• 検索結果がありません。

水田地帯におけるイシガイ科二枚貝の保全に関する研究

N/A
N/A
Protected

Academic year: 2021

シェア "水田地帯におけるイシガイ科二枚貝の保全に関する研究"

Copied!
157
0
0

読み込み中.... (全文を見る)

全文

(1)

Title

水田地帯におけるイシガイ科二枚貝の保全に関する研究( 本

文(Fulltext) )

Author(s)

近藤, 美麻

Report No.(Doctoral

Degree)

博士(農学) 甲第619号

Issue Date

2014-03-13

Type

博士論文

Version

ETD

URL

http://hdl.handle.net/20.500.12099/49099

※この資料の著作権は、各資料の著者・学協会・出版社等に帰属します。

(2)
(3)

1 ... 1 1.1 ... 1 1.2 ... 2 1.3 ... 3 1.3.1 ... 3 1.3.2 ... 3 1.3.3 ... 4 1.3.4 ... 5 1.3.5 ... 6 1.4 ... 7 1.5 ... 8 2 ... 9 2.1 ... 9 2.2 ... 16 2.2.1 ... 16 2.2.2 ... 17 2.2.3 ... 19 2.2.4 ... 20 2.2.5 3 ... 23 3 ... 26 3.1 ... 26 3.2 ... 28 3.3 ... 39 3.4 2011 7 ... 48

(4)

3.5 ... 50 3.5.1 ... 50 3.5.2 ... 53 3.5.3 2013 ... 54 3.6 ... 57 4 ... 58 4.1 ... 59 4.1.1 ... 59 4.1.2 ... 61 4.1.3 ... 64 4.2 ... 65 4.2.1 ... 65 4.2.2 ... 66 4.2.3 ... 71 4.2.4 ... 73 4.3 ... 74 4.3.1 ... 74 4.3.2 ... 76 4.4 ... 79 5 ... 80 5.1 ... 80 5.1.1 ... 80 5.1.2 ... 85 5.1.3 ... 86 5.2 ... 87 5.2.1 ... 87

(5)

5.2.2 ... 89 5.2.3 ... 89 5.3 ... 90 5.4 ... 91 5.4.1 ... 91 5.4.2 ... 92 5.5 ... 93 6 3 ... 94 6.1 ... 94 6.2 ... 96 6.3 ... 98 6.4 ... 102 6.5 ... 104 7 3 ... 105 7.1 3 ... 105 7.2 ... 110 7.2.1 ... 110 7.2.2 ... 111 7.3 ... 114 8 ... 115 8.1 ... 115 8.1.1 ... 115 8.1.2 ... 117 8.1.3 ... 120 8.1.4 ... 125 8.1.5 ... 127

(6)

8.2 ... 129 8.2.1 ... 129 8.2.2 ... 133 8.2.3 ... 133 8.2.4 ... 135 8.2.5 ... 136 9 ... 138 ... 141 ... 143

(7)

1

1

1.1 1997 1998 40 2007 2008 2001 1998 2007 1988 2006 2000 2004 2006a 2006b 2006c 2006d 15 Kondo 2008 11 2012

(8)

2 Kondo 2008 2008a 29 2002 2007 2008b 2006 Negishi et al. 2013 Vaughn and Spooner, 2006

(9)

3 1.3 1.3.1 Kondo 1987 1 Kondo 1989 1990 6 1993 195cm Negishi et al. 2009 Pronodularia japanensis 20 10 Kondo 2008 1992 2009 1992 1992 1.3.2 Kondo 1987 2003

(10)

4

2003 Klunzinger et al. 2012 Levine et al. 2012

Anodonta woodiana

1986 Obovalis omiensis Anodonta sp.

Inversiunio yanagawensi Lanceolaria grayana

Inversiunio yanagawansis 1997

Unio douglasiae nipponensis

Kondo 1989

2003 2005 Inversiuno

jokohamensis Itoh et al. 2010 Anodonta japonica Akiyama 2011 Itoh

et al. 2008 2010 2013

1.3.3

(11)

5

Douglas 1985 Strayer 2008 Kakino et al. 2012 2002 1.3.4 2008 2003 2004 2000 2005

(12)

6 1.3.5

1

2 1

(13)

7 1.4

(14)

8

Monograph of Unionoida in Japan (Mollusca: Bivalvia)

Kondo 2008 3 2013 1.5 Anemina arcaeformis Anodonta spp. 6 Fig.1-1 Kondo 2008 Fig.1-1 A B C D E F

A

E

F

C

D

B

(15)

9

2

2.1 Fig.2-1 2005 1 5 200ha 1985 2 1999 Fig.2-1 A B C

A

B

C

300m

(16)

10 2001 7 21 Fig.2-2 1999-2000 RDB RDB IB RDB 2001 2009 2011 2012 2 Fig.2-3 Fig.2-2

(17)

11

400m2 0.2m

0.8m 2

30m

2011 Zizania

latifolia Typha latifolia Phragmites australis Oryza sativa

15 Fig.2-4 0.1m 1m2 1×1m 0.3m 15 2009 300m2 100m2 0.24m2 0.4×0.6m 0.1m Fig.2-5 1.12m2 0.8×1.4m 2011 2012 2011 Fig.2-3 A 2001-2008 B 2009-2011 C 2012 -30m 20m

A

B

C

(18)

12 2001-2004 2 2005-2006 2 6:00-6:45 14:00-14:45 22:00-22:45 1 135 2007 2008 3 1 11:00-19:00 1 8 2009 1 11:00-19:00 1 8 Fig.2-6 2.0-2.5m 20ha 0.2-0.9m Fig.2-7 Fig.2-5 A B C Fig.2-4 A B C

A

B

C

A

B

C

(19)

13 Fig.2-8 2,300m Fig.2-9 2005 Fig.2-6 Fig.2-7 Fig.2-9 Fig.2-8

(20)

14 2001

2013 8 28

Lethenteron sp. Anguilla japonica Cyprinus carpio

Carassius cuvieri Carassius sp. Carassius buergeri

buergeri Tanakia lanceolata Rhodeus ocellatus ocellatus

Hemigrammocypris rasborella Opsariichthys platypus

Candidia sieboldii Phoxinus lagowskii steindachneri Phoxinus oxycephalus

jouyi Tribolodon hakonensis Pseudorasbora parva Gnathopogon

elongatus elongatus Biwia zezera Pseudogobio esocinus esocinus

Abbottina rivularis Misgurnus anguillicaudatus Cobitis

biwae Cobitis minamorii tokaiensis Lefua

echigonia Silurus asotus Oryzias latipes

Odontobutis obscura Rhinogobius nagoyae

Rhinogobius flumineus

7 21

2005 2006

Bellamya (Sinotaia) quadrata histrica

Palaemon paucidens 2005

Appasus japonicus

(21)

15

5mm

(22)

16 2.2 3 2.2.1 2011 7 1 1m2 1×1m 4m2 2×2m 10min/m2 0.5mm 3 11 2008 3 2013 11 19 Table 2-1 2009 3 5 2012 3 2009 2011-2012 2009 7 2012 5 Table 2-1 3 5 7 9 11 2008 2009 2010 2011 2012 2013

(23)

17 2 40cm 2mm 90cm 2mm 25×25×40cm 2008 11 2011 11 3 2011 7 200mm 7mm 2.2.2 2008-2010 2010 1 2008 2009 11 2010 4-6 Fig.2-10 10min/m2 0.5mm 2 2010 3

(24)

18 4 Fig.2-11 0.5cm 2mm 2mm Fig.2-10 A 2008 B 2009 C 2010

A

B

C

50m 50m 50m Fig.2-11 A B C D

A

B

C

D

(25)

19 2.2.3 2008 5-10 2013 3 2008 2008 5 10 1 15 2007 7 Fig.2-12 6 Fig.2-12 2007 7 2008 76% 7% 7% 3% 3% 2% 1% 1% N=933

(26)

