• 検索結果がありません。

海底地盤の浸透破壊が及ぼす 津波が作用するケーソン式防波堤の 被災メカニズム解明

N/A
N/A
Protected

Academic year: 2021

シェア "海底地盤の浸透破壊が及ぼす 津波が作用するケーソン式防波堤の 被災メカニズム解明"

Copied!
47
0
0

読み込み中.... (全文を見る)

全文

(1)

MAEDA Lab.

ICSE2012 20120829(Wed)-31(Fri)

Destabilization of a caisson-type breakwater

by scouring and seepage failure of the seabed

due to a tsunami

T. IMASE (Nagoya Institute of Technology, Nagoya, Japan )

K. MAEDA (Nagoya Institute of Technology, Professor, Nagoya, Japan )

M. MIYAKE (Toyo construction Co., Ltd., Doctor, Hyogo, Japan)

Y. SAWADA (Toyo construction Co., Ltd., Doctor, Hyogo, Japan)

H. SUMIDA (Toyo construction Co., Ltd., Hyogo, Japan)

K. TSURUGASAKI (Toyo construction Co., Ltd., Doctor, Hyogo, Japan)

(2)

ICSE2012 20120829(Wed)-31(Fri)

Topics

Destabilization of a caisson-type breakwater

by scouring and seepage failure of the seabed due to

a tsunami

[Part.1] Introduction

[Part.2] Tsunami experiment

using

centrifuge model test

[Part.3] Numerical simulation

using

SPH method

(3)

MAEDA Lab.

ICSE2012 20120829(Wed)-31(Fri)

Introduction

(4)

MAEDA Lab.

ICSE2012 20120829(Wed)-31(Fri)

In 46 minutes after earthquake In 31 minutes after earthquake In 26 minutes after earthquake

Introduction(The Great East Japan Earthquake)

Kamaishi port

(5)

MAEDA Lab. ICSE2012 20120829(Wed)-31(Fri)

Marine

Hazard

Ocean

wave

Wave

Hazard

Ground

Hazard

Tsunami

Wave

Hazard

Ground

Hazard

Experimental methodology using centrifugal device

Periodic waves (Ocean wave)

Mass movement (Tsunami)

Introduction

Development of

Numerical analysis using SPH method

cyclic loading Seepage Wave force

cyclic loading

The ground hazard mechanism by the tsunami is not understood.

Clarification of damage mechanism

with interaction of the tsunami, seabed soil and structure

A past tsunami research has been discussing damage of marine structure with the interaction of the tsunami and the structure.

i

S

g

a

P

2

.

2

Tanimoto (1994) et al. eq. :

(6)

ICSE2012 20120829(Wed)-31(Fri)

Introduction - Estimation of damage -

Sliding・Falling crosscurrent and Scouring with

vortex Bearing capacity failure Liquefaction Sliding・Falling Liquefaction Tractive force Bearing capacity failure Seepage Liquefaction Tractive force Seepage cyclic loading Tsunami Anaseism Wave Tsunami force Overflow Seabed soil Liquefaction Bearing capacity Seepage Bachrush Wave Tsunami force Seabed soil Cyclic loading

(7)

MAEDA Lab.

ICSE2012 20120829(Wed)-31(Fri)

Tsunami experiment with

drum-type centrifuge device

(8)

ICSE2012 20120829(Wed)-31(Fri)

Maximum acc. 440G (600rpm)

Dimensions Model Proto type

(Maximum acc.)

Diameter 2.2 m 3041 m Width 0.3 m 132 m

Depth 0.3 m 132 m (Ground 32 m) Maximum force 3.7 ton 1628g-ton

26 10 10 護岸 ゲート 50 239 338 波高計3 波高計1 波高計2 単位 (cm) 1:3 Model area:about 3.4 m

Toyo construction Co., Ltd.

Seabed soil (Toyoura-sand: Dr=40%) Rubble mound (Gravel: 2.9mm) Reservoir area: About 3.5 m 300rpm Caisson-type breakwater

Tsunami experiment with drum-type centrifuge device

Model test device

The experiment study used a 2.2 m diameter

drum-type centrifuge device. The tsunami was

(9)

MAEDA Lab.

