• 検索結果がありません。

(DLC) Study of Wear Behavior of Nitrogenated Diamond- like Carbon (DLC) Films through Friction Energy Analysis

N/A
N/A
Protected

Academic year: 2021

シェア "(DLC) Study of Wear Behavior of Nitrogenated Diamond- like Carbon (DLC) Films through Friction Energy Analysis"

Copied!
228
0
0

読み込み中.... (全文を見る)

全文

(1)

(DLC)

Study of Wear Behavior of Nitrogenated Diamond- like Carbon (DLC) Films

through Friction Energy Analysis

2015 3

Shuji YAMAMOTO

(2)

(DLC)

Study of Wear Behavior of Nitrogenated Diamond- like Carbon (DLC) Films

through Friction Energy Analysis

2015 3

(3)

1 6

1.1 7

1.2 9

1.3 10

1 12

2 DLC 13

2.1 14

2.2 DLC 16

2.3 DLC 18

2.3.1 18

2.3.2 18

2.3.3 18

2.3.4 19

2.3.5 (PLD) 19

2.3.6 PCVD 20

2.4 DLC 21

2.4.1 21

2.4.2 21

2.4.3 21

2.4.4 22

2.4.5 22

2.4.6 22

2.5 DLC 24

2.6 DLC 26

2.6.1 DLC 26

2.6.1.1 DLC 26

2.6.1.2 DLC 28

2.6.2 29

2.6.2.1 DLC 29

2.6.2.2 DLC 30

2.6.2.3 DLC 32

2.6.2.4 DLC 35

(4)

2.6.3.1 DLC 36

2.6.3.2 DLC 36

2.6.3.3 DLC 43

2.6.3.4 DLC 45

2.7 46

2.8 51

2 52

3 56

3.1 57

3.2 58

3.2.1 61

3.2.2 63

3.2.3 66

3.3 67

3.3.1 67

3.3.2 69

3.3.3 70

3.3.4 75

3.4 78

3.4.1 78

3.4.2 DLC 80

3.4.3 80

3.4.4 DLC 82

3.5 84

3 85

4 DLC 87

4.1 88

4.2 89

(5)

a) DLC DLC 93

b) DLC DLC 95

c) DLC DLC 99

4.2.2.2 SUJ2 SUS440C 101

a) SUJ2 SUS440C 101

b) SUJ2 SUS440C 104

4.2.3 105

4.2.3.1 DLC DLC 105

4.2.3.2 105

4.2.3.3 SUJ2 SUS440C 108

4.2.4 110

4.3 111

4.3.1 111

4.3.1.1 111

4.3.1.2 116

4.3.1.3 117

4.3.1.4 120

4.3.2 121

4.3.2.1 121

4.3.2.2 121

4.3.3 123

4.4 124

4.5 126

4.6 127

4.7 128

4.7.1 Archard 128

4.7.2 130

4.7.3 132

4.7.3.1 132

4.7.3.2 133

4.7.3.3 134

4.7.4 135

4.7.4.1 135

4.7.4.2 ANSYS 136

a) 136

(6)

4.7.5 139

4.7.5.1 139

4.7.5.2 ANSYS 140

4.7.6 150

4.7.7 155

4.8 156

4 157

5 DLC 159

5.1 160

5.2 161

5.3 161

5.3.1 161

5.3.2 DLC 161

5.3.3 162

5.3.4 163

5.3.5 165

5.4 168

5.4.1 168

5.4.2 169

5.4.3 SUJ2 SUS440C 173

5.4.4 179

5.4.5 EDS 180

5.4.6 181

5.5 185

5 186

6 DLC DLC 187

6.1 188

6.2 189

(7)

6.3.1.3 192

a) 192

b) 192

6.3.1.4 195

6.3.1.5 DLC 198

6.3.2 199

6.3.2.1 199

6.3.2.2 200

6.3.3 201

6.4 DLC 202

6.4.1 202

6.4.2 202

6.4.2.1 DLC 202

6.4.2.2 203

6.4.3 203

6.4.3.1 203

6.4.3.2 203

6.4.3.3 203

6.4.4 207

6.4.4.1 207

6.4.4.2 DLC 207

6.4.4.3 208

6.4.5 210

6.5 211

6 212

7 214

218

219

223

(8)
(9)

1. 1

2

(1)

(2) FSW(3)(Friction Stair Welding)

GDP

3% (4)

NOx, SOx

(10)

95%

(5) %

(DLC) (6) CNT DLC

DLC 0.1

DLC

400 DLC

(7) DLC 400

DLC

(11)

1. 2

DLC

DLC DLC

1)