20 Kondo 2008 2003 10% 90% 20-28 200 1986 Kondo 1987 2003 7 2013 2013 3 Kondo, 2008 Kondo, 2008 2.2.4 3 12 Table 2-2 2 21 L Fig.2-13

(27)

21 13 1-2 2 Fig.2-13 Table 2-2 2011 9 13 9 27 2012 5 17 5 31 2012 8 23 9 6 2013 6 5 6 19 2012 2 27 3 28 5mm

(28)

22 Zale and Neves 1982

Kondo 2008 20cm 30×60×30cm 10 5mm Fig.2-13 25 15 1-2 24 20-28 200 1990

Rogers and Dimock 2003 Itoh et al. 2010 Akiyama 2011 3

(29)

23 2.2.5 3 2009 8 2012 9 2009 8 2012 9 NMT 2009 4 300m 600m 900m 1,178m 7 300m 600m 900m 1,200m 1,800m 2,400m 3,000m 11 2012 2,300m 2009 4 1,800m 5 2,300m 10 Fig.2-16 1,178m 2009 50 550 2012 20 200 22 220 20 200 Fig.2-17

(30)

24

A

B

Fig.2-16 A 2009 B 2012 2 2,,440000mm 3 3,,000000mm 1 1,,880000mm 1 1,,220000mm 6 60000mm 3 30000mm 3 30000mm 6 60000mm 9 90000mm 1 1,,117788mm 9 90000mm 0m 2 2,,330000mm 1 1,,880000mm 1 1,,220000mm 6 60000mm 3 30000mm 3 30000mm 6 60000mm 9 90000mm 1 1,,117788mm 9 90000mm

A

B

120 120 120 Fig.2-17 A 2009 B 2012 C 2012 D 2012 0 60 120 180 20 40 60 80 100 140 0 60 120 180 20 40 60 80 100 140 0 60 120 180 20 40 60 80 100 140 0 60 120 180 25 31 37 43 49 mm

A

B

C

D

N=550 N=200 N=220 N=200

(31)

25 5m Fig.2-18 24 Kondo 2008 25 7 7 2009 3 24 10 Fig.2-18 Fig.2-18 50m

(32)

26

3

2008 3 2013 11 19 5 2011 11 1 2009 2011-2012 2009 2011-2012 2009 7 2012 5 2009 7 2011-2012 2012 5 3.1 Fig.3-1 2009 2009 11 2011-2012 2012 5 2011 11 2011 11

(33)

27 2013 11 Fig.3-1 A 2008 B 2009 - C 2009 -0 300 600 900 1200 1500 1800

Jan. Mar. May July Sept. Nov. 2008 0 300 600 900 1200 1500 1800 Ja n. M ay Se pt . Ja n. M ay Se pt . Ja n. M ay Se pt . Ja n. M ay Se pt . Ja n. M ay Se pt . 2009 2010 2011 2012 2013 0 60 120 180 240 300 Ja n. M ay Se pt . Ja n. M ay Se pt . Ja n. M ay Se pt . Ja n. M ay Se pt . Ja n. M ay Se pt . 2009 2010 2011 2012 2013

A

B

C

(34)

28 3.2 1 2008 3 60.0-65.0mm 11 40.0-50.0mm Fig.3-2 10.0-20.0mm mm Fig.3-2 2008 0 150 300 0 150 300 0 150 300 0 150 300 0 150 300 0 10 20 30 40 50 60 70 80 90 100 110 2008.3 N=682 2008.5 N=1,007 2008.7 N=629 2008.9 N=1,002 2008.11 N=582

(35)

29 2009 Fig.3-3 2009 7 45.0-50.0mm 2010 5 2008 3 60.0-65.0mm 2009 9 15.0-20.0mm 2010 3 20.0-25.0mm 5 25.0-30.0mm 7 30.0-35.0mm 9 40.0-45.0mm 2010 9 2011 11 2011 3 10.0-20.0mm 2011 3 5 60.0-65.0mm 7 2009 45.0-55.0mm 2011 7 9 40.0mm 10.0-20.0mm 2012 5 50.0-55.0mm 2008 2009-2011 10.0-20.0mm

(36)

30 mm Fig.3-3 2009-2013 0 150 300 0 150 300 0 150 300 0 150 300 0 150 300 0 150 300 0 150 300 0 150 300 0 150 300 0 150 300 0 150 300 0 150 300 0 150 300 0 150 300 0 150 300 0 150 300 0 150 300 0 150 300 0 150 300 0 150 300 0 150 300 0 150 300 0 150 300 0 150 300 0 150 300 0 150 300 0 15 30 45 60 75 90 105 0 150 300 0 150 300 0 150 300 0 15 30 45 60 75 90 105 2009.7 N=584 2009.9 N=448 2011.3 N=467 2009.11 N=565 2010.3 N=383 2010.5 N=569 2010.7 N=452 2010.9 N=503 2010.11 N=734 2011.9 N=622 2011.11 N=836 2012.5 N=1,680 2012.11 N=492 2013.11 N=61 2011.5 N=801 2011.7 N=699 2009.7 N=294 2009.9 N=204 2011.3 N=156 2009.11 N=144 2010.3 N=127 2010.5 N=203 2010.7 N=179 2010.9 N=123 2010.11 N=198 2011.7 N=182 2011.9 N=181 2011.5 N=177 2011.11 N=138

(37)

31 2 2008 85.0-90.0mm Fig.3-4 2008 3 25.0-40.0mm 60.0-65.0mm 90.0-95.0mm 2 2008 9 50.0-55.0mm 70.0-75.0mm mm Fig.3-4 2008 0 30 60 0 30 60 0 30 60 0 30 60 0 30 60 0 10 20 30 40 50 60 70 80 90 100 115 2008.3 N=197 2008.5 N=147 2008.7 N=128 2008.9 N=133 2008.11 N=109

(38)

32 2009 Fig.3-5 2009 7 90.0-95.0mm 2010 7 2011 5-11 2009 7 85.0-90.0mm 2010 7 2012 5 80.0-85.0mm

(39)

33 mm Fig.3-5 2009-2013 0 30 60 0 30 60 0 30 60 0 30 60 0 30 60 0 30 60 0 30 60 0 30 60 0 30 60 0 30 60 0 30 60 0 30 60 0 30 60 0 30 60 0 30 60 0 30 60 0 30 60 0 30 60 0 30 60 0 30 60 0 30 60 0 30 60 0 30 60 0 30 60 0 30 60 0 30 60 0 15 30 45 60 75 90 110 0 30 60 0 30 60 0 30 60 0 15 30 45 60 75 90 110 2009.7 N=84 2009.9 N=89 2011.3 N=57 2009.11 N=92 2010.3 N=70 2010.5 N=58 2010.7 N=78 2010.9 N=61 2010.11 N=56 2011.9 N=68 2011.11 N=65 2012.5 N=149 2012.11 N=56 2013.11 N=17 2011.5 N=55 2011.7 N=69 2009.7 N=44 2009.9 N=37 2011.3 N=39 2009.11 N=31 2010.3 N=32 2010.5 N=36 2010.7 N=27 2010.9 N=30 2010.11 N=49 2011.5 N=37 2011.9 N=32 2011.11 N=27 2011.7 N=28

(40)

34 3 2008 3 60.0-65.0mm 85.0-90.0mm 60.0-65.0mm 5 7 65.0-70.0mm 9 70.0-75.0mm 11 85.0-90.0mm Fig.3-6 mm Fig.3-6 2008 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50 0 10 20 30 40 50 60 70 80 90 105 120 135 2008.3 N=136 2008.5 N=90 2008.7 N=80 2008.9 N=89 2008.11 N=77

(41)

35 2009 Fig.3-7 2009 7 75.0-80.0mm 2010 7 30.0-50.0mm 2011 11 70.0-75.0mm 2011 7 2011 11 2010 2011 2008 2012 5 50.0-55.0mm 70.0-75.0mm 85.0-90.0mm 11 75.0-80.0mm 2013 11

