1. 直線上のある点 A の位置ベクトル a に,直線と平行なベクトル d の定数倍を加える。
2. 原点から直線に降ろした垂線の足を H , H の位置ベクトルを h とする。 P と H を結ぶ線は, h と直 交する。
3. 直線の上の同一でない 2 つの点 S, T の位置ベクトルをそれぞれ s, t とする。 P は線分 ST を適当に 内分または外分した点である。
1-6. 地面に 落下 する 時刻 t 1 と その瞬 間の 速度 v y (t 1 ) を求め よ。ま た t 1 と t h にはど んな 関係 があ るか ? v y (t 1 ) と v 0 にはどんな関係があるか ?
1-7. v y (t) と y(t) を t の関数としてグラフで表せ。
問題 2. 水平面のある方向を x 軸,鉛直上方を y 軸とする。 xy 平面内の仰角 α の方向に *3 原点から初速度 V で質点を投げる場合を考える。
✎ この平面が xy 平面になるように座標系を選べ。
7-4. 同様に角運動量が保存する場合、質点の速度の z 成分 v z が 0 になることを示せ。
7-5. 右図のように、時刻 t で r にあった質点 m が、時刻 (t + t) に r + r に進んだ。時刻 t での速度を
v として面積速度を求めよ。
加速度と糸の張力を求めよ。
【解答】運動の様子を図示すると右の通りである。前問と同様に滑車に対して m 1 の下 向きの加速度および m 2 の上向きの加速度を a とする。運動方程式を立てるため慣性系 に対する加速度を求めると, m 1 のそれは下向きで a − b , m 2 のそれは上向きで a + b で ある。よって
ミクロカノニカル分布(小正準分布) 系のエネルギー固有状態 i = 1, 2, . . . の中から,エネルギー固有値 E i が
U − Vδ < E i ≤ U を満たすものを全て拾い上げ,それらを「許されるエネルギー固有状態」と呼ぶ。ミクロカノニカ
ル分布では,許されるエネルギー固有状態の全てが, 等しい確率で出現する。
従って,この確率モデルにおいてエネルギー固有状態 i が出現する確率を p (MC) i とすると
The concept of the constraints for a single test path for a datapath MUT is visualized in Fig. 3 . The test path constraints are divided into three categories. These are the set of path
activation constraints C A , the transformation constraints C J and the propagation constraint c P , respectively. Path activa- tion constraints correspond to the conditions in the FSM state transitions that have to be satisfied in order to perform prop- agation and value justification through the circuit. Transfor- mation constraints, in turn, reflect the value changes along the paths from the inputs of the high-level MUT to the primary inputs of the whole circuit. These constraints are needed in order to derive the local test patterns for the module under test. The propagation constraints show how the value propagated from the output of the MUT to a primary output is depending on the values of the primary inputs. The main idea here is to check whether the fault effect will be masked when propagat- ed to a primary output. All the above categories of constraints are represented by common data structures and manipulated by common procedures for creation, update, modeling and simulation. In the following, the data structure and update operations of test path constraints are defined.
test generation time cannot be reduced because the test generation approach is the same as the full scan design. In the H-scan technique [7], some extra gates are added to the logic of the existing path so that signals transferred between the registers is enabled by a new input independent on the signals from the controller.
The design-for-testability based on strong testability in [8-9] is guaranteed to generate test plans for all combinational hardware elements of the data path. However, the DFT methods in [8-10] assumed that a controller and a data path are separated from each other and the signal lines between them are directly controllable and observable from the outside of circuits. Therefore, extra multiplexers are added to the signal lines in between a controller and a data path, and an extra test controller is also embedded to provide the test plans for the data path. The method in [11] allows speed testing and achieves a much shorter test application time compared to the full scan approach. However, the hardware and delay overheads are larger compared to the full scan approach because of the extra multiplexers and test controller.
a) E-mail: fujiwara@ogu.ac.jp
DOI: 10.1587/transinf.2015EDL8183
In this paper, we introduce another class of general- ized shift registers called generalized feedback shift registers (GFSR, for short), and consider the properties of GFSR that are useful for secure scan design. We present how to con- trol/observe GFSR to guarantee scan-in and scan-out opera- tions that can be overlapped in the same way as the conven- tional scan testing. Testability and security of scan design using GFSR are considered. The cardinality of each class is clarified. We also present how to design strongly secure GFSR as well as GF 2 SR considered in [13] .
a core are propagated to all input ports of the core from TPS, and the test responses appeared at an out- put port of the core are propagated to TRS consecu- tively at the speed of system clock. The propagation of test patterns and responses is achieved by using interconnects and consecutively transparent paths of surrounding cores. All interconnects can be tested in a similar fashion. Therefore, it is possible to apply any test sequence and observe any response sequence consecutively at the speed of system clock. We also proposed a design-for-testability method for making a given SoC consecutively testable based on integer linear programming problem. Our future work is to propose a DFT method for making cores consecutively transparent with minimum hardware overhead.
overhead scan design approach for protection of secret key in scan- based secure chips,” Proc. 25th IEEE VLSI Test Symposium. pp.455– 460, 2007.
[7] G. Sengar, D. Mukhopadhyay, and D. R. Chowdhury, “Secured flipped scan-chain model for crypto-architecture,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol.26, no.11, pp.2080–2084, Nov. 2007.