2) 3) 4) 5)

SUJ2

SUS440C DLC DLC DLC

DLC DLC

DLC

(C6H6) DLC

DLC DLC

DLC

(12)

1. 3

1 7

1

2 DLC

3

4 DLC

5 DLC

6 DLC DLC

7

1

DLC DLC

2 DLC DLC

DLC

DLC DLC

DLC DLC

EPMA XRD XPS

DLC AFM DLC

3

Holm-Archard

Holm-Archard

(13)

ANSYS

5 DLC 3

SUJ2 SUS440C

DLC 4

6 DLC DLC

DLC DLC

DLC 7

(14)

1

(1) H. Blok, The flash temperature concept, Wear, Vol.6, (1963), pp.483-455

(2)

K.B. Bonderup, D. Benning, P.K. Kristensen, V.P. Popok, K.Pedersen, Interface structure and strength of ultrasonically wedge bonded heavy aluminum wires in Si- based power modules, J. Mater. Sci.: Mater. Electron, Vol. 25, (2014), pp.2863-2871

(3)

J.M. Rice, S. Mandal, A.A. Elmustafa, Microstructural investigation of donor material experiments in friction stir welding, Int.J. Mater. Form. Vol. 7, (2014), pp.127-137

(4)

24 8 7 pp.28

(5)

D. Majcherczak, P. Dufrenoy and Y. Berthier, Tribological, thermal and mechanical coupling aspects of the dry sliding contact, Tribol. Int., Vol. 40, (2007), pp.834-843 (6) J. Robertson, Diamond-like amorphous carbon, Materials Science and Engineering

R 37, (2002), pp.129-281

(7) L. Wang, X. Nie and X. Hu, Effect of thermal annealing on tribological and corrosion

properties of DLC coatings, Journal of Materials Engineering and Performance,

Vol.22, (2013), pp.3093-3100

(15)

DLC

(16)

2. 1

DLC

(1)

DLC

DLC 2

sp3

1 DLC sp3 DLC

sp3

DLC 2

DLC

a-C:H CVD

PCVD (CH4) (C2H2)

(C6H6)(2) Erdemir (3) H/C

CVD DLC

H/C

DLC

sp3 (4)

sp3

MSIB (5) FCVA (6)

2 DLC

Ti, Si, F

(7)(8) DLC DLC -C3N4

(17)

N2/Ar (N/C) 40%

(9)

DC-RF-PECVD N/C

50% (10) -C3N4

(2) DLC sp3/sp2

DLC DLC

(20)

(21)~(23) DLC

DLC DLC

DLC DLC

3 DLC

CVD

6 DLC

DLC DLC

(C6H6) DLC DLC

3 DLC DLC

sp3 sp2

X XPS X

DLC DLC

(18)

2. 2 DLC

2.1 sp3, sp2, sp1 3

sp3

4 4 sp3

5.5 eV

sp2 4 3 3

4 1

0

C60

sp1 4 2 x 2

y z (4)

DLC sp2 sp3

DLC

(MEMs)

2.1 DLC

(1)

2.2 sp3 sp2 (24) sp3

(CH2)n (CH)n

sp3 a-C (tetrahedral) (ta-

(19)

Fig. 2.1 Bonding configurations of carbon sp3, sp2, sp1structure.

Table 2.1 Comparison of major properties for DLC film, diamond and graphite(3)

Properties DLC film Diamond Graphite

Density (g/cm3) 1.0 3.0 3.51 2.25

Resistance ( cm) 109~ 1011 1016 10-7 Thermal conductivity

(W/m K) 0.2 6 20 0.4 2.1

Lattice parameter (nm) a=0.3567 a=0.2456

c=0,6708 Young s modulus (GPa) 200 800 1150

Vickers hardness (kgf/mm2) 1000 4000 10000

Fig. 2.2 Ternary diagram of bonding in amorphous carbon-hydrogen alloys(24). a-C:H

(20)

2. 3 DLC

DLC Aisenberg Charbot(25)

100eV

sp3 CVD

sp3 DLC 100eV

2. 3. 1 (26)

Kaufman

2. 3. 2 (27)

(MSIB) 1 ~ 10 V

5 ~ 40 kV e/m

10-8torr ta-C

MSIB

0.001Å/s

2. 3. 3 (28)

DLC

(21)

a-C:H Ar

a-CNx -

Ar 2

sp3 (IBAD)

DLC

2. 3. 4 (29)

1013 cm3

1~10 m 106-108 A /cm

30 % 100 %

ta-C FCVA(filtered cathodic vacuum arc)

1 nm/s

2. 3. 5 (PLD)(30)

