∗Ez

6

ReKyz + 2Im (Ex∗Ez) ReKxz}

b ≪ 1

G±n ≡ Imζ0Z±n = (kz/|kz|)π1/2ζ0exp(−ζ±n2 )

(35)

(ImKxx)±n = (ImKyy)±n = (Πj/ω)2G±nαn (ImKzz)±n = (Πj/ω)22ζ±n2 G±nbαnn−2 (ReKxy)±n = −(Πj/ω)2G±n(±αn) (ReKyz)±n = −(Πj/ω)2(2b)1/2ζ±n2 G±nαnn−1 (ImKxz)±n = −(Πj/ω)2(2b)1/2ζ±n2 G±n(±αn)n−1 αn = n2(2· n!)−1(b/2)n−1 P±nab = ω ! Πj ω " Gn 7ϵ0 2 8 αn|Ex− iEy|2 (2.60) ζn = (ω + nΩi)/(21/2kzvT i) = (ω − n|Ωi|)/(21/2kzvT i) +n −n 2.5.3 ECH b ≪ 1, ζ0 ≫ 1 Kxx = Kyy = 1 + Xζ0Z−1/2, Kzz = 1− X + N2χzz, Kxy = −iXζ0Z−1/2, Kxz = Nχxz, Kyz = iNχyz, χxz ≈ χyz ≈ 2−1/2XY −1 vT c ζ0(1 + ζ1Z−1), χzz ≈ XY−2 7vT c 82 ζ0ζ−1(1 + ζ1Z−1), X Π 2 e ω2, Y ≡ Ωe ω , ζ−1 = ω − Ωe 21/2k zvT , N = k⊥c ω

(36)

P−1 P−1 = ωXζ0 π1/2 2 exp ! −(ω − Ωe) 2 2k2 zv2T e " 7ϵ0 2 8 |Ex− iEy|2 (2.61) ω = Ωe ζ−1 = 0, Z−1 = iπ1/2, Kxx = 1 + ih, Kxy = h, χyz = χxz = 21/2X(vT e/c)ζ0 = X/(2N∥), χzz = 0, h ≡ π1/2ζ0X/2 K K = ⎡ ⎢ ⎣ 1 + ih h Nχxz −h 1 + ih iNχxz Nχxz −iNχxz 1− X ⎤ ⎥ ⎦ (2.62)

2.6

. (Ray-trace) EC k r dr dτ = − ∂D ∂k/ ∂D ∂ω = vg, (2.63) dk dτ = ∂D ∂r/ ∂D ∂ω (2.64) τ vg D(k, ω; r, t) D = det D, D = c 2 ω2 9 kk− k2I + ε (k, ω; r, t): (2.65)

(37)

ε Ww ∂Ww ∂t + ∂ ∂r(vgWw) = 2γWw = −ε0E ∗ · ε A · E (2.66) γ εA EC XL O-X . ∇ × ∇ × E = ω 2 c2 ε· E + iωµ0jext (2.67) . ε µ0 jext . Maxwell Maxwell MHz GHz EC RT-1 • EC

(38)

(39)

3

3.1

RT-1 Full wave

3.2

Full wave x 2.45GHz 10kW |B| = Bz ne Bz = 0.05T ne = 2.0× 1017(0.1· ; 0.5· y2+ x2− 0.04)m−3 ( 3.1 ) 0m ≤ x ≤ 1.2m,0m ≤ y ≤ 1.2m

(40)

3.1. 2.45GHz λ2.45GHz = fc ≈ 120(mm) 1/20 1 6-0.6mm COMSOL 2.45GHz O-mode,X-mode 3.2 3.3 2.45GHz R=0( ),S=0( ),P=0( ),L=0( ) O-mode P=0 X-mode X-mode R=0 Ez P=0 RT-1 EC

(41)

(a) |E| (b) Ex (c) Ey (d) Ez 3.2. 2.45GHz O-mode(Ez )

3.3 RT-1

RT-1 ECH 2.45GHz 8.2GHz COMSOL Full-wave 2.45 GHz 8.2 GHz 8.2 GHz EC 2.45 GHz , RT-1 2.45GHz 150mm,8.2GHz 50mm magnet 115 A 2160 lifting

(42)