(42)

36 mm Fig.3-7 2009-2013 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50 0 15 35 55 75 95 115 140 0 25 50 0 25 50 0 25 50 0 15 35 55 75 95 115 140 2009.7 N=65 2009.9 N=63 2011.3 N=68 2009.11 N=70 2010.3 N=43 2010.5 N=52 2010.7 N=67 2010.9 N=71 2010.11 N=66 2011.9 N=82 2011.11 N=65 2012.5 N=67 2012.11 N=26 2013.11 N=5 2011.5 N=71 2011.7 N=61 2009.7 N=25 2009.9 N=12 2011.3 N=10 2009.11 N=12 2010.3 N=15 2010.5 N=14 2010.7 N=10 2010.9 N=10 2010.11 N=11 2011.7 N=9 2011.9 N=9 2011.11 N=8 2011.5 N=9

(43)

37 4 Fig.3-8 3 2008 7 2010 2012 2011 9 25.0mm Fig.3-9 mm Fig.3-8 2008 0 15 30 0 15 30 0 15 30 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 2008.7 N=4 2008.9 N=13 2008.11 N=10

(44)

38 mm Fig.3-9 2009-2013 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 10 20 30 40 50 60 70 0 15 30 0 15 30 0 15 30 0 10 20 30 40 50 60 70 2009.9 N=1 2011.3 N=1 2009.11 N=5 2010.3 N=3 2010.5 N=5 2010.7 N=1 2010.9 N=6 2010.11 N=5 2011.9 N=5 2011.11 N=4 2012.5 N=29 2012.11 N=15 2013.11 N=2 2011.5 N=0 2011.7 N=5 2009.9 N=1 2011.3 N=11 2009.11 N=4 2010.3 N=8 2010.5 N=11 2010.7 N=12 2010.9 N=9 2010.11 N=13 2011.7 N=8 2011.9 N=10 2011.11 N=7 2011.5 N=11

(45)

39 3.3

2008 2012 11 2008-2009 2009-2010

2010-2011 2011-2012 4

3-5 5-7 7-9 9-11 11-3

Negishi and Kayaba 2009

G % Le mm Li 1 mm G(t) % L(t) t mm L(t-1) t-1 mm T(t) t-1 t 1 Fig.3-10 2009-2010 20.0mm 15.5-19.5mm N=9 178.7% 20.0-40.0mm 21.0-29.0mm N=10 101.8 40.0-60.0mm 40.0-59.5mm N=97 10.8 60.0mm 60.0-73.0mm N=28 4.1 2011-2012 2009-2010

(46)

40 mm mm Fig.3-10 A B 0 50 100 150 200 250 0 30 60 90 0 50 100 150 200 250 0 30 60 90 2008.11-2009.11(N=77) R2=0.67 2009.11-2010.11(N=144) R2=0.80 2010.11-2011.11(N=104) R2=0.64 2011.11-2012.11(N=160) R2=0.59 2008.11-2009.11(N=21) R2=0.69 2009.11-2010.11(N=65) R2=0.68 2010.11-2011.11(N=67) R2=0.42

A

B

(47)

41 Fig.3-11 7-9 3-5 11-3 9-11 3-5 5-7 11-3 7-9 9-11 mm Fig.3-11 0.00 0.75 1.50 0.00 0.75 1.50 0.00 0.75 1.50 0.00 0.75 1.50 0.00 0.75 1.50 0.00 0.75 1.50 0.00 0.75 1.50 0.00 0.75 1.50 0.00 0.75 1.50 0.00 0.75 1.50 0.00 0.75 1.50 0 30 60 90 0.00 0.75 1.50 0.00 0.75 1.50 0.00 0.75 1.50 0 30 60 90 0.00 0.75 1.50 0 30 60 90 0.00 0.75 1.50 0 30 60 90 2008 2009 2010 2011 3-5 5-7 7-9 9-11 11-3

(48)

42 2 Fig.3-12 2009-2010 60.0-80.0mm 61.0-78.5mm N=11 14.4 80.0-100.0mm 80.0-99.0mm N=16 4.5% 2008-2009 2008-2009 2011-2012 2010-2011 2009-2010 Fig.3-13 7-9 3-5 11-3 2008-2009 2009 7-9 2008 2010 2009 9-11 2010 7-9 2011 7-9

(49)

43 mm mm Fig.3-12 A B 0 5 10 15 20 25 30 40 60 80 100 120 0 5 10 15 20 25 30 40 60 80 100 120 2008.11-2009.11(N=8) R2=0.34 2009.11-2010.11(N=27) R2=0.61 2010.11-2011.11(N=23) R2=0.59 2011.11-2012.11(N=4) R2=0.55 2008.11-2009.11(N=6) R2=0.58 2009.11-2010.11(N=20) R2=0.60 2010.11-2011.11(N=11) R2=0.56

A

B

(50)

44 mm Fig.3-13 0.00 0.15 0.30 0.00 0.15 0.30 0.00 0.15 0.30 0.00 0.15 0.30 0.00 0.15 0.30 0.00 0.15 0.30 0.00 0.15 0.30 0.00 0.15 0.30 0.00 0.15 0.30 0.00 0.15 0.30 0.00 0.15 0.30 0 50 100 150 0.00 0.15 0.30 0.00 0.15 0.30 0.00 0.15 0.30 0 50 100 150 0.00 0.15 0.30 0 50 100 150 0.00 0.15 0.30 0 50 100 150 2008 2009 2010 2011 3-5 5-7 7-9 9-11 11-3

(51)

45 3 Fig.3-14 2009 11 2008-2009 2010-2011 60.0mm 53.0-59.0mm N=5 26.9% 60.0-80.0mm 60.0-75.0mm N=15 16.7 80.0mm 82.5-97.5mm N=12 2.3% 2009-2010 2010-2011 2009-2010 2010-2011 2008-2009 2011-2012 Fig.3-15 2008 7-9 9-11 2009 7-9 11-3 3-5 4 2009-2010 39.0mm 42.5mm 9.0 2010-2011 42.5mm 46.5mm 51.0mm 55.5mm 9.4 8.8

(52)

46 mm mm Fig.3-14 A B y = 75.784e-0.049x R² = 0.1071 0 5 10 15 20 25 30 35 40 40 60 80 100 120 0 5 10 15 20 25 30 35 40 40 60 80 100 120 2008.11-2009.11(N=17) R2=0.21 2009.11-2010.11(N=27) R2=0.75 2010.11-2011.11(N=32) R2=0.82 2011.11-2012.11(N=10) R2=0.11 2009.11-2010.11(N=3) R2=0.97 2010.11-2011.11(N=6) R2=0.3516

A

B

(53)

47 mm Fig.3-15 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0 50 100 150 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0 50 100 150 0.0 0.5 1.0 0 50 100 150 0.0 0.5 1.0 0 50 100 150 2008 2009 2010 2011 3-5 5-7 7-9 9-11 11-3

(54)

48 3.4 2011 7 2011 7 Fig.3-16 13 53% 22 29% 0% 38% 9 4 2013 Fig.3-16 3 0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100% N=157 22.5 N=62 34.1 N=50 84.7 N=28 100 N=2 40.0 N=8100

(55)

49 2008a Table 3-1 2011 7 2003 2008 1-4m2 2011 7 30 /m2 10 /m2 Table 3-1 2011 7 / /m2 30/2.6 9/1.4 5/0.2 5/0.3 2/0.2 2/0.1 1/0.02 3/0.09

(56)

50 3.5 3.5.1 90.0-95.0mm 90.0-95.0mm 10.0mm 30.0mm 1986 2003 Akiyama 2011 2009 9 2008 2010 2011 10.0-20.0mm Kondo 2008 5 9 5 2009 7 9 7-9 20.0mm 1.0%/d 7 20.0mm 9 32.0mm

(57)