ArF

MSIB

MSIB FCVA ta-C

PLD

(22)

2. 3. 6 PCVD(31)

rf-PCVD rf

rf

rf

sp3

rf

DLC

50 mTorr 10 %

DLC DLC rf -PCDV

(23)

2. 4 DLC

DLC

2. 4. 1 (32)

DLC-Si DLC

DLC (Glycerol-mono-oleate)

2. 4. 2

DLC DLC

(33) SUS

DLC

(34)

DLC

2. 4. 3

2.2 DLC DLC

CD DVD

DLC (35)

(36)

(24)

2. 4. 4

DLC (37)

VTR DLC

2. 4. 5

DLC PET

(38) DLC

DLC

2. 4. 6 DLC

2.3 DLC

(25)

Table 2.2 DLC films applications for machining tools.

Machining Work materials Applications

Bending aluminum, solder plating, phosphor bronze

lead frame, terminal

Spinning aluminum aluminum can, spray can

Drawing aluminum, cupper photo conductive drum, radiator pipe

Deep drawing aluminum aluminum case

Shearing aluminum, phosphor bronze, silver-cupper-nickel alloy

stencil, parts, contact materials

Powder metallurgy alumina, ferrite, super hard alloy

ceramics throwaway chips

Molding glass, plastics aspheric lens CD DVD

Fig 2.3 DLC films application map

(26)

2. 5 DLC (39)

DLC DLC

VDI2840 (40) NEDO DLC

DLC

(1) X XRR: X-ray reflection

(2) ERDA: Elastic Recoil Detection Analysis

(3) sp3/sp2 X XPS: X-ray Photoelectron Spectroscopy

X NEXAFS: Near Edge X-ray Absorption Fine Structure

(4) EPMA: Electron Probe Micro Analyzer

X EDX: Energy Dispersive X-ray spectrometry GDOES: Glow Discharge Optical Emission Spectroscopy

Raman spectrometry (5)

(6) (7) (8) (9) (10) (11)

2.3 2012 sp3/sp2

DLC Type IV

(27)

Table 2.3 Classification of DLC films into five categories Type Name sp3/(sp2+ sp3) % Hydrogen content

(atom, %)

Remarks

I ta-C 50 =< sp3=< 90 H =< 5 A type of DLC II ta-C:H 50 =< sp3=< 100 5 < H < 50 A type of DLC III a-C

20 < sp3< 50 H =< 5 A type of DLC

IV a-C:H 5 < H < 50 A type of DLC

V 0 =< sp3=< 20 ( 0 =< H =< 5) Other film I Graphite-like

VI ( 50 =< H =< 70) Other film II

5 =< H @ sp3<20 Polymer-like

(28)

2. 6 DLC

2. 6. 1 DLC

2. 6. 1. 1 DLC

DLC (C6H6) PCVD

rf-PCVD(radio frequency plasma chemical vapor deposition) 2.4

(MAV-R2) RF

2.5 2.4 PCVD

(WC-9 wt.% Co JIS V30 ) 10

XPS 1 2

DLC 2.6

3 10-3 Pa

0.05 Pa RF 13.56 MHz RF 0.25 kW

5

C-Si HMDSO hexamethyldisiloxane C6H18OSi2

0.3 Pa RF 0.5 kW 2

(C6H6)

15 sccm (standard[25 , 1 atm] cc/minute) RF 0.5 kW

50 60

(29)

Table 2.4 Equipment configurations of rf-PCVD.

Equipment RF generator Power source Vacuum system Turbo molecular pump

Manufacture Machining Network

JEOL KASHIYAMA Osaka vacuum

Model EH-MN03A JRF-3000 KRS-1301 TG800FVWP

Fig. 2.4 Apparatus of rf-PCVD prepared for DLC films

Fig. 2.5 Schematic diagram of the rf-PCVD deposition equipment

(30)

Fig. 2.6 Inside of rf-PCVD chamber (left side) and the specimens mounted on the work holder (right side)

2. 6. 1. 2 DLC

DLC NDLC 15 sccm

(C6H6) 99.99 % 0.3 Pa RF

0.5 kW 50 60 HMDSO

DLC DLC

N2/(C6H6+ N2) 0.66( 30sccm) 0.8( 60sccm) 0.87( 100sccm)

3 DLC

(31)

2. 6. 2

2. 6. 2. 1 DLC

DLC EPMA (Electron Probe Micro Analyzer

X JXA-8100) EDS (Energy

Dispersive X-ray Spectrometry X ) EDS

X Li Si

EDS

EPMA X

EDS

2.5

Table 2.5 Measurement conditions of EPMA and EDS

Detector Model Voltage Current

EPMA JXA-8100 10 kV 50 nA

EDS JEOL EX-2300 15 kV 2.6 nA

(32)