ICSE2012 20120829(Wed)-31(Fri)

Gage points Maximum incident wave Maximum overlapping wave

CH 1 near the gate 0.69 m 2.58 m CH 2 near the breakwater 0.77 m 2.39 m

Tsunami experiment with drum-type centrifuge device

Tsunami experiment in a 32 g field

0 10 20 30 40 50 60 0 1 2 3 Duration time, t (s) W ave h ei gh t, η (m

) CH1 Centrifuge model test CADMAS-SURF

Maximum overlapping wave: 2.58m

Maximum incident wave: 0.69m

The experimental wave pressure were as large as than the results obtained using Tanimoto’s equation or Goda equation.

Tsunami force

0 10 20 30 -2 -1 0 1 2 Wave Pressure, Pd (kN/m 2 ) H ei ght , z (m )  遠心模型実験による最大波圧  遠心模型実験による段波圧  谷本らの式(最大波圧)  谷本らの式(段波圧)  池野ら 0 10 20 30 -2 -1 0 1 2 Wave Pressure, Pd (kN/m 2 ) H ei ght , z (m )  遠心模型実験による最大波圧  遠心模型実験による段波圧  谷本らの式(最大波圧)  谷本らの式(段波圧)  池野ら 0 1 2 3 4 0 10 20 30 Length, L (m) L if t pr es sur e, Pd ( kN /m 2 ) 0 10 20 30 -2 -1 0 1 2 Wave Pressure, Pd (kN/m2) He igh t, z ( m )

Centrifuge model test Tanimoto et al. Goda eq. 0 10 20 30 -2 -1 0 1 2 Wave Pressure, Pd (kN/m2) He igh t, z ( m )

Centrifuge model test Tanimoto et al. Goda eq. 0 1 2 3 4 0 10 20 30 Length, L (m) L if t pr e ss ur e , Pd ( kN /m 2 )

(10)

ICSE2012 20120829(Wed)-31(Fri)

Direction of the tsunami

Offing Shore

Movie (Click fig.)

Tsunami experiment with drum-type centrifuge device

Deformation of breakwater, rubble mound and

seabed soil

The breakwater was slided

Shear deformation occurred

Rubble mound and seabed soil

(11)

MAEDA Lab.

ICSE2012 20120829(Wed)-31(Fri)

Tsunami experiment with drum-type centrifuge device

Slide of the breakwater

Shear deformation Blowout of stone and sand from

the mound and the ground

Shore Offing (a) A B C D E 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0 100 200 300 Duration time, t (s) M om ent t ha t a ct s on br ea kw at er , M ( kN ) Maximum bore pressure Maximum overlapping wave pressure

The breakwater was slided (points A and B) when the maximum bore

pressure acted.

Rubble mound and seabed soil was scoured while continuous wave

pressures were acting (points B-E).

Shear deformation occurred in the rubble mound and the seabed soil, and

decreased the bearing capacity.

Deformation of breakwater, rubble mound and

seabed soil

(12)

ICSE2012 20120829(Wed)-31(Fri)

      R P a q w q w s c F h s ' sin ' ' tan tan 1 sec ' tan ' '     

Deformation velocity by PIV analysis

Bishop method 1.0 0.0 0.5 [m/s]

0

.

1

91

.

0

s

F

Safety rate of circular slide

Shrear strain

Deformation of rubble mound and seabed

soil due to tsunami

Discussion of bearing

capacity destruction

Tsunami experiment with drum-type centrifuge device

Breakwater Rubble mound Seabed ground Direction of the tsunami Circular slip surface analysis 0 50 100 [%]

Shear deformation occurred in the rubble mound and the seabed ground with move of the breakwater.

And, the safety rate of circular slide was smaller than 1.0.

(13)

MAEDA Lab.

ICSE2012 20120829(Wed)-31(Fri)

PWP4~PWP5 (near the ground surface):

imax≒0.65 893 . 0 8538 . 0 1 1 656 . 2 1 1       e G icr s PWP4 PWP3 PWP5 PWP6 PWP2 PWP1

PWP2~PWP4 (into mound):imax≒0.8 PWP2~PWP5 (into mound) :imax≒0.5

10 20 30 40 50 0 0.5 1 H ydr aul ic gr adi ent in R ubbl e m ound , i R ubbl e m ound Duration time, t (s) PWP3-PWP1 PWP1-PWP4 PWP4-PWP2 PWP2-PWP5 PWP2-PWP6 Rubble mound 10 20 30 40 50 0 100 200 300 Duration time, t (s) M om ent t ha t a ct s on br ea kw at er , M ( kN ) A B C D E Ground surface 10 20 30 40 50 0 0.5 1 H ydr aul ic gr adi ent in t he gr ou nd, i gr oun d Duration time, t (s) PWP3-PWP4 PWP4-PWP5 PWP5-PWP6

Tsunami experiment with drum-type centrifuge device

Scouring and blowout with seepage flow

We calculated the hydraulic gradient

using the measured pore water pressure.