51 7 9 20.0mm 5 11 40.0mm 9 3 5 10.0-20.0mm 2 11 40.0mm 11 40.0mm 2008 2010 2011 10.0-20.0mm 2009 7 2009 2012 10.0-20.0mm 2010 7 30.0mm 2011 9 50.0mm 1 4 Kondo 2008 2013 2010 2011 7-9 2010 7 40.0-44.0mm 0.77-0.90 0.83 %/d 9 65.0-67.0mm 1-4 7 30.0mm 9 50.0mm 2010 7 2011 9

(58)

52 2008 60.0-65.0mm 2007 2008 7 9 30.0-50.0mm 2009 2009 2012 2009 2012 1-4 2009 2011 7 2012 5 50 20 1 2008 5 5 2012 2011-2012 2013

(59)

53 3.5.2

Kondo, 1992 Negishi and Kayaba, 2009 Zirena et al., 2013

60.0-65.0mm 90.0-95.0mm 85.0-90.0mm 3 2011-2012 2008-2009 2012 Kondo 1992 3 7-9 Kondo 1992 Kondo 1992 2011 7 5-7 Fig.3-18 9-11

(60)

54 3.5.3 2013

2012 11 2013 11

Myocastor coypus Corvus sp.

2003 2010 2011 2012 2013 m Fig.3-19 2008 2013 2013 2011-2012 2012 2013 mm Fig.3-18 2011 5 7 A B C 0.00 0.05 0.10 0.15 0.20 0 50 100 150 0 0.1 0.2 0.3 0.4 0.5 0.6 0 50 100 0.00 0.05 0.10 0.15 0.20 0 50 100

A

B

C

(61)

55 2010 Fig.3-19 2013 A B C m

A

B

C

(62)

56 2013 11

11

Fig.3-20

(63)

57 3.6 2009 2011-2012 2011 7 2012 2013

(64)

58

4

2008 11 2009 11 2010 4-6 2010 3 1 4 Fig.4-1 2 3 Fig.4-1 A B 1 2 3 4 C 2 3

A

B

C

1 2 3 4

(65)

59 4.1 4.1.1 2008 5m 16 1 11 2 1 3 2 4 2 1 3 4 1 2 2009 3 4 3 4 2010 1 4 1 3 4 2 Fig.4-2 4 1 3 3 2-4 /m2

(66)

60 No Data *1 2 *2 2009 1 Fig.4-2 1 3 4 1 3 4 1 3 4 34 77 0 187 7 44 300 25 1 7 1 10 1 3 36 11 2 5 0 7 0 0 14 11 1 0 0 0 0 1 0 0 0 0 0 2 0 3 2 0 2009*2 2008 2010 )*1 0.0 1.0 2.0 3.0 4.0 5.0

(67)

61 4.1.2 1 Fig.4-3 1 3 4 2008 64.0-114.5mm 2010 73.0-111.0mm 3 2008 50.0-80.0mm 60.0-65.0mm 2009 13.0-80.0mm 2010 14.5-81.0mm 55.0-60.0mm 4 2009 35.0-68.5mm 2010 14.0-69.0mm 3 mm Fig.4-3 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 45 70 95 0 20 40 60 80 100 0 20 40 60 80 100 0 20 45 70 95 0 20 40 60 80 100 0 20 45 70 95 2008 2009 2010 4 3 1 N=34 N=44 N=77 N=187 N=300 N=7 N=25 N=0

(68)

62 2 Fig.4-4 1 3 4 1 2008 61.0mm 1 2010 56.0-67.5mm 3 2008 14.5-38.5mm 2009 16.5-38.0mm 2010 15.0-39.0mm 2008 2009 30.0-35.0mm 2010 15.0-20.0mm 30.0-35.0mm 4 2008 34.5mm 2009 33.0mm 1 2010 17.5-50.5mm N=1 N=3 N=7 N=10 N=36 N=1 N=11 N=1 mm Fig.4-4 0 3 6 9 12 15 0 3 6 9 12 15 0 3 6 9 12 15 0 3 6 9 12 15 0 3 6 9 12 15 0 3 6 9 12 15 0 15 30 45 60 75 0 3 6 9 12 15 0 15 30 45 60 75 0 3 6 9 12 15 0 15 30 45 60 75 2008 2009 2010 4 3 1

(69)

63 3 Fig.4-5 1 2008 33.5mm 50.0mm 2 3 2008 22.0-44.0mm 2009 34.0-45.0mm 2010 19.5-46.0mm 4 2010 19.5-38.5mm 1 mm Fig.4-5 0 3 6 9 12 15 0 3 6 9 12 15 0 3 6 9 12 15 0 3 6 9 12 15 0 3 6 9 12 15 0 3 6 9 12 15 0 15 30 45 60 75 0 3 6 9 12 15 0 15 30 45 60 75 0 3 6 9 12 15 0 15 30 45 60 75 2008 2009 2010 4 3 1 N=0 N=2 N=0 N=5 N=7 N=14 N=0 N=11

(70)

64 4 2008 2009 3 35.0mm 34.5mm 2 2010 1 22.5mm 35.5mm 49.0mm 3 3 55.5mm 57.0mm 2 2008 2010 1 37.5mm 87.0mm 4.1.3 2008 11 2009 11 53.0-69.5mm 1.4-4.5 2.2 % Fig.4-6 mm Fig.4-6 2008 11 -2009 11 0 5 10 15 0 50 100 150 N=10

(71)

65 4.2 4.2.1 Fig.4-7 2010 1 100m Egeria densa 100m 200m 2 3 5m 3 4 3 2-64mm Fig.4-7 0 2 4 6 8 10 1 51 101 151 201 251 301 351 m

(72)

66 4.2.2 4 2 1 9 1 Fig.4-8 Fig.4-9 Fig.4-8 / / 2 49% 21% / 7% / 7% / 5% 4% 2% / 2% / 2% 1% / 0% N=369

(73)

67 mm Fig.4-9 0 20 40 60 0 20 45 70 95 0 20 40 60 0 20 45 70 95 0 20 40 60 0 20 45 70 95 0 20 40 60 0 20 45 70 95 0 20 40 60 0 20 45 70 95 0 0 20 45 70 95 20 40 60 0 20 45 70 95 0 20 40 60 0 20 40 60 0 20 45 70 95 0 20 40 60 0 20 45 70 95 0 20 40 60 0 20 45 70 95 0 20 40 60 0 20 45 70 95 N=182 N=78 N=6 N=15 N=24 N=8 N=4 N=26 N=18 N=7 N=1

(74)

68 2 Fig.4-10 Fig.4-11 Fig.4-10 / / 2 59% 11% / 8% / 4% / 2% 4% 2% / 2% / 4% 2% / 2% N=49

(75)

69 mm Fig.4-11

0

10

20

30

0 20 45

70

0

10

20

30

0 20 45

70

0

10

20

30

0 20

45

70

0

10

20

30

0 20 45

70

0

10

20

30

0 20 45

70

0

0 20

45

70

10

20

30

0 20 45

70

0

10

20

30

0

10

20

30

0 20 45

70

0

10

20

30

0 20

45

70

0

10

20

30

0 20 45

70

0

10

20

30

0 20 45

70

N=29 N=5 N=2 N=2 N=2 N=1 N=1 N=4 N=1 N=1 N=1

(76)

70 3 Fig.4-12 Fig.4-13 Fig.4-12 / / 63% 13% / 8% / 4% 8% / 4% N=24 mm Fig.4-13

0

10

20

30

0 20 45

70

0

10

20

30

0 20 45

70

0

10

20

30

0 20

45

70

0

10

20

30

0 20 45

70

0

10

20

30

0 20 45

70

0 20 45

70

0

10

20

30

0 20 45

70

0

10

20

30

0

10

20

30

0 20

45

70

0

10

20

30

0 20

45

70

0

10

20

30

0 20

45

70

0

10

20

30

0 20

45

70

N=15 N=3 N=1 N=2 N=1 N=2

(77)