2. 6. 2. 2 DLC

X DLC ( RITN-UltimaIII)

40 kV/40 mA 0.2

mm 2 2 10 ~ 90 0.052

400 ~ 4000 cm-1

1584 cm-1

G (defect) D

1350 cm-1 1333 cm-1

(41)

Reinshaw inVia Reflex

532 nm D G

D G D G

Lorentzian (42) D G

sp3,

sp2, 2.7 100 sccm

DLC

D band peak G band peak

C N bond peak

Raman shift/cm-1

(33)

XPS (X-ray Photoelectron Spectroscopy, EOL JPS-9010TR) X

(

) X h

EB

XPS

nm

10-8Pa

90 Cu 2P3/2

( 932.67 eV Au 4f7/2( 83.98 eV) C1s

C1s N1s 1 eV

2.8 0 1100 eV

C1s 285 eV N1s 400 eV

0.1 eV 282 ~ 289 eV 395 ~ 403 eV

Fig. 2.8 XPS wide scan data for NDLC film (nitrogen: 100 sccm)

0 2000 4000 6000 8000 10000 12000 14000

0 200 400 600 800 1000

Binding Energy, eV

C 1s

N 1s

(34)

2. 6. 2. 3 DLC

DLC DLC

(SM-09010, JEOL) FE-SEM(Field Emission Scanning Electron Microscope, JSM7001F, JEOL)

5 kV, 120 A

DLC

DLC DLC AFM

SII Nanocute

1200 m 8 m 40 N/m 459 kHz 5 m

2.9 100 sccm DLC

AFM

Fig. 2.9 Typical AFM image of NDLC surface prepared from C6H6and nitrogen 100 sccm

1/10

(43) m

0.1 m

(35)

(2.1)

hs hs unload

S

N 0.75

As

f0(hc) (2.1) (2.2) (2.3)

h

Fig. 2.10 Schematic of the cross section of the indenter penetration

(36)

Fig. 2.11 Schematic of the normal force versus indenter penetration depth

S

Ef

,

5 mN DLC

(kgf)/ (mm2) (Pa)

(37)

gn 9.8 m/s2

HV h

(2.8)

2. 6. 2. 4 DLC

DLC DLC

Hiresta-UP MCP-MT450 URS

+ 6mm, - 11mm DLC

DLC 10

(38)

2. 6. 3

2. 6. 3. 1 DLC

2.6 DLC DLC EPMA

30, 60, 100 sccm DLC 5.4, 7.3 10.7 mass%

DLC 5.4, 7.3 10.7

mass% DLC

N5.4DLC, N7.3DLC, N10.7DLC

Table 2.6 Carbon and nitrogen contents in the DLC and NDLC films measured by EPMA

N2sccm N2/(C6H6+ N2) C mass% N mass%

0 0 100 ND

30 0.66 94.7 5.4

60 0.8 91.0 7.3

100 0.87 87.7 10.7

2. 6. 3. 2 DLC

X 2 (002) 26.4°

(111) 43° X DLC

DLC DLC

1350 cm-1 D 1584 cm-1 G

Lorentz 2.12 (a) d)

2.7 D G Id/Ig G

Id/Ig DLC

Id/Ig G

Table 2.7 Id/Ig ratios and G band peaks of DLC and NDLC films measured by Raman

(39)

Fig. 2.12 (a) Raman spectrum of DLC film on silicon substrate

0 2000 4000 6000 8000

800 1000 1200 1400 1600 1800 2000

Raman Shift cm

-1

G band peak

D band peak

N

5.4

DLC

(40)

Fig. 2.12 (c) Raman spectrum of N7.3DLC film on silicon substrate

1000 2000 3000 4000 5000 6000 7000

G band peak D band peak

N

10.7

DLC

(41)

2.13 DLC C1s XPS DLC

DLC XPS (45) Gelius sp3

sp2 285.3 eV 284.5 eV (46)(47)

Ronning (48) sp3 1 (sp3-N)

285.6 eV, 2 (sp3=N) 286.8 eV

2.13 Gelius Voigt (49)

DLC Gelius Ronning sp3 sp2 sp3-

N sp3=N Voigt 4

2.14 (a) (b) N7.3DLC N10.7DLC

2.15 C1s DLC N7.3DLC N10.7DLC

C1s

2.8 sp3 sp2

DLC sp2 sp3 sp3-N sp3=N 4 DLC sp3 sp3 sp3-N sp3=N

sp3/sp2 4.5 2.3

Table 2.8 sp3/sp2ratios of DLC and NDLC films XPS DLC N5.4DLC N7.3DLC N10.7DLC

sp3/sp2 4.5 -* 3.1 2.3

*

2.16 DLC DLC N1s

DLC N1s DLC

1s DLC N1s

397.3 eV 1s (50)

