トップPDF Micro1 最近の更新履歴 yyasuda's website

Micro1 最近の更新履歴  yyasuda's website

Micro1 最近の更新履歴 yyasuda's website

Lagrange’s Method | ラグランジュ(未定乗数)法 (1) There are two approaches to solve this type of optimization problems with equality constraints: substitution ( 代入 ) and Lagrange’s method. Lagrange’s method is a powerful way to solve constrained optimization problems, which essentially translates them into unconstrained problems.

34 さらに読み込む

syllabus micro1 最近の更新履歴  yyasuda's website

syllabus micro1 最近の更新履歴 yyasuda's website

1. Course Description    This  is  an  advanced  course  in  microeconomics,  emphasizing  the  applications  of  mathematical tools and models to the study of individual economic decisions and their  aggregate  consequences.  We  begin  with  a  parsimonious  set  of  hypotheses  about  human behavior and the ways in which individual choices interact, and then examine  the  implications  for  markets.  This  entails  treatments  and  applications  of  consumer  theory and theory of the firm, under the ideal conditions implied by our hypotheses.   
さらに見せる

2 さらに読み込む

syllabus micro1 最近の更新履歴  yyasuda's website

syllabus micro1 最近の更新履歴 yyasuda's website

1. Course Description    This  is  an  advanced  course  in  microeconomics,  emphasizing  the  applications  of  mathematical tools and models to the study of individual economic decisions and their  aggregate  consequences.  We  begin  with  a  parsimonious  set  of  hypotheses  about  human behavior and the ways in which individual choices interact, and then examine  the  implications  for  markets.  This  entails  treatments  and  applications  of  consumer  theory and theory of the firm, under the ideal conditions implied by our hypotheses.   
さらに見せる

2 さらに読み込む

syllabus micro1 最近の更新履歴  yyasuda's website

syllabus micro1 最近の更新履歴 yyasuda's website

1. Course Description    This  is  an  advanced  course  in  microeconomics,  emphasizing  the  applications  of  mathematical tools and models to the study of individual economic decisions and their  aggregate  consequences.  We  begin  with  a  parsimonious  set  of  hypotheses  about  human behavior and the ways in which individual choices interact, and then examine  the  implications  for  markets.  This  entails  treatments  and  applications  of  consumer  theory and theory of the firm, under the ideal conditions implied by our hypotheses.   
さらに見せる

2 さらに読み込む

syllabus micro1 最近の更新履歴  yyasuda's website

syllabus micro1 最近の更新履歴 yyasuda's website

This  is  an  advanced  course  in  microeconomics,  emphasizing  the  applications  of  mathematical tools and models to the study of individual economic decisions and their  aggregate [r]

2 さらに読み込む

syllabus micro2 最近の更新履歴  yyasuda's website

syllabus micro2 最近の更新履歴 yyasuda's website

1. Course Description    This  is  an  advanced  course  in  microeconomics,  succeeding  to  Advanced  Microeconomics I (ECO601E) in which we study individual economic decisions and their  aggregate consequences under ideal situations. In this course, we extend our previous  analyses  to  incorporate  imperfectly  competitive  market  structures,  dynamic  market  competitions,  and  incomplete  information.  To  this  end,  we  study  game  theory,  a  collection  of  mathematical  tools  for  analyzing  strategically  interdependent  situations.  Course grade will be determined by combining grades on three homework assignments  (45%)  and  a  final  exam  (55%).  Each  problem  set  will  be  distributed  in  class.  You  are  encouraged to form study groups, but must write up solutions independently. 
さらに見せる

2 さらに読み込む

Midterm 最近の更新履歴  yyasuda's website

Midterm 最近の更新履歴 yyasuda's website

(a) Derive all pure strategy Nash equilibria. (b) Show that the following type of Nash equilibria does NOT exist: One firm chooses pure strategy M , and other two firms use mixed strategies. (c) Derive a symmetric mixed strategy Nash equilibria. You may assume that each firm chooses M with probability p and E with probability 1 − p, then calculate an equilibrium probability, p.