71 4 5 1 4.2.3 Fig.4-14 1cm Fig.4-15 rs=-0.79 P=0.00084

Spearman s rank correlation coefficient was performed in R.2.14.2

Fig.4-14 0 2 4 6 8 10 12 0 20 40 60 80 100 120 mm (N=369) (N=49) (N=24) (N=5) (N=1)

(78)

72 Fig.4-15 0 20 40 60 80 100 120 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 (cm) rs=-0.79

(79)

73 4.2.4 8% 13% Fig.4-16 mm Fig.4-16 A B C 0 30 60 90 120 0 15 35 55 75 95 115 0 30 60 90 120 0 15 35 55 75 95 115 0 5 10 15 20 0 10 20 30 40 50 60 70 0 5 10 15 20 0 10 20 30 40 50 60 70 0 5 10 15 20 0 10 20 30 40 50 60 70 0 5 10 15 20 0 10 20 30 40 50 60 70 N=33 N=336 N=4 N=45 N=3 N=21

A

B

C

(80)

74 4.3 4.3.1 1 3 4 1 3 4 2 3 4 1 3 4 2008 11 2009 11 60.0mm 4.5% 16.7% Kondo 1992 2010 8 4 5 3 1 30 3 1 1 25 20 Fig.4-17 3 4 1 2011 3 4

(81)

75 1 1 3 4 Fig.4-17 1 3 2010 8 4 8 5 0 5 10 15 20 25 30 35 3 1

(82)

76 4.3.2 400m 1998 1cm Negishi et al. 2011 0-8cm 10cm 5cm 2cm 3cm Fig.4-18 3 2cm 3cm

(83)

77 90 1998 Fig.4-18 2cm 3cm / / 49% 21% / 8% / 7% / 5% 10% N=257

(84)

78

Yeager et al. 1994 Villisa iris

1972 Hypriopsis schlegeli

Negishi et al. 2011 20mm

2 2-8cm

4-6

Balfour and Smock 1994 Elliptio complanata

(85)

79 4.4

3 4 1

3 4 1

(86)

80

5

2008 5-10 2013 3 5.1 5.1.1 2008 5-9 4 Fig.5-1 2006 Table 5-1

(87)

81 Table 5-1 * 31 6 19.4 10 1.7 0.8 89 3 3.4 4 1.3 0.6 35 26 74.3 851 32.7 39.6 39 21 53.8 124 5.9 3.8 52 7 13.5 14 2.0 1.0 61 20 32.8 30 1.5 0.6 307 83 1,033 *±SD Fig.5-1 A B C D

A

B

C

D

(88)

82 6 1 5 77mm 185 Table 5-2 568 65.7% 41.0% 10% SD 21.6 ±37.1 3.3 ±3.0 2 200 45.7% 33.3% 10% 10.8 2 31 4 230 1,033

(89)

83 Table 5-2 * 31 3 9.7 5 1.7 ±1.2 89 1 1.1 1 1.0 35 23 65.7 497 21.6 ±37.1 39 16 41.0 52 3.3 ±3.0 52 4 7.7 5 1.3 ±0.5 61 6 9.8 8 1.3 ±0.5 307 53 568 *±SD * 31 1 3.2 1 1.0 89 0 0.0 0 0.0 35 16 45.7 172 10.8 ±14.6 39 13 33.3 25 1.9 ±1.0 52 2 3.8 2 1.0 61 0 0.0 0 0.0 307 32 200 *±SD * 31 0 0.0 0 0.0 89 0 0.0 0 0.0 35 2 5.7 2 1.0 39 5 12.8 13 2.6 ±2.6 52 1 1.9 2 2.0 61 11 18.0 14 1.3 ±0.6 307 19 31 *±SD * 31 0 0.0 0 0.0 89 0 0.0 0 0.0 35 0 0.0 0 0.0 39 2 5.1 4 2.1 ±1.4 52 0 0.0 0 0.0 61 0 0.0 0 0.0 307 2 4 *±SD

(90)

84 2013 14 60 1,050 2 5 2 27 23 1 8 60 2 1 2 2 1 1 1 Fig.5-2 Fig.5-2

(91)

85 5.1.2 Fig.5-3 45% Fig.5-3 94% 4% 1% 1% N=568 98% 1% 1% N=200 45% 23% 16% 10% 3% 3% N=31

(92)

86 5.1.3 Fig.5-4 rs=0.465, P=0.034 Spearman was performed in R.2.14.2 mm Fig.5-4 A B C D E F D 0 1 2 3 4 5 0 75 150 0 50 100 150 200 0 75 150 0 5 10 15 20 0 75 150 0 1 2 3 4 5 0 75 150 0 1 2 3 4 5 0 75 150 0 1 2 3 4 5 0 75 150

A

B

C

D

E

F

rs=0.465 N=6 N=4 N=849 N=124 N=11 N=27

(93)

87 5.2 5.2.1 Table 5-3 6 70.6% 3.3 6.0 Table 5-4 26 5 35.3 6.1% 2.5 3.7 15 41.2 3.0 2 1 16 59 Table 5-3 * 33 2 6.1 2 1.0 77 1 1.3 1 1.0 17 12 70.6 40 3.3 6.0 36 6 16.7 10 1.7 0.8 75 4 5.3 5 1.3 0.5 22 1 4.5 1 1.0 260 *±SD

(94)

88 Table 5-4 * 33 2 6.1 2 1.0 77 1 1.3 1 1.0 17 6 35.3 15 2.5 ±3.7 36 2 5.6 3 1.5 ±0.7 75 4 5.3 5 1.3 ±0.5 22 0 0.0 0 0.0 260 15 26 *±SD * 33 0 0.0 0 0.0 77 0 0.0 0 0.0 17 7 41.2 12 1.7 ±1.9 36 1 2.8 3 3.0 75 0 0.0 0 0.0 22 0 0.0 0 0.0 260 8 15 *±SD * 33 0 0.0 0 0.0 77 0 0.0 0 0.0 17 1 5.9 1 1.0 36 1 2.8 1 1.0 75 0 0.0 0 0.0 22 0 0.0 0 0.0 260 2 2 *±SD

(95)

89 5.2.2 Fig.5-5 5.2.3 Fig.5-6 mm Fig.5-6 A B C 0 5 10 15 20 25 0 75 150 0 1 2 3 4 5 0 75 150 0 1 2 3 4 5 0 75 150

A

B

C

Fig.5-5 81% 19% N=26 93% 7% N=15 N=40 N=10 N=5

(96)

90 5.3 45 1 1 9 2 58 1 2 10 1 5 4 1 1 7 27 1 6 1 42 1 35 20 9 6 12 35

(97)

91 5.4 5.4.1 2013 3 2013 3 2012-2013 Kondo 2008 2003 5 Bauer 1987 Margaritifera margaritifera Salmo trutta Bauer 1987

(98)

92 6 5.4.2 Table 5-5 1986 2004 1986 0.2m 3 Table 5-5 1 * 21.6 37.1 1 20 2.5 3.7 10.8 14.6 5 9 1.7 1.9 1 0 0 0 0 0 0 1 11.4 12.0 4 6 2.4 2.1 * SD

(99)

93 1m

5.5

(100)

94

6

3

6.1

Fig.6-1

(101)

95 Fig.6-1 A B C

A

B

C

Fig.6-2 A B C

C

B

A

(102)

96 6.2 Table 6-1 6 3 9 3 95.3% 88.1% 5% 52.3 2 50.8 44.4 3.8% 30.3% 95.3 44.4 11.9% 4.8 44.4 30.3 88.1 3.8 23.5

(103)