(a) |E| (b) Ex (c) Ey (d) Ez 3.3. 2.45GHz X-mode(Ey ) magnet 430 A 68 RT-1 ( 3.4 ) ne(r, z) = n0× exp + −a ! ψ(r, z)− ψ(rmax, 0) ψ(1, 0) "2! B(r, z) B0(r, z) "−b, (3.1) φ(r, z) : (r, z) φ(1, z) : (r = 1.0m, z = 0.0m) B(r, z) : (r, z) B0(r, z) : φ(r, z) z = 0m (n0, a, b, rmax) : 3.1

(43)

3.4. RT-1 n0 = 3.5 × 1017m−3, a = 9.33, b = 1.084, rmax = 0.547m Separtrix 3.5

3.4 2.45GHz

RT-1 2.45 GHz ECH 3.6 2.45 GHz-ECH 0 18 kW 0.28 mPa 3.2 mPa RT-1 ne = 1.6× 1017m−3 2.45 GHz EC

(44)

3.5. RT-1 ne = 0.8× 1017m−3 . ne = 1.6× 1017m−3 n0 = 3.5×1017m−3 a = 9.33, b = 1.084, r max = 0.547m 2.45GHz O-mode X-mode 3.7 3.7 a 3.7 b X-mode R = 0 O-mode P = 0 EC O-mode X-mode RT-1 P = 0 R = 0 O-mode,X-mode EC (ECR)

(45)

2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 Diamagnetism (mWb) 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0

Line average density (1017m-3)

density limit 2.45 GHz cut off 3.6. RT-1 2.45 GHz ECH (He ). n0 n0 (a) n0 = 3.5× 1016m−3, (b) n0 = 7.0 × 1016m−3, (c) n0 = 2.5×1017m−3 3 2.45GHz nc n0 ≤ nc,n0 ≈ nc,n0 ≥ nc 3.8 3.8 a n0 = 3.5× 1016m−3 2.45 GHz ECR n0 n0 = 7.0× 1016m−3 EM Omode P=0 2 ECR n0 = 2.5× 1016m−3

(46)

(a) O-mode (b) X-mode 3.7. 3.6 2.45 GHz R = 0 P = 0 L = 0 S = 0 ECR ). ECR RT-1 RT-1 ECR EC Pabs = ω2pe 2kzvT e < π 2 exp ! −(ω − ωce) 2 2k2 zv2T e " ϵ0 2 |Ex− iEy| 2 (3.2) ωpe , vT e vT e = ; 2Te/me z

(47)

(a) n0 = 3.5× 1016m−3 (b) n0 = 7.0× 1016m−3

(c) n0 = 2.5× 1017m−3

3.8. 2.45GHz (O-mode

(48)

k kz z . Ex Ey x y Pabs ECR 3.9 Te 10 eV 3.9. 2.45 GHz ECH , (W/m3), n 0 = 3.5× 1016m−3 . EC ECR (MW/m3)

Pabstotal Pabs

Pabstotal = $Pabs× meshwidth× meshhigh × 2π (3.3)

(49)

100 80 60 40 20 0 The e

fficiency of power absorption (%)

1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0

Line average density (x1017 m-3)

3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Peak density (x1017 m-3) Density limit 2.45 GHz cut off 3.10. O-mode 2.45GHz . 3.10 n0 = 2.5 × 1016m−3 ∼ 70% n0 = 4.2× 1016m−3 0 ECR RT-1

3.5 8.2GHz

8.2Ghz

(50)

8.2GHz 8.2GHz λ8.2GHz = fc ≈ 36(mm) 1/20 1 1.8-0.18mm COMSOL 2.45GHz n0 n0 (a) n0 = 3.5× 1017m−3, (b) n0 = 1.0× 1018m−3, (c) n0 = 1.0× 1019m−3 3 8.2GHz nc n0 ≤ nc,n0 ≈ nc,n0 ≥ nc 3.11 8.2 GHz 3.11(a) n0 n0 = 3.5×1017m−3 ECR 3.11(b) n0 = 1.0× 1018m−3 8.2GHz ECR ECR n0 n0 = 1.0× 1019m−3 3.11 c ECR (3.2) 3.12 Te 10 keV . n0 = 0.4× 1018m−3 ∼ 80% n0 = 0.9× 1018m−3 0 2.45GHz 2.45GHz,8.2GHz

(51)

(a) n0 = 3.5× 1017m−3 (b) n0 = 1.0× 1018m−3

(c) n0 = 1.0× 1019m−3

3.11. 8.2GHz (X-mode

) R = 0 P = 0 L = 0

(52)

100 80 60 40 20 0 The e

fficiency of power absorption (%)

2.0 1.5 1.0 0.5 0.0 Peak density (x1018 m-3) 1.0 0.8 0.6 0.4 0.2 0.0

Line average density (x1018 m-3) 8.2 GHz cut off & density limit

3.12. X-mode 8.2GHz

.