The results, the hydraulic gradient increased from the center of the

breakwater bottom toward the shore while the continuous wave pressure was acting.

(14)

ICSE2012 20120829(Wed)-31(Fri)

Numerical simulation

using SPH method

(15)

MAEDA Lab.

ICSE2012 20120829(Wed)-31(Fri)

Numerical simulation using SPH

Layer of Solid Air Water Porous material, soil sf f fs f Layer of Fluid

Total volume fraction: 1 = (Volume fraction: n) + (Volume fraction: 1-n) Superposition

of fluid-solid layers

Interaction body force

Soil-fluid coupling in the SPH method calculate fluid phase and solid phase, and the obtained results are overlapping by Darcy's low.

) ( 2 f s f s f k g n v v f    n:Porosity g:Acceleration of gracity ρf:Density of fluid k:Permeability vs:Velocity of solid vf:Velocity of fluid

Soil-fluid coupling

Seepage around sheet pile (K. Maeda, M. Sakai (2004))

Superposition of smoothed physical values

Smoothed physical values by using smoothed function for each particle

x

Limited zone of influence

x1 x2 o Particle : i Particle : j rij xi xj κhi hi

Smoothed Particle Hydrodynamics



f

(

x

)

W

(

x

x'

,

h

)

f

(

x'

)

d

x'

The feature of the SPH method is as follows;

Mesh free

Lagrangian method

Initial modeling is easy.

(16)

ICSE2012 20120829(Wed)-31(Fri)

Numerical simulation using SPH

Comparison between experimental

result and numerical analysis result

Tsunami experiment

using centrifuge device

Numerical Analysis using SPH method i h  粒子(質点) 影響半径 ゲート 300rpm 海底地盤 ケーソン式 防波堤 捨石 マウンド NG Superposition of smoothed physical values

Smoothed physical values by using smoothed function for each particle

x

Limited zone of influence x1

x2 o Particle : i Particle : j rij xi xj κhi hi 防波堤の滑動 マウンド・地盤のせん断変形 捨石・地盤の噴出 防波堤 捨石マウンド 海底地盤 円弧 すべり解析 0 50 100 [%]

(17)

MAEDA Lab. ICSE2012 20120829(Wed)-31(Fri) Tsunami 0 10 20 30 -2 -1 0 1 2 Wave Pressure, Pd (kN/m2) H e ight , z (m )  遠心模型実験による最大波圧  遠心模型実験による段波圧  谷本らの式(最大波圧)  谷本らの式(段波圧)  池野ら 0 10 20 30 -2 -1 0 1 2 Wave Pressure, Pd (kN/m 2 ) H e ight , z (m )  遠心模型実験による最大波圧  遠心模型実験による段波圧  谷本らの式(最大波圧)  谷本らの式(段波圧)  池野ら 0 1 2 3 4 0 10 20 30 Length, L (m) L if t pr e ss ur e , Pd ( kN /m 2 ) 0 1 2 3 4 0 10 20 30 Length, L (m) L if t pr e ss ur e , Pd ( kN /m 2 ) 0 10 20 30 -2 -1 0 1 2 Wave Pressure, Pd (kN/m 2 ) He igh t, z ( m ) Exp. Numerical analysis Tanimoto et al. 0 10 20 30 -2 -1 0 1 2 Wave Pressure, Pd (kN/m2) He igh t, z ( m ) Exp. Numerical analysis Tanimoto et al. i S

g

a

P

2

.

2

Tanimoto(1994) et al. eq.

Standard in technology of facilities in harbors

P

s

第1波襲来時

Wave pressure that acts on breakwater

Comparison between experimental result and numerical analysis result

(18)

ICSE2012 20120829(Wed)-31(Fri) 0 10 20 30 40 50 60 70 80 90 100 -80.0 -60.0 -40.0 -20.0 0 20.0 40.0 60.0 80.0 M a rgi n of be a ri ng c a pa c it y, (kN /m ) Duration time, t (s) Exp. Numerical analysis Numerical analysis(EPWP)

Margin of bearing capacity

Margin of bearing capacity=

Bearing capacity strength

Tsunami force

Bearing capacity decrease in breakwater due to

increase of excess pore water pressure

in the ground

Margin of bearing capacity

Initial decrease is the same.

