1-3. コイン 1 枚を 2 回投げ,表が出る回数を n ˆ 。ただし,表が出る確率を p ,裏が出る確率を q とする。
1-4. コイン 1 枚を 3 回投げ,表が出る回数を n ˆ 。ただし,表が出る確率を p ,裏が出る確率を q とする。
問題 1. 確率 p で表,確率 1 − p で裏が出るコイン N 枚を一斉に投げる。それぞれのコインの振る舞いは独立 とする。コインに i = 1, . . . , N と名前をつけ, i 番目のコインが表なら 1 ,裏なら 0 という値をとる物理量 χ ˆ i を定義する。以下では,全系の確率分布を p と書く。
1-3. 運動方程式を t で積分し,時刻 t における y 方向の速度 v y (t) を求めよ。 1-4. 運動方程式をもう一度 t で積分し,時刻 t での高さ y(t) を求めよ。 1-5. 質点が最高点に到達する時刻 t h とその高さ y h を求めよ。
✎ 最高点では速度 v y が 0 になることを用いる。
✎ この平面が xy 平面になるように座標系を選べ。
7-4. 同様に角運動量が保存する場合、質点の速度の z 成分 v z が 0 になることを示せ。
7-5. 右図のように、時刻 t で r にあった質点 m が、時刻 (t + t) に r + r に進んだ。時刻 t での速度を
v として面積速度を求めよ。
いた。鎖の両端をそれぞれ A と B ,また A から x 離れた点を P とする。 B を力 F で水平に引っ張ると全体が加速度 a で動いた。
19-1. 運動の様子を図示せよ。点 P における鎖の張力を S とする。 【解答】右図の通り。図の S は, A ∼ P 部分を右に引く張力である。もちろ ん実際には P で鎖はくっついているが, S が A ∼ P 部分に働くことを明らか にするため少し離して書いた。図の左向きの力は, S の反作用であり, P ∼ B 部分を左に引いている。
る。以下,単一の物質からなる体積 V ,分子数 N のマクロな系を考察する。経験則として,エネルギー U および V ,
N によって,この系の平衡状態のマクロな性質が完全に決まることが知られている。
マクロな量子系 熱力学で扱うマクロな系も,ミクロな視点からは相互作用し合う無数の分子からなる量子系であ る。このような視点から記述したマクロな系をマクロな量子系と呼ぶ。
) での速度すなわち終端速度 v ∞ と, y ∞ (t) を求めよ *2 。
1-7. v y (t) と y(t) を t の関数としてグラフで表せ。
1-8. kt ≪ 1 の場合, v y (t) と y(t) がそれぞれ下のように展開できることを確認せよ。
v y (t) = (v 0 − gt) − k(v 0 t −
Overview
Geographical distribution of medical doctors is a contentious (and often politicized) issue in health care.
Hospitals in rural areas do not attract enough medical residents to meet their demands: 35 million Americans living in underserved areas and need 16,000 doctors.
Received: 14 November 2011 / Accepted: 26 June 2012 / Published online: 13 July 2012 # Springer Science+Business Media, LLC 2012
Abstract The paper proposes a hierarchical untestable stuck-at fault identification method for non-scan synchro- nous sequential circuits. The method is based on deriving, minimizing and solving test path constraints for modules embedded into Register-Transfer Level (RTL) designs. First, an RTL test pattern generator is applied in order to extract the set of all possible test path constraints for a module under test. Then, the constraints are minimized using an SMT solver Z3 and a logic minimization tool ESPRESSO. Finally, a constraint-driven deterministic test pattern gener- ator is run providing hierarchical test generation and untest- ability proof in sequential circuits. We show by experiments that the method is capable of quickly proving a large num- ber of untestable faults obtaining higher fault efficiency than achievable by a state-of-the-art commercial ATPG. As a side effect, our study shows that traditional bottom-up test
Hideo Fujiwara received his B.E., M.E.,
and Ph.D. degrees in Electronic Engineer- ing from Osaka University, Osaka, Japan, in 1969, 1971, and 1974, respectively. He was with Osaka University from 1974 to 1985, Meiji University from 1985 to 1993, Nara Institute of Science and Technol- ogy from 1993 to 2011, and joined Osaka Gakuin University in 1993. Presently he is a Professor Emeri- tus of Nara Institute of Science and Technology, and a Profes- sor with Faculty of Informatics, Osaka Gakuin University. His research interests are logic design, digital systems design and test, VLSI CAD and fault tolerant computing, including high- level/logic synthesis for testability, test synthesis, design for testa- bility, built-in self-test, test pattern generation, parallel process- ing, and computational complexity. He has published over 390 papers in refereed journals and conferences, and nine books in- cluding the book from the MIT Press (1985) entitled “Logic Test- ing and Design for Testability.” He received many awards includ- ing the Okawa Prize for Publication, three IEEE CS (Computer Society) Certificate of Appreciation Awards, two IEEE CS Meri- torious Service Awards, IEEE CS Continuing Service Award, and two IEEE CS Outstanding Contribution Awards. He has served as an editor and associate editors of several journals, including IEEE Transactions on Computers, and Journal of Electronic Test- ing: Theory and Application, and as a guest editor of several spe- cial issues of IEICE Transactions of Information and Systems. Dr. Fujiwara is a life fellow of IEEE, a Golden Core member of IEEE Computer Society, a fellow of IEICE, and a fellow of IPSJ.
The previous works show that DFT methods treat data path and controller separately. In fact, they need the insertion of additional hardware, like a test controller to control the data transfer from the primary input to the targeted fault and from the targeted fault to the primary output. In this paper, we introduce a new DFT method using a high level modeling known as Assignment Decision Diagram (ADD) [13] extended from the previous work that has been done in [12]. Different from [12], we abstract the DFT from the gate level and extend it to RTL. Additionally, our DFT method treats data path and controller unanimously. The DFT method augments a given RTL circuit based on the testability properties called thru function. We extract the thru function from the high level description of a given RTL circuit. Our method will improve test generation time and test application time as well as fault efficiency.
a) E-mail: fujiwara@ogu.ac.jp
DOI: 10.1587/transinf.2015EDL8183
In this paper, we introduce another class of general- ized shift registers called generalized feedback shift registers (GFSR, for short), and consider the properties of GFSR that are useful for secure scan design. We present how to con- trol/observe GFSR to guarantee scan-in and scan-out opera- tions that can be overlapped in the same way as the conven- tional scan testing. Testability and security of scan design using GFSR are considered. The cardinality of each class is clarified. We also present how to design strongly secure GFSR as well as GF 2 SR considered in [13] .