2 さらに読み込む

PracticeF 最近の更新履歴  yyasuda's website

PracticeF 最近の更新履歴 yyasuda's website

A function f (x) is homothetic if f (x) = g(h(x)) where g is a strictly increasing function and h is a function which is homogeneous of degree 1. Suppose preferences can be represented by a homothetic utility function. Then, show the followings. (a) The marginal rate of substitution between any two goods depends only on the ratio of the demands consumed. That is M RS ij is identical whenever x x j i takes

3 さらに読み込む

Final 最近の更新履歴  yyasuda's website

Final 最近の更新履歴 yyasuda's website

3. Auction (14 points) Suppose that a seller auctions one object to two buyers, = 1, 2. The buyers submit bids simultaneously, and the buyer with higher bid receives the object. The loser pays nothing while the winner pays the average of the two bids b + b

2 さらに読み込む

en 最近の更新履歴  yyasuda's website

en 最近の更新履歴 yyasuda's website

Introduction to Market Design and its Applications to School Choice.. Yosuke YASUDA.[r]

84 さらに読み込む

PS1 最近の更新履歴  yyasuda's website

PS1 最近の更新履歴 yyasuda's website

(a) Show that the above data satisfy the Weak Axiom of revealed preference. (b) Show that this consumer’s behavior cannot be fully rationalized. Hint: Assume there is some preference relation % that fully rationalizes the above data, and verify that % fails to satisfy transitivity.

2 さらに読み込む

PQ1 最近の更新履歴  yyasuda's website

PQ1 最近の更新履歴 yyasuda's website

Solve the following problems in Snyder and Nicholson (11th):. 1.[r]

1 さらに読み込む

PS1 最近の更新履歴  yyasuda's website

PS1 最近の更新履歴 yyasuda's website

(a) Show that if u(x 1 , x 2 ) and v(x 1 , x 2 ) are both homogeneous of degree r, then s (x 1 , x 2 ) := u(x 1 , x 2 ) + v(x 1 , x 2 ) is also homogeneous of degree r. (b) Show that if u(x 1 , x 2 ) and v(x 1 , x 2 ) are quasi-concave, then m(x 1 , x 2 ) := min{u(x 1 , x 2 ), v(x 1 , x 2 )} is also quasi-concave.

1 さらに読み込む

Lec1 最近の更新履歴  yyasuda's website

Lec1 最近の更新履歴 yyasuda's website

 ここで Apple ’s行動は Apple が Google 行動をどう予想 するかによって決まる  Google 最適な戦略は Google が「 Apple が Google 行動をどう予想するか」をどう予想するかによって 決まる

22 さらに読み込む

Final1 14 最近の更新履歴  yyasuda's website

Final1 14 最近の更新履歴 yyasuda's website

Consider the following exchange economies with two agents and two goods. Derive competitive equilibrium prices (price ratio) and allocations in each case. (a) Two agents, a and b, have the following indirect utility functions: v a (p 1 , p 2 , ω) = ln ω − α ln p 1 − (1 − a) ln p 2

2 さらに読み込む

Final1 12 最近の更新履歴  yyasuda's website

Final1 12 最近の更新履歴 yyasuda's website

4. Exchange Economy (12 points) Consider the following exchange economies with two agents and two goods. Derive competitive equilibrium prices and allocations in each case. (a) Two agents, 1 and 2, have the following indirect utility functions: v 1 (p 1 , p 2 , ω ) = ln ω − a ln p 1 − (1 − a) ln p 2

2 さらに読み込む

Final1 13 最近の更新履歴  yyasuda's website

Final1 13 最近の更新履歴 yyasuda's website

endowment of time is 2ω 1 units. There is no (initial) endowment of consumption good. Each individual has a common utility function U (x) = ln x 1 + 2a ln x 2 . Sup- pose that only Ann owns the firm and its production function is y 2 = √z 1 , where y 2 is the output of consumption good and z 1 is the input of (total) labor. Let the

2 さらに読み込む

Midterm1 14 最近の更新履歴  yyasuda's website

Midterm1 14 最近の更新履歴 yyasuda's website

(a) Suppose % is represented by utility function u(·). Then, u(·) is quasi-concave IF AND ONLY IF % is convex. (b) Marshallian demand function is ALWAYS weakly decreasing in its own price. (c) Lagrange’s method ALWAYS derives optimal solutions for any optimization

2 さらに読み込む

PracticeM 最近の更新履歴  yyasuda's website

PracticeM 最近の更新履歴 yyasuda's website

(b) If consumer’s choice satis…es the weak axiom of revealed preferences, we can always construct a utility function which is consistent with such choice behav- iour. (c) If a consumer problem has a solution, then it must be unique whenever the consumer’s preference relation is convex.

2 さらに読み込む

Lec2 1 最近の更新履歴  yyasuda's website

Lec2 1 最近の更新履歴 yyasuda's website

vNM Utility Function (1) Note the function U is a utility function representing the preferences on L(S) while v is a utility function defined over S, which is the building block for the construction of U (p). We refer to v as a vNM (Von Neumann-Morgenstern) utility function.

15 さらに読み込む

Show all 10000 documents...