The decrease in the safety factor of the breakwater was larger when the excess pore water pressure in the ground was taken into consideration

Comparison between experimental result and numerical analysis result

       R P a q w q w s c F h s ' sin ' ' tan tan 1 sec ' tan ' '              

(19)

MAEDA Lab.

ICSE2012 20120829(Wed)-31(Fri)

t = 3.30 s

result of SPH analysis(flow velocity vector)

[m/s] t = 2.70 s t = 5.00 s t = 6.00 s ① ② ③ ④ 0.0 0.3 0.6 0.9 1.2 t=15s t=30s Δη=50mm Δη=80mm

Centrifuge model test

Slide of the breakwater

Shear deformation Blowout of stone and sand from

the mound and the ground

Shore Offing

(a) 1g channel test

Comparison between experimental result and numerical analysis result

Seepage flow into rubble mound and seabed soil

Weight:W Lift force:LF Tractive force :τ Soil particle friction:Fr Close up Weight:W Lift force:LF Tractive force :τ friction:Fr Close up Excess pore water pressure:ue High-speed flow is caused in the rubble mound. As a result,

seepage flow was generated on the seabed soil surface.

(20)

ICSE2012 20120829(Wed)-31(Fri) 10 20 30 40 50 0 0.5 1 H ydra ul ic gra di e nt in t he ground, i g ro u n d Duration time, t (s) Exp.(PWP3-PWP4) Exp.(PWP4-PWP5) Exp.(PWP5-PWP6) Numerical analysis(PWP3-PWP4) Numerical analysis(PWP4-PWP5) Numerical analysis(PWP5-PWP6)

ij ej ei f j i ij H H g P P i             fi P ei H ijg :Density of fluid :Acceleration of gravity

:Total head of measurement point i :Elevation head of measurement point i :Distance of measurement point i and j

Hydraulic gradient into seabed soil

20 30 40 CL Unit : mm PWP8 PWP9 PWP7 PWP3 PWP4 PWP5 PWP6 PWP2 PWP1 35 4@ 25 P1 P2 P3 P4 P5 150 43.5 Tsunami

: Pore water pressure meter : Wave pressure meter

Numerical simulation using SPH

In the outcome of an experiment and the analytical result, the value is

different. Behavior looks like.

(21)

MAEDA Lab.

ICSE2012 20120829(Wed)-31(Fri)

Numerical simulation using SPH

Tsunami simulation

in virtual coastal area

(22)

ICSE2012 20120829(Wed)-31(Fri) 1,000 350 30 210 50 50 10 1 15 1:3 I.W.L +35.0 I.W.L +20.0 Unit : m shore offing

WL1 WL2 WL3 Measurement of wave level

12 I.W.L +20.0 8.8 15 2 10 Caisson-type Breakwater Rubble mound Seabed Impermeability layer Impermeability layer offing shore Measurement of wave pressure Unit : m PWP1 PWP2 PWP3 PWP4 PWP5 PWP6 PWP7 PWP8 PWP9 PWP10 PWP11 PWP12 PWP13 PWP14 PWP15 PWP16 PWP17 PWP18 PWP19 PWP20 PWP21 PWP22 PWP23 PWP24 PWP25 PWP26 PWP27 Marine model

Caisson-type breakwater model

Tsunami simulation in virtual coastal area

Numerical simulation using SPH

Stability of breakwater due to tsunami was investigated using a standard model of coastal area. A tsunami was generated by dam break. The permeability coefficients of the rubble mound and the seabed soil were set as 1×10-2 m/s and 2×10-5 m/s.

(23)

MAEDA Lab. ICSE2012 20120829(Wed)-31(Fri) 0 100 200 0 10 20 Duration time, t (s) W a ve l e ve l, η (m ) WL1 WL2 WL3 0 20 40 60 80 100 0 10 20 Duration time, t (s) W a ve l e ve l, η (m ) WL1 WL2 WL3 1,000 350 30 210 50 50 10 1 15 1:3 I.W.L +35.0 I.W.L +20.0 Unit : m shore offing

WL1 WL2 WL3 Measurement of wave level

Height of incident wave Height of overlapping wave WL1 7.17 m 16.8 m WL2 17.1 m WL3 16.6 m

Soliton wave was confirmed for the first time in middle Japan Sea Earthquake in 1983.