RT-1

(53)

3.6 3

2.45GHz

2 RT-1 3.13 3.13. RT-1 . 2.45GHz O-mode n0 n0 (a) n0 = 1.7× 1017m−3, (b) n0 = 2.8× 1017m−3, 2 2.45GHz nc nlim n0 ≈ nc,n0 ≈ nlim 3.14

(54)

(a) n0 = 1.7× 1017m−3 (b) n0 = 2.8× 1017m−3 3.14. 2.45GHz R-Z (O-mode ) P = 0 ECR ). R-Z 3.14(a) n0 ≈ nc EC ECR n0 nlim EC Separatrix 3 , EC 3

3.7

RT-1 EC

(55)

RT-1 EC 8.2 GHz 2.45 GHz EC ECH 2.45GHz 8.2GHz (EBW) [19] RT-1

(56)

4

EC

4.1

ECH ECH

4.2 ECH

EC

[21] (NBI) EC dWp0 dt = − 1 τE0 Wp0 − Prad0 (4.1)

(57)

Wp : τE0 : Prad0 : EC dWp1 dt = − 1 τE1 Wp1 − Prad1 + PECH (4.2) PECH : ECRH ’0’,’1’ ECH .

τE0 = τE1 Wp0 = Wp1 Prad0 = Prad1 ECH

(4.1),(4.2) . PECH = ! dWp0 dt − dWp1 dt " (4.3) (4.3) ECH ECH RT-1 Wp ( ) MHD Grad-Shafranov (β) RTEQ [20]. (4.4) [20]. βlocal,max = 18Wdiamag (4.4) βlocal,max % Wdiamag mWb βlocal,max ∼ 100%

(58)

(4.4) βlocal,max β βvolume,average βvolume,average = 1 10βlocal,max = 1.8Wdiamag (4.5) MHD β (1.7) p(r, z) p(r, z) = B(r, z) 2 2µ0 · β (4.6) Wp S Wp = # pdV (4.7) Separtrix R z ∆r, ∆z i,j Wp = $ i,j p(ri, zj)· ∆r · ∆z2πri = $ i,j B(ri, zj)2 2µ0 · β volume,average· ∆r · ∆z2π (4.8) r,z 1000 1[mWb] = 150[J] (4.9)

(59)

4.3

RT-1 ECH ECH off ECH on-off ECH . 4.1 ECH 20 15 10 5 0 EC H in pu t p ow er (kW ) 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Time (s) 6 5 4 3 2 1 0 D ia ma gn eti sm (1 0 -3 Wb)

ECH input power Diamagnetism

4.1. ECH .

ECH 17kW 8kW

5Hz ( ECH

(60)

4.1 ECH 0.1s ECH 2.2mWb 1.6mWb ECH ECRH 4.2 ECRH 4.1 1.8s 2.0s 4 2 0 -2 T he ti me d eri va tive o f D ia ma gn et ism (1 0 -2 Wb) 2.2 2.1 2.0 1.9 1.8 1.7 1.6 Diamagnetism (10-3Wb) 4.2. (4.1),(4.2) 4.2 (dWp dt )/(Wp) −1/τE

(61)

ECRH ECRH ECH ECRH (4.3) ECRH ECRH ECH 4.2 (dWp dt )/(Wp) −1/τE ECRH 10 (dWp dt )/(Wp) τE ECH Wp0 = Wp1 (4.3) 4.2 dWp dt − Wp ECH Wp0 = Wp1 dWp/dt

(62)

4.3.1 ECH ECH ECH ECH 4.3,4.4 100 80 60 40 20 0 Ab so rp tio n ef fici en cy (% ) 14 12 10 8 6 4 2 0 Modulation frequency (Hz) 4.3. EC (5-12Hz) 4.3 ECH 17kW 50%( ) He 1.77mPa, 2.2mWb 5-12Hz 4.4