97 Table 6-1 % 88 0 88 0.0 39 0 39 0.0 37 743 780 95.3 380 19 399 4.8 51 2 53 3.8 49 0 49 0.0 59 0 59 0.0 592 1 593 0.2 64 0 64 0.0 230 0 230 0.0 33 244 277 88.1 33 1 34 2.9 % 8 0 8 0.0 41 0 41 0.0 69 55 124 44.4 * 41/151 45/156 86/307 52.3/50.8 13 0 13 0.0 26 0 26 0.0 15 0 15 0.0 229 0 229 0.0 32 0 32 0.0 174 0 174 0.0 251 20 271 7.4 4 0 4 0.0 % 57 0 57 0.0 26 0 26 0.0 96 13 108 11.9 53 23 76 30.3 19 3 22 13.6 47 1 48 2.1 35 1 36 2.8 536 4 540 0.7 308 0 308 0.0 456 92 548 16.8 143 44 187 23.5 43 2 45 4.4 *1 /2

(104)

98 6.3 Fig.6-3 6-4 6-5 1 1-10 4 6-11 2009 9 8.5 2012 5 8.3 8 1 Fig.6-3 2 1-11 3 9 3 10 1 6-11 2012 8 7.2 2013 6 7.8 Fig.6-4 3 1-24 4-24 12-24 Fig.6-5 14.2

(105)

99 d Fig.6-3 0 20 40 60 80 100 1 3 5 7 9 11 13 0 20 40 60 80 100 1 3 5 7 9 11 13 0 20 40 60 80 100 1 3 5 7 9 11 13 0 20 40 60 80 100 1 3 5 7 9 11 13 0 20 40 60 80 100 1 3 5 7 9 11 13 0 20 40 60 80 100 1 3 5 7 9 11 13 0 20 40 60 80 100 1 3 5 7 9 11 13 0 20 40 60 80 100 1 3 5 7 9 11 13 0 20 40 60 80 100 1 3 5 7 9 11 13 0 20 40 60 80 100 1 3 5 7 9 11 13 0 20 40 60 80 100 1 3 5 7 9 11 13 0 20 40 60 80 100 1 3 5 7 9 11 13

(106)

100 d Fig.6-4 0 20 40 60 80 100 1 3 5 7 9 11 13 0 20 40 60 80 100 1 3 5 7 9 11 13 0 20 40 60 80 100 1 3 5 7 9 11 13 0 20 40 60 80 100 1 3 5 7 9 11 13 0 20 40 60 80 100 1 3 5 7 9 11 13 0 20 40 60 80 100 1 3 5 7 9 11 13 0 20 40 60 80 100 1 3 5 7 9 11 13 0 20 40 60 80 100 1 3 5 7 9 11 13 0 20 40 60 80 100 1 3 5 7 9 11 13 0 20 40 60 80 100 1 3 5 7 9 11 13 0 20 40 60 80 100 1 3 5 7 9 11 13 0 20 40 60 80 100 1 3 5 7 9 11 13

(107)

101 d Fig.6-5 0 20 40 60 80 100 1 4 7 10 13 16 19 22 0 20 40 60 80 100 1 4 7 10 13 16 19 22 0 20 40 60 80 100 1 4 7 10 13 16 19 22 0 20 40 60 80 100 1 4 7 10 13 16 19 22 0 20 40 60 80 100 1 4 7 10 13 16 19 22 0 20 40 60 80 100 1 4 7 10 13 16 19 22 0 20 40 60 80 100 1 4 7 10 13 16 19 22 0 20 40 60 80 100 1 4 7 10 13 16 19 22 0 20 40 60 80 100 1 4 7 10 13 16 19 22 0 20 40 60 80 100 1 4 7 10 13 16 19 22 0 20 40 60 80 100 1 4 7 10 13 16 19 22 0 20 40 60 80 100 1 4 7 10 13 16 19 22

(108)

102 6.4

6

3 3

9

Rogers and Dimock 2003

Dodd et al. 2005 2014

Rogers and Dimock,

2006 Rogers and Dimock 2003

95.3% 88.1 0 Strayer, 2008 Kondo 1989 2010 Kondo 1989 7 Zacco temmincki Candidia temminckii

(109)

103 Kondo 1989 8 1 7 Kondo 1989 2010 19 2003 2003 2010 Kondo 2008 Anodontini Strayer 2008 2 Neves et al. 1985 Bauer 1994 Kondo 1989 Kondo 2008

(110)

104 156 183 m 209 215 m

392 398 m

Bauer 1994

Neves 1985 Kondo 1989

Levine et al. 2012 Popenaias

popeii 31 8 24 2003 11 6.5 12 3 6 3 9 95.3% 52.3% 30.3% 5 8

(111)

105

7

3

2009 2012 5 6 1994 7.1 3 2012 1 2009 7 39 7% 3 39 3 8% 23 7% 16 8% 3,000m Fig.7-1 1,800-3,000m 4 2,300m ±SD 247.9 ±155.3 m/d 207.8 ±158.5 m/d U=147 P=0.295 Mann-Whitney U-test 600m/d Table 7-1 rs 0.559 P performed in R.2.14.2

(112)

106 Fig.7-2 Table 7-1 m 1 2 3 4 5 6 7 1,178 1 2 3 900 3 1 1 5 600 1 1 2 300 1 2 1 2 6 300 1 2 1 2 6 600 1 1 2 900 1 3 1 2 7 1,200 1 1 1 3 1,800 1 1 1 3 2,400 2 2 0 4 12 6 8 7 2 39 Fig.7-1 0 2 4 6 8 m 0m N=23 N=16

(113)

107 2 7 6 3% 4 2 300 900 1,800m 900 1,178m Fig.7-3 ±SD 225.0 ±86.6 m/d 248.2 ±73.3 m/d 900m 300m/d Table 7-2 3 7 4 2% 2 300m 300 600m Fig.7-4 ±SD 125.0 ±35.4 m/d 67.5 ±10.6 m/d 300m A N=23 B N=16 Fig.7-2 A B A 0 100 200 300 400 500 600 700 0 30 60 90 120 150 m /d mm 0 100 200 300 400 500 600 700 0 30 60 90 120 150 m /d mm rs=0.559

A

N=23

B

N=16

(114)

108 150m/d Table 7-3 Table 7-2 m 1 2 3 4 5 6 7 1,178 1 1 900 1 1 600 0 300 0 300 1 1 600 0 900 1 1 2 1,200 1 1 1,800 0 2,020 0 0 1 2 0 0 3 0 6 Fig.7-3 0 2 4 6 8 m 0m N=4 N=2

(115)

109 Fig.7-4 0 2 4 6 8 m Table 7-3 m 1 2 3 4 5 6 7 1,178 0 900 0 600 0 300 1 1 2 300 1 1 600 1 1 900 0 1,200 0 1,800 0 2,020 0 0 1 0 1 1 1 0 4 0m N=2 N=2

(116)

110 7.2 7.2.1 Fig.7-5 y=exp(6.50+0.06x) y=exp(5.95+0.21x) y=exp(5.17+0.17x) d Fig.7-5 A N=39 B N=6 C N=4 1 3 5 7 300 600 900 1200 1500 1800 2100 2400 1 3 5 7 300 600 900 1200 1500 1800 2100 2400 1 3 5 7 300 600 900 1200 1500 1800 2100 2400

A

B

C

(117)

111 7 1,040m 1,669m 578m 2 7.2.2 2009 2012 2012 2009 2009 2012 Table7-4 1996 2009 8 2012 9 2012 2006

(118)