Wave period: About 70 [s]

Wave for about ten a few seconds of cycle Breaking wave

wave force is very large

Soliton wave

Tsunami simulation in virtual coastal area

Numerical simulation using SPH

(24)

ICSE2012 20120829(Wed)-31(Fri)

(a)Moment that acts on breakwater

(b)Hydraulic gradient

into seabed soil

(c)Safety ration of Bearing capacity

12 I.W.L +20.0 5.0 Caisson-type Breakwater Rubble mound Seabed offing shore Unit : m PWP5 PWP6 PWP7 PWP8 PWP9 offing shore Unit : m R=15.0

Stability of the breakwater

against anaseism

Tsunami simulation in virtual coastal area

Numerical simulation using SPH

The breakwater will be

large deformation. The breakwater is moved due to the action of the initial impulsive wave force.

Shear deformation occurred in the rubble mound and the seabed soil and it receive seepage force, which decreased the stability. Especially, the decrease in the safety factor of the breakwater was larger when the excess pore water pressure in the ground was taken into consideration

Margin of bearing capacity= Bearing capacity strength - Tsunami force

- Bearing capacity decrease in breakwater due to increase of excess pore

(a) (b) (c) 0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 M om e nt t ha t a c ts on bre a kw a te r, M (M N ) 0 20 40 60 80 100 120 140 160 180 200 -1.0 -0.5 0.0 0.5 1.0 H yd ra ur ic g ra di e nt i n the g ro un d, igro u n d PWP5-PWP6 PWP7-PWP8 PWP6-PWP7 PWP8-PWP9 0 20 40 60 80 100 120 140 160 180 200 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 M a rgi n of be a ri ng c a pa c it y, (M N /m ) Duration time, t (s)

About excess pore water pressure Non-consideration

(25)

MAEDA Lab.

ICSE2012 20120829(Wed)-31(Fri)

Conclusion

(26)

ICSE2012 20120829(Wed)-31(Fri) Time Event d W d U P d H P d B P A 2 1, a a 3 a 4 a d W d U P d H P d B P d H P a R Sliding of the Breakwater Bearing capacity of the Breakwater Falling of the Breakwater

Wave pressure Excess pore water pressure

Seepage of the Seabed and Rubble

mound

Tsunami - Seabed soil – Breakwater interaction

The breakwater slid due to the action of the initial impulsive wave force.

Shear deformation occurred in the rubble mound and the seabed soil, which decreased the bearing capacity.

The hydraulic gradient increased in rubble mound and seabed soil at the shore side under breakwater due to seepage flow with the continuous wave pressure. The bearing capacity of breakwater decreased due to degradation of the ground caused due to the increment of excess pore water pressure in the seabed soil.

Conclusion

(27)

MAEDA Lab.

ICSE2012 20120829(Wed)-31(Fri)

Thank you

(28)
(29)

MAEDA Lab.

ICSE2012 20120829(Wed)-31(Fri)

Fluid, Fluid-Solid coupling

2D-Dambreak 3D-Dambreak

Tsunami hazard simulation (Hachinohe port)

Movie (Click fig.)

(30)

MAEDA Lab.

ICSE2012 20120829(Wed)-31(Fri)

Margin of bearing capacity= Bearing capacity strength - Tsunami force

- Bearing capacity decrease in breakwater due to increase of excess pore

1:2 I.W.L +20.0 5.0 Caisson-type Breakwater Rubble mound Seabed offing shore Unit : m PWP1 PWP2 PWP3 PWP4 PWP5 offing shore Unit : m R=15.0

Stability of the breakwater

against backrush

Tsunami simulation in virtual coastal area

Numerical simulation using SPH

(a) (b) (c) 0 20 40 60 80 100 120 140 160 180 200 0 2 4 6 8 10 M om e nt t ha t a c ts on b re a kw a te r, M (M N ) 0 20 40 60 80 100 120 140 160 180 200 -1.0 -0.5 0.0 0.5 1.0 H ydra uri c gra di e nt i n t he groun d, igro u n d PWP1-PWP2 PWP3-PWP4 PWP2-PWP3 PWP4-PWP5 0 20 40 60 80 100 120 140 160 180 200 -1.0 -0.5 0.0 0.5 1.0 M a rgi n of be a ri ng c a pa c it y, (M N /m ) Duration time, t (s)