(63)

100 80 60 40 20 0 Absorption efficiency (%) 100 80 60 40 20 0 Frequency (Hz) 4.4. EC (10-100Hz) ECH 17kW 40% He 1.77mPa, 10-100Hz ECH ECH ECH 4.3 ECH 50%-70%

(64)

4.4 ECH 55%-70% 100Hz ECH 5-100Hz 4.3.2 4.5 4.5 ECH 17kW 5Hz He 1.77mPa 2.2mWb 20% 55% RT-1 ECH 4.5 ECH 20% 55% 50-70% 4.3.3 4.6 4.6 10Hz ECH 2kW

(65)

100 80 60 40 20 0 Ab so rp tio n ef fici en cy (% ) 60 50 40 30 20 10 0

ECH modulation ratio (%)

4.5. ECH ECH 4-17kW He 1.77-11.8mPa IF1 4.6 2.45GHz ECH 2.45GHz ne = 0.8× 1017m−3 100% 100% ¯ ne = 0.8 × 1017m−3 RT-1 2.45GHzECH ¯ ne = 1.6× 1017m−3 20% 4.6

(66)

120 100 80 60 40 20 0 Absorption efficiency (%) 1.6 1.2 0.8 0.4 0.0

Line averaged density (1017m-3)

2.45 GHz

cutoff density

Density limit

4.6. 2.45GHzECH 2.45 GHz ECR (875G) r = 0.6 m 4.7 ECR Separatrix −0.25m ≤ Z ≤ 0.25m ECR ECH EBW

(67)

16 14 12 10 8 6 4 2 0

The electron density

on the 2.45 GHz ECR layer (x10

16 m -3) -0.4 -0.2 0.0 0.2 0.4 Z (m) n0=3.5x1017m-3 n0=1.8x1017m-3 2.45 GHz cut off density (a) 2.45 GHz ECR (875G) 30 25 20 15 10 5 0

The electron density

on the 2.45 GHz ECR layer (x10

16 m -3) -0.4 -0.2 0.0 0.2 0.4 Z (m) n0=3.5x1017m-3 n0=1.8x1017m-3 2.45 GHz cut off density

(b) r = 0.6 m 4.7. 2.45 GHz ECR (875G) r = 0.6 m (n0 ≈ nc n0 ≈ nlim )

4.4

ECH (4.2),(4.1) 4.2 τE 4.8 4.8 ECH 17kW 40% He 1.77mP 10-40Hz τE 10-20ms 4.9 4.9 10Hz ECH 2kW

(68)

30 25 20 15 10 5 0 En er gy c on fin eme nt t ime ( ms ) 50 40 30 20 10 0 Modulation frequency (Hz) 4.8. ECH 4-17kW He 1.77-11.8mPa IF1 τE = 60ms ¯ ne = 1.6× 1017m−3 10ms

4.5 Hall

Hall

(69)

80 60 40 20 0 En er gy c on fin eme nt t ime ( ms ) 1.6 1.2 0.8 0.4 0.0

Line averaged density (1017m-3)

4.9.

Hall Honeywell SS496A

±640G Hall (R, Z) = (0.395m,−0.40m) ECH 7Hz Hall Bz 4.10 ECH Hall ECH Hall [20] Hall 4.11 50Hz Hall Bz

(70)

2.5 2.0 1.5 1.0 0.5 0.0 D ia ma gn et ism( 10 -3 Wb) 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Time (s) -10 -8 -6 -4 -2 0 2 Bz (G ) 4.10. 7Hz Hall Bz Hall 3ms 3ms 3ms τE 10ms 3ms

(71)

10.0 9.8 9.6 9.4 9.2 9.0 -Bz (G) 1.84 1.82 1.80 1.78 1.76 Time (s) 2.40 2.35 2.30 2.25 2.20 D ia ma gn et is m (1 0 -3 W b) Hall probe Flux loop 4.11. 50Hz Hall Bz

4.6

ECH RT-1 MHD ECH

(72)

Wp0 = Wp1 (4.3) nc 100 1.5nc 0 EC τE 60ms 10ms

(73)

5

RT-1 EC ECR 2 . 1. RT-1 EC 2. ECH EC 1 RT-1 EC ECR EC RT-1 EC 2 EC RT-1 8.2 GHz 2.45 GHz EC

(74)

EC 2 3 2 ECH EC ECH 10Hz 2kW EC nc 100% 1.5nc 0 ECR τE 60 ms 10 ms RT-1 EC 2 3

(75)

[1] (2004).