112 Table 7-4 2009 * 2012 8/13 8/14 8/15 8/16 8/17 8/18 8/19 8/20 8/21 8/22 8/23 8/24 8/25 1 1 2 1 2 5 1 6 16 6 21 4 5 13 10 3 9 94 20 13 10 14 24 11 2 2 19 4 13 3 3 138 8 33 120 65 77 95 9 8 70 17 49 3 554 13 29 87 47 78 71 15 4(204) 51 14(328) 19 32 7(114) 467(646) 10 4 3 2 1 11 7 5 2 3 3 5 56 3 10 8 16 12 3 5 1 4 5 2 5 74 2 4 6 4 2 4 2 7 1 1 2 35 9 4 10 2 3 9 2 16 1 14 22 92 1 6 4 4 5 2 22 1 1 1 2 1 6 0 2 2 2 2 7 7 5 5 5 6 6 5 8 4 6 5 3 39 56 103 81 97 94 44 24 89 27 44 63 28 * 9/6 9/7 9/8 9/9 9/10 9/11 9/12 9/13 1 1 5 12 18 7 15 4 4 20 85 47 23 25 35 17 18 9 22 196 16 11 19 14 14 48 11 10 143 12 9 4 3 2 7 1 92 5 5 3 8 3 3 17 8 8 13 3 6 1 13 52 3 5 3 17 12 2 8 3 53 2 1 3 6 1 1 1 3 3 1 8 1 1 1 3 2 3 9 3 3 4 3 1 2 16 7 6 2 5 3 5 7 5 37 38 21 44 27 18 31 30

(119)

113 3 2008 1988 2006 2005 3 2009 2,300m Watters 1996 Douglas 1985

(120)

114 7.3

550 39 220 6 200 4

7

(121)

115

8

8.1 8.1.1 5 6 1 6 ±SD 65.7% 21.6 ±37.1 41.0% 3.3 ±3.0 10% 2 6 3 95.3% 4.8% 3.8% 6 6 Fig.6-3 2

(122)

116 45.7% 33.3% SD 10.8 14.6 1.9 1.0 44.4 50.8-52.3% 3 2013 6 3 12 9 30.3 23.5 16.8 13.6 11.9 5 4 31 2003 11 3

(123)

117 2010 Klunzinger et al. 2012 8.1.2 2001 7 2002 6 2003 2 2005 4 2008 7 2005 4 2006 2005 4 1,146 33 2 2006 Fig.8-1 30.0-44.0mm 45.0mm 20.0-30.0mm 40.0-50.0mm

(124)

118 2005 4 45.0mm 2003 30.0-44.0 mm 2003-2004 29.0mm 2004 Kondo 2008 2 30.0mm 2011 7 31.0mm 11 30.0mm 1 2 2002 2003 81.0mm 45.0mm 45.0mm 81.0mm 45.0mm Kondo 2008 2 40.0mm Fig.8-1 2005 4 2006 A B 0 200 400 600 800 1000 29 30 44 45 mm 0 1 2 3 4 25 30 35 40 45 50 55 60 65 70 75 80 85 mm N=1,146 N=33

A

B

(125)

119 2005 4 45.0mm 2003 2003 2003 45.0mm 2005 4 2 48.0mm 75.0mm 48.0mm 2004 75.0mm 2003 2008 7 4 19.5 44.5 57.0 62.5mm 3 Fig.3-8 Kondo 2008 2 30.0mm 2 2002 2003 2003 2003 2006 2002 2003 2004 Table 8-1 2002

(126)

120 100 2003 100 2004 2003 2003 2003 8.1.3 2009 2012 2008 2011 7 Table 8-1 2001 2002 2002 2003 2004 2001 2002 2003 7/27 8/10 10/19 6/14 6/17 0 2 0 0 0 1 2 0 26 37 6 10 1 7 9 13 3 0 0 4 1 1 1 9 7 1 4 0 5 8 4 4 2 41 27 1 0 0 0 0 1 0 0 0 0 *1 11 0 0 0 0 *2 0 1 0 0 10 *1 *2

(127)

121 Fig.8-2 8-3 8-4 2008-2011 2009 2011 9 1.5 /m2 2011 9 2009

(128)

122 Fig.8-2 2011 7 A 2008 B 2009 - C 2009 -0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 2008.5 2008.7 2008.9 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 2009.7 2009.9 2010.5 2010.7 2010.9 2011.5 2011.7 2011.9 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 2009.7 2009.9 2010.5 2010.7 2010.9 2011.5 2011.7 2011.9

A

C

B

(129)

123 Fig.8-3 2011 7 A 2008 B 2009 - C 2009 -0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 2008.5 2008.7 2008.9 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 2009.7 2009.9 2010.5 2010.7 2010.9 2011.5 2011.7 2011.9 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 2009.7 2009.9 2010.5 2010.7 2010.9 2011.5 2011.7 2011.9

A

C

B

(130)

124 Fig.8-4 3 2008 2009 2008 2010 2011 Fig.8-4 3 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 2008 2010 2010 2011 2011

(131)

125 2010 2006a 2000 2012 7 9 15 2013 2012 2009 2012 8.1.4

(132)

126 2003 2003 Fig.8-5 2004 2011-2012 Fig.8-5

(133)

127 2008-2009 2011-2012 2009 2012 2009 2009 2011-2012 2009 3 25 5 30 2009 2011-2012 2011-2012 8.1.5 2008 2008

(134)

128 3 4 1 10.0mm 400m 1 3 3 4 1 4 1 1

(135)

129 8.2

8.2.1

(136)

130

2009

1 2

2008a Downing et al. 1993

Elliptio complanata 10 /m2

40 /m2 100%

2011 7 30 /m2

(137)

131 10 /m2 1 /m2 8 1.5 /m2 1.5 /m2 0.2m 2006 2005 2005 2004 2005

(138)

132 2010

1972

(139)

133 8.2.2 7 1,040 1,669m 578m 1,000m Kondo 2008 2013 8.2.3

(140)

134 1cm 1cm 3 1976 2006 2008 2004 2007

(141)

135 8.2.4 2006 2007 Margaritifera laevis 1998 1 1998 2009 2011-2012 2009

(142)

136 8.2.5 2 Kondo 2008 Strayer 2008 1 1

(143)
(144)

138

9

15 11 3 2009 2011-2012 2011 7 2012 2013 4 2008 11 2009 11 2010 4-6

(145)

139 1cm 5 2008 5-10 2013 3 2008 2013 6 6 3

(146)

140 3 6 3 9 95.3% 52.3% 30.3% 7 3 5 6 550 39 220 6 200 4 7 1,040m 1,669m 578m 8

(147)

141

4 6

(148)

142

NPO

(149)

143

Akiyama, Y. (2011) : Host Fish Species for the Dlochidia of Anodonta japonica Inhabiting Drainage Ditches for Rice Cultivation in Hikone City, VENUS, 69, 207-209.

2005 2005

11 235-238

2008 19

2005 2005 11

238-240

Balfour, D. L. and Smock, L. A. (1994) : Distribution, age structure, and movements of the freshwater mussel Elliptio complanata (Mollusca: Unionidae) in a headwater stream, J Freshw

Ecol, 10, 255-268.

Bauer, G. (1987) : The parasitic stage of freshwater pearl mussel (Margaritifera margaritifera L.) . Susceptibility of brown trout, Archiv fur Hydrobiologie Supplementband, 76, 413-412.

Bauer, G. (1994) : The adaptive value of offspring size among freshwater mussels (Bivalvia; Unionoidea). Journal of Animal Ecology, 63, 933-944.

2004 6 1-16

Dodd, B.J., Barnhart, M.C., Rogers, C.L., Fobian, T.B. and Dimock, R.V. Jr. (2005) : Cross-Resistance of Largemouth Bass to Glochidia of Unionid Mussels, The Journal of

Parasitology, 91(5), 1064-1072.

Douglas, G.S. (1985) : Recent Range Expansion of the Freshwater Mussel Anodonta implicate and Its Relationship to Clupeid Fish Restoration in the Connecticut River System, Freshwater

Invertebrate Biology, 4, 105-108.

(150)

144

and reproductive success in the freshwater mussel Elliptio complanata, Journal of North

American Benthological Society, 12, 148-156.

1986 Anodonta woodiana

VENUS(Jap. Jour. Malac.) 45 43-52

1990 Anodonta woodiana

VENUS(Jap. Jour. Malac.) 49 54-62

2013 NEVUS 71 121-123

1972 VENUS Jap. Jour. Malac

31 9-34

2000 Science & technonews

Tsukuba 55 26-28 1998

125-148

2004 2004 5 208-2011

2005 2005 11 240-243

Hosoya, K., Ashiwa, H., Watanabe, M., Mizuguchi, K. and Okazaki, T. (2003) : Zacco sieboldii, a species distinct from Zacco temminckii(Cyprinidae), Ichthyol Res, 50, 1-8.