About excess pore water pressure Non-consideration

(31)

MAEDA Lab. ICSE2012 20120829(Wed)-31(Fri) 10 20 30 40 50 60 0 0.5 1 1.5 2 Duration time, t (s) S a fe ty r a ti o o f s li di ng , F s Analysis Theory 10 20 30 40 50 60 0 0.5 1 1.5 2 Duration time, t (s) S a fe ty r a ti o o f T ipp ing , F s Analysis Theory 10 20 30 40 50 60 0 0.5 1 1.5 Duration time, t (s) Fs Sliding Tipping Bearing capacity

Safety ratio of sliding

2 . 1  s F s d sU d B d a P a P a P W a1234

d Bd sUd

s d W P P P f    2 . 1  s F

Safety ratio of tipping

Safety ratio of sliding, tipping and bearing capacity

Numerical simulation using SPH

(32)

ICSE2012 20120829(Wed)-31(Fri)

津波越流力による

防波堤背後地盤の不安定化

撮影開始 2:30後 八戸港における津波来襲時の様子 出典: You Tube

(33)

MAEDA Lab. ICSE2012 20120829(Wed)-31(Fri) 320 112 9.6 67.2 16 3.2 1:3 W.L. +3.2 Unit : m shore offing Δh WL1 WL2 WL3 Measurement of wave level

B1 B2 B3 B4 B5 B6 A1 A2 A3 A4 A5 A6 C1 C2 C3 C4 C5 C6 D1 D2 D3 D4 D5 D6 E1 E2 E3 E4 E5 E6 F1 F2 F3 F4 F5 F6 G1 G2 G3 G4 G5 G6 H1 H2 H3 H4 H5 H6 I1 I2 I3 I4 I5 I6 J1 J2 J3 J4 J5 J6 K1 K2 K3 K4 K5 K6 Tsunami offing shore

: Measurement point of pressure

0 .6 4 1.6 Unit : m Caisson-type breakwater Rubble mound Circular slip surface analysis h0 = 1 .1 2 P1 P2

Case Offing site water level shore site water level Δh

Non-overflow 7.36 (m) 3.20 (m) + 3.20(m): Seabed + 0.96 (m) overflow 12.80(m) 3.20 (m) + 3.20(m): Seabed + 6.40 (m) 津波越流力による防波堤背後地盤の不安定化

津波流動場を想定した海岸域のモデル化

初期粒子間距離

:0.16m

粒子数

:10万個程度

防波堤

:不動剛体構造物

捨石マウンド

:不動透過性構造物

透水係数

k

m

=1.0×10

-2

m/s

(Dupuit-Forchheimer則)

海底床

:不透水性(境界)

海底地盤

:不動透過性構造物

透水係数

k

s

=2.0×10

-5

m/s

(Darcy則)

全 域 混成堤モデル

(34)

ICSE2012 20120829(Wed)-31(Fri)

防波堤越流時の津波挙動

津波越流力による防波堤背後地盤の不安定化

Movie (Click fig.)

(35)

MAEDA Lab. ICSE2012 20120829(Wed)-31(Fri) 越流なし 越流あり

越流後の落下水塊による地盤内応力変化

-動水勾配の経時変化に着目した検討-

津波越流力による防波堤背後地盤の不安定化

(36)

ICSE2012 20120829(Wed)-31(Fri) 越流あり t=16s 0.0 0.25 0.5 0.75 1.0 動水勾配(正は上向き) 越流水塊による急速載荷 W vimpact Impact force Seepage force Fu vshear Tractive force g v g Pimpact impact 2 2  

防波堤背後地盤に作用する落下水塊の影響

津波越流力による防波堤背後地盤の不安定化 H1 Tsunami offing shore

: Measurement point of pressure

0 .6 4 Unit : m Caisson-type breakwater Rubble mound Circular slip surface analysis h0 = 1 .1 2 P1 P2 H2 0 10 20 30 40 50 60 70 80 90 100 -40 -20 0 20 40 60 80 100 Duration time, t (s) Δ uH 2 -H 1 (kN ) 地盤表層と地盤内部の水圧差 ΔuH2-H1=ΔuH2-ΔuH1 zf R D W H 4 1 2 1 4 1 ~ g q zf R  乱流・渦に伴う乱れ 野口 他(1997): 津波遡上による護岸越流および前面洗 掘の大規模模型実験,海工論,第44巻,pp.296-300 土木学会刊(1999), 水理公式集 平成11年度版. 過剰間隙水圧,浸透力による土粒子の浮遊(液状化)