[2] ,

(2007). [3]

(2013).

[4] IAEA, ”Summary of the ITER final design report”, IAEA, VI-ENNA (2001).

[5] 11 540 (1997).

[6] S. M. Krimigis, et al., Science 206, 977 (1979). [7] L. J. Lanzerotti, et al., Science 257, 1518 (1992).

[8] A. M. Persoon, et al., Geophys. Res. Lett., 118, 2970, (2013). [9] A. Hasegawa, Comments Plasma Phys. Controlled Fusion 1, 147

(1987).

[10] A. Hasegawa, L. Chen, and M. E. Mauel, Nucl. Fusion, 30, 2045 (1990).

[11] M. Nishiura, et al., Nucl. Fusions 55, 053019 (2015). [12] Z. Yoshida, et al., Phys. Plasmas 17, 112507 (2010). [13] T.H.STIX, Waves in Plasmas (AIP press, 1992)

[14] I. H. Hutchinson, Principles of Plasma Diagnostics Second Edition (Cambridge University Press, 2002)

[15] K. Miyamoto, Plasma Physics for Controlled Fusion (Iwanami Book, 2012)

(76)

[17] H. P. Laqua, et al., Phys. Rev. Lett. 78, 3467 (1997). [18] R. Ikeda, et al., Contrib. Plasma Phys. 50, 567 (2010).

[19] K. Uchijima, et al., Plasma and Fusion Research 6, 2401122 (2011).

[20] β (2010). [21] (2015). [22] RT-1 (2018). [23] RT-1 ICRF (2016).

(77)

1. T. Mori, M. NISHIURA, Z. YOSHIDA, N. KENMOCHI, S. KAT-SURA, K. NAKAMURA, Y. YOKOTA, T. TSUJIMURA, and S. KUBO

”Simulation of electromagnetic wave propagation in a magneto-spheric plasma”

Plasma Fusion Res. 14 (2019) 3401134-1-3401134-5 [doi:10.1585/pfr.14.3401134]

(

)

1. , , , , , , , , , ” Full-wave ” 74 , 14aK309-9, (2019.3.14) 2. , , , , , , , , , ”ECH RT-1 ECH ”

(78)

2019 , 10pK22-3, (2019.9.10) 3. ( ) , , , , , , , , ” EC ” 75 , 16pD13-5, (2019.3.16)

(

)

1. Takahiro Mori, Masaki Nishiura, Toru I. Tsujimura, Zensho Yoshida, Naoki Kenmochi, Shotaro Katsura, Kaori Nakamura, Yuuki Yokota, Shin Kubo

”Simulation of Electromagnetic Wave Propagation in a Magneto-spheric Plasma,”

The 27th International Toki Conference on Plasma and Fusion Research &The 13th Asia Pacific Plasma Theory Conference, P2-83, Ceratopia Toki, Toki-city, Gifu, Japan (2018.11.19-22)

(79)

.

1

2

RT-1

(80)

Python

.

.

.

(81)

RT-1 MHD 2 1 2 . UTSIP Lan 2 .

参照

関連したドキュメント

She has curated a number of major special exhibitions for the Gotoh Museum, including Meibutsu gire (From Loom to Heirloom: The World of Meibutsu-gire Textiles) in 2001,

研究員 A joint meeting of the 56th Annual Conference of the Animal Behavior Society and the 36th International Ethological Conference. Does different energy intake gradually promote

本案における複数の放送対象地域における放送番組の

The categories of crimes that the ICC will be authorized to hear will determine both its profile and range of activities. This issue relates to detailed

[r]

ICP-MS: Inductively Coupled Plasma Mass Spectrometry(誘導結合プラズマ質量分析). FIB: Focused

2016 年 9 月 17 日に国際学会 APACPH(Asia-Pacific Academic Consortium for Public Health Conference)においてポスター発表を行った。. 題名「Social Support and

運転状態 要求機能 考慮すべき応力と地震動 許容応力 地震時