2002 2004

7 137-150

2010

Unio douglasiae nipponensis 15 265-280

2006

49B 661-675

(151)

145 50B 781-788 2003 53 187-196 2004 54 85-94 2005 VENUS 64 199-201

Itho, T., Tanaka, T. and Imai, K (2008) : Record of Two New Host Species, Tridentiger brevispinis and Gymnogobius urotaenia, for the Glochidia of the Freshwater Unionid Mussel Anodonta "woodiana", VENUS, 67, 89-91.

Itoh, T., Kakino, W. and Yoshida, Y. (2010) : Host Species for glochidia of the Freshwater Unionid Mussel Inversiunio jokohamensis, VENUS, 69, 41-48.

2013

VENUS 71 117-110

2013 210-211

Kakino, W., Itoh, T., Kobayashi, A. and Yoshida, Y. (2012) : Distribution Pattern and Assessment of an Inversiunio Jokohamensis Population at a Reservoir Where Management was Abandoned,

JDRE, 278, 117-120. 1972 2012 2012.12.14 4 2012 http://www.env.go.jp/press/file_view.php?serial=20555&hou_id=15619 2012 2012

Klunzinger, M.W., Beatty, S.J., Morgan, D.L., Thomson, G.J. and Lymbery, A.J. (2012) : Glochidia ecology in wild fish populations and laboratory determination of competent host fishes for an

(152)

146

endemic freshwater mussel of south-western Australia, Australian Journal of Zoology, 60, 26-36. Kondo, T. (1987) : Breeding Seasons of Seven Species of Unionid Mussels (Bivalvia : Unionidae) in

a Small Creek, VENUS (Jap. Jour. Malac), 46, 227-236.

Kondo, T. (1989) : Differences in Clutch Size and Host Recognition by Glochidia between Summer and Winter Breeders of Japanese Unionid Mussels, VENUS (Jap. Jour. Malac.), 48, 40-45.

Kondo, T. (1992) : Population Density and Growth of Unio douglasiae and Lanceolaria grayana (Bivalvia: Unionidae) in a Small Creek at Kyoto, VENUS, 51, 219-224.

1993 6 8 1-4 1997 1 5-10 1998 - -80-91 2003 3 70 1 43-48 2006 2 VENUS 65 3 241-245

Kondo, T. (2008) : Monograph of Unionoida in Japan (Mollusca: Bivalvia), Special Publication of the Malacological Society of Japan, 3.

62 2 7-11

2013

Anemina arcaeformis 43 395-402

Levine, T.D., Lang, B.K. and Berg, D.J. (2012) : Physiological and ecological hosts of Popenaias

popeii (Bivalvia: Unionidae): laboratory studies identify more hosts than field studies, Freshwater Biology, 57, 1854-1864.

(153)

147 2004 9 153-163 2011 22 2007 2009 1976 135-137 2008 76 2 211-221 2009 66-67 2008 17 p.62 pp.64-65 p.205 2003 11 49-58 1997 2011 163 31-38 2013 1996 IFIM 29 23-32 2011 Myocastor coypus 14 315-317 2008a 58 37-50

(154)

148 2008b

11 2 195-211

Negishi, J. N. and Kayaba, Y. (2009) : Size-specific growth patterns and estimated longevity of the unionid mussel (Pronodularia japanensis), Ecological Reserch, 25,403-411.

Negishi, J.N., Doi, H., Katano, I. and Kayaba, Y. (2011) : Seasonally tracking vertical and horizontal distribution of unionid mussels (Pronodularia japanensis): implications for agricultural drainage management, Aquatic Conservation: Marine and Freshwater Ecosystems, 21, 49-56.

Negishi J., Nagayama S., Kume M., Sagawa S., Kayaba. Y, Yamanaka. Y (2013) : Unionid mussels as an indicator of fish communities: A conceptual framework and empirical evidence, Ecological

indicators, 24, 127-137.

Neves R. J., Weaver, L. R. and Zale, A. V. (1985) : An Evaluation of Host Fish Suitability for Glochidia of Villosa vanuxemi and V. nebulosa (Pelecypoda: Unionidae), The American Midland

Naturalist, 113, 13-19. 2006 74 553-565 2006 12 11-16 2008 19 2010 22 2002 13 2003 14

(155)

149 2004 15 2005 16 2006 17 1994 1998 2005 60 233-251 2006a 61 215-228 2006b : 61 229-236 2006c 3 61 237-246 2006d 61 247-259 2010 2006 18

(156)

150

2013 2 25

Rogers, C. L. and Dimock, R. V. Jr. (2006) : Encapsulation of Attached Ectoparasitic Glochidia Larvae of Freshwater Mussels by Epithelial Tissue on Fins of Naïve and Resistant Host Fish, The

Biological Bulletin, 210, 51-63.

Rogers, C.L. and Dimock, R.V. Jr. (2003) : Acquired Resistance of Bluegill Sunfish Lepomis Macrochirus to Glochidia Larvae of the Freshwater Mussel Utterbackis Imbecillis (Bivalvia: Unionidae) After Multiple Infections, The Jornal of Parasitology, 89(1), 51-56.

1988 38 35-47 2005 73 801-804 2008 18 59-64 2006

Strayer, D. L. (2008) : Freshwater Mussel Ecology A Multifactor Approach to Distribution and Abundance. 2004 , 72 641-651 2010 28 285-290 1998 2001 11 12

(157)

151

2007 75

9 840-841

2006 2006 8 74-79

Vaughn, C, C. and Spooner, D. E. (2006) : Unionid mussels influence macroinvertebrate assemblage structure in streams, Journal of American Benthological Society, 25(3), 691-700.

2002

219 127-132

Watters, G.T. (1996) : Small Dams as Barriers to Freshwater Mussels (Bivalvia, Unionoida) and Their Hosts, Bological Conservation, 75, 79-85.

1992

28 35-42

1992

-28 43-47

Yeager, M. M., Cherry, D. S. and Neves, R. J. (1994) : Feeding and burrowing behaviors of juvenile rainbow mussels, Villosa iris (Bivalvia: Unionidae), J. N. Am. Benthol. Soc., 13(2), 217-222.

1997

Zale, A.V. and Neves, R.J. (1982) : Fish hosts of four species of lampsiline mussels (Mollusca: Unionidae) in Big Moccasin Creek, Virginia, Canadian Journal of Zoology, 60, 2535-2542. Zirena, E. G. R, Stewart, P. M. and Miller, J. M. (2013) : Growth Rates and Age Estimations of the

Fuzzy Pigtoe, Pleurobema strodeanum: A Species Newly Listed under the Endangered Species Act, Southeastern Naturalist, 12, 161-170.

参照

関連したドキュメント

Denison Jayasooria, Disabled People Citizenship & Social Work,London: Asean Academic Press

このように資本主義経済における競争の作用を二つに分けたうえで, 『資本

仕出国仕出国最初船積港(通関場所)最終船積港米国輸入港湾名船舶名荷揚日重量(MT)個数(TEU) CHINA PNINGPOKOBELOS ANGELESALLIGATOR

経済学研究科は、経済学の高等教育機関として研究者を

3 学位の授与に関する事項 4 教育及び研究に関する事項 5 学部学科課程に関する事項 6 学生の入学及び卒業に関する事項 7

Issues explored include barriers common to most sources of renewable energy in PICs (including lack of awareness and knowledge of existing renewable energy options; limited

① 農林水産業:各種の農林水産統計から、新潟県と本市(2000 年は合併前のため 10 市町 村)の 168

Key Words : CIM(Construction Information Modeling),River Project,Model Building Method, Construction Life Cycle Management.