(37)

MAEDA Lab. ICSE2012 20120829(Wed)-31(Fri) (a) 防波堤に作用する総モーメント力 (b) 支持力に対する安全率(地盤内過剰間隙水圧の考慮) 0 10 20 30 40 50 60 70 80 90 100 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Duration time, t (s) M om e nt t ha t a c ts on b re a kw a te r, M (M N ) Non overflow Overflow 0 10 20 30 40 50 60 70 80 90 100 -200.0 -150.0 -100.0 -50.0 0 50.0 100.0 150.0 200.0 M a rgi n of be a ri ng c a pa c it y, (kN /m ) Duration time, t (s)

No overflow : Wave force

No overflow : Wave force + EPWP Overflow : Wave force

Overflow : Wave force + EPWP

地盤の剛性低下を考慮した支持力破壊の検討

津波越流力による防波堤背後地盤の不安定化 offing shore Caisson-type breakwater Rubble mound Seabed ground A offing shore Caisson-type breakwater Rubble mound Seabed ground : Measurement point of pressure 地盤への津波力作用の影響により, 支持力強度が一層低下する

(38)

ICSE2012 20120829(Wed)-31(Fri) 有川太郎・佐藤昌治・下迫健一郎・富田孝史・辰巳大介・廉慶善・高橋研也(2012): 釜石湾口防波 健全な状態 津波来襲後 滑動に対する安全率

d d d H U B d d S P P P W f F    ※(社)日本港湾協会:港湾の施設の技術上の基準・同解説(上)・(下),2007 d W d U P d H P Bd P Tsunami d W d B P d U P d H P :堤体重量(kN/m) :浮力(kN/m) :揚圧力(kN/m) :水平波力(kN/m) i a :力の作用するアーム長(m) d f :壁体底面と基礎との摩擦(=0.6)

防波堤背後の水圧変動に伴う

防波堤の滑動に対する安全性低下

津波越流力による防波堤背後地盤の不安定化 有川ら(2012)による釜石湾口防波堤の被災検討 防波堤 港内側 港外側 津 波 ※一部加筆                       2 2 2 2 2 2 2 2 1 2 1 2 1 2 2 h h h h h g h h g h g             

(39)

MAEDA Lab. ICSE2012 20120829(Wed)-31(Fri)

防波堤背後の水圧変動に伴う

防波堤の滑動に対する安全性低下

津波越流力による防波堤背後地盤の不安定化 H1 Tsunami offing shore

: Measurement point of pressure

0 .6 4 Unit : m Caisson-type breakwater Rubble mound Circular slip surface analysis h0 = 1 .1 2 P1 P2 H2 Increase in slide force Decrease in slide force

Decrease in backpressure with overflow

0.0 2.0 4.0 6.0 8.0 10.0 0.0 2.0 4.0 6.0 8.0 10.0 P2/ρgh0 P1 / ρ gh 0 Non overflow Overflow d W d U P d H P PBd Tsunami d H P   d W d U P d H P PBd Tsunami d H P   要因② 渦等伴う 水圧変化 渦 度 要因① 水位変動に伴う 水圧変化 水位変動

(40)

ICSE2012 20120829(Wed)-31(Fri)

結 言

Time Event d W d U P d H P d B P A 2 1, a a 3 a 4 a d W d U P d H P d B P d H P a R Sliding Bearing capacity Falling Overflow Seepage failure vortex Reduced

water pressure Sliding

Scouring Bearing capacity Falling Liquefaction or Fluidization 越流による落下水塊による背後地盤への影響と防波堤の不安定化 地盤の洗掘・局所的液状化を誘発し、 支持力強度を低下させる 落下水塊の衝突力とその後のせん断流 乱流・渦に伴う乱れと圧力低下 滑動に対する安全性を低下させ、支持 力破壊と相まって防波堤が移動・転倒

(41)

MAEDA Lab. ICSE2012 20120829(Wed)-31(Fri) アンカーを用いた防波堤の固定による耐波強化 裏込カウンターによる耐波強化 消波ブロックによる耐波強化 我が国において

今後に対策として

(42)

ICSE2012 20120829(Wed)-31(Fri) aI=5.0m

            R aP q W q W S c F Hd d d d d d d d s      sin tan tan 1 sec tan ' 支持力に対する安全率 I p ga P  2.4

:谷本ら(1984) 津波外力 裏込めの抵抗力 d2 h1 h2 d1 d3 θ Ws 補強材: 割石の場合

 

 Ws tan R



 

' tan tan 2 1 4 4 4 1 4 2 d h d d d d Ws      s W :最上層の被覆層を除いた滑り面より上の割石の水中重量  :滑り面傾斜角(度)  : 1 2 tan  2:割石と割石の摩擦係数(=0.8) aI 1:2 8.7 15.0 5.0 1:1 Units : m すべり線 防波堤 捨石マウンド,割石 2 . 12 9.8 【kN/m3 D c 【kN/m2 D  【°】 海底地盤 35 '  8.7 水中 単位体積重量 粘着力 内部摩擦角 45 0 0 - - 補強なし: 補強あり:

08

.

1

s

F

55

.

1

s

F

滑動・転倒に対する効果も考えられる。 赤塚雄三,竹田英章,蓮見隆:混成堤の堤体背後に設置したコンクリート方塊あるいは 割石の滑動抵抗,第22回海岸工学講演会論文集,Vol.2,pp.421-425,1975.

支持力補強(裏込め)

菊池喜昭,新舎博,河村健輔,江口信也:裏込めを有するケーソン式混成堤の安定性 の検討,土木学会論文集C(地圏工学),Vol.67, No.4, pp.474-487,2011.

(43)

MAEDA Lab.

(44)

ICSE2012 20120829(Wed)-31(Fri)

Tractive

force

Seepage

force

W

Tractive

force

g v g Pimpact impact 2 2  

v

impact

Impact

force

Seepage force

Scouring seabed surface

Overflow

Movie (Click fig.)

(45)

MAEDA Lab. ICSE2012 20120829(Wed)-31(Fri)

Tractive

force

Seepage

force

W

Tractive

force

g v g Pimpact impact 2 2  

v

impact

Impact

force

Seepage force

表層部に作用する 掃流力 内部応力変化に伴う浸透力 掃流力・馬蹄渦 内部応力変化 に伴う浸透力 落下水塊による 衝撃力 護岸(舗装)被害 防波堤被害 防潮堤被害

結言 ~其の2:地盤工学における新たな課題~

地震動

津 波

洗 掘

間隙空気

(46)

ICSE2012 20120829(Wed)-31(Fri)

Weight:W

Soil particle

friction:

Fr

Weight:W

Lift force:

Tractive

force :τ

friction:

Fr

Close up

Excess pore

water pressure:

u

e Weight:W Lift force:LF Tractive force :τ Soil particle friction:Fr Close up Weight:W Lift force:LF Tractive force :τ friction:Fr Close up Excess pore water pressure:ue

(47)

MAEDA Lab.

ICSE2012 20120829(Wed)-31(Fri)

Tsunami experiment

using

centrifuge device

Numerical Analysis

using

SPH method

i h  粒子(質点) 影響半径 ゲート 300rpm 海底地盤 ケーソン式 防波堤 捨石 マウンド NG Superposition of smoothed physical values

Smoothed physical values by using smoothed function for each particle

x

Limited zone of influence x1

x2 o Particle : i Particle : j rij xi xj κhi hi 防波堤の滑動 マウンド・地盤のせん断変形 捨石・地盤の噴出 防波堤 捨石マウンド 海底地盤 円弧 すべり解析 0 50 100 [%]

参照

関連したドキュメント

Key Words : foundation structure, timber pile, site loading test of pile, cavity distribution survey, shaking table test, liquefaction..

 1)血管周囲外套状細胞集籏:類円形核の単球を

地盤の破壊の進行性を無視することによる解析結果の誤差は、すべり面の総回転角度が大きいほ

津  波 避難 浸水・家屋崩壊 避難生活 がれき撤.

SLCポンプによる注水 [津波AMG ③-2] MUWCによる注水 [津波AMG ③-1] D/DFPによる注水 [津波AMG ③-3]

手動のレバーを押して津波がどのようにして起きるかを観察 することができます。シミュレーターの前には、 「地図で見る日本

2019年 3月18日 Abu Dhabi Gas Liquefaction Company Limitedと、同社が保有するLNG液化設備に おけるOperation &

防災 “災害を未然に防⽌し、災害が発⽣した場合における 被害の拡⼤を防ぎ、及び災害の復旧を図ることをい う”