7.3 mass % 10.7 mass % DLC

399.3eV 399.4eV N1s

N-sp3C (399.7 eV) N-sp2C (400.5 eV)(51) Cyanides C N 398.9 eV(52) C-N

(42)

Fig. 2.13 Fitting curves of the sp2structure and sp3structure at C1s: DLC film

(43)

Fig. 2.14 (b) Fitting curves of sp3, sp2, sp3-N and sp2=N peaks N10.7DLC film

(44)

Fig. 2.16 XPS spectra of N1s of DLC and NDLC films on silicon substrates 300

350 400 450 500 550 600

395 397 399 401 403

Binding energy, eV

N: 0 N: 5.4 N: 7.3 N: 10.7

N1s

N: 0%

N:10.7%

(45)

2. 6. 3. 3 DLC

DLC

SEM DLC

2.9

DLC DLC

2.17 DLC 2.18 DLC AFM

2.10 AFM

DLC DLC (Ra)

DLC 0.13 nm DLC 0.12 nm

0.14 nm

2.11 DLC DLC

10 GPa

10% DLC DLC

Table 2.9 Film thickness of each DLC film obtained by back scattering method of FE-SEM

DLC DLC N5.4DLC N7.3DLC N10.7DLC

Thickness ( m) 0.487 0.588 0.903 1.06

Table 2.10 Average surface roughness of each DLC film obtained by AFM measurement

AFM Si

(nm)

DLC (nm)

N5.4DLC (nm)

N7.3DLC (nm)

N10.7DLC (nm) Roughness

(Ra)

0.08 0.13 0.14 0.12 0.14

(46)

Silicon substrate DLC

Fig. 2.17 AFM images of the silicon substrate and surfaces of DLC film on silicon substrate

N5.4DLC N7.3DLC N10.7DLC

Fig. 2.18 AFM images of the surfaces of NDLC films on silicon substrates

Table 2.11 Hardness and Young s modulus of DLC and NDLC films obtained by nano- indenter

DLC NH

(GPa)

Standard Deviation

(GPa)

Vickers Hardness (kgf/mm2)

Young s Modulus

(GPa)

DLC 29.2 3.30 2710 263

N5.4DLC 24.7 2.32 2290 221

N7.3DLC 22.5 1.22 2090 193

(47)

2. 6. 3. 4 DLC

(sp3) (sp2)

DLC 2.19

DLC 1010 m

7.3 mass 106 m 4

Fig. 2.19 Electrical resistivity of NDLC films as a function of nitrogen content

106 107 108 109 1010 1011

0 2 4 6 8 10 12

Nitrogen content (%)

(48)

2. 7

3 ( ) sp3

sp2 sp1

DLC X

sp1 sp3

sp2 XPS

DLC 2.6

100 sccm 0.87 10.7 mass% (3)

(C6H6) DLC

0.95 15 mass%

1584 cm-1

G (defect) D 1350 cm-1

1333 cm-1 DLC

DLC 1500cm-1 G D

DLC

G D

sp2 sp3 sp2

sp2 sp3

50 ~ 30 G (53)

G D 2.7

D G Id/Ig

G 1600 cm-1

Ferrari Robertson(54) DLC 2 nm

DLC 3 Id/Ig G

Id/Ig G

sp2

(49)

sp3

Kaufman Metin(41) RF C5H10

DLC FT-IR

sp3 sp2

Ferrari Robertson(54) (CH4 C6H6 C4H10)

a-C:H (DLC) sp3

Id/Ig G sp3

sp3 EELS

Id/Ig 2.21 DLC

Id/Ig

Id/Ig Id/Ig sp3/sp2

XPS DLC sp3- sp2

sp3 sp2

400 eV XPS

2.22 DLC DLC

:10.7 mass% DLC 2200 cm-1

2200 cm-1 C N (55)

DLC

Silva Aamratung(56) FT-IR DLC

XPS DLC

sp3 sp2

(50)

Fig. 2.20 Relationship between sp3/sp2ratio of the NDLC films and the hardness

Fig 2.21 Dependence of the Id/Ig of the NDLC films on the hardness

(51)

Fig. 2.22 Raman spectra of DLC and N10.7DLC films around 2200 cm-1

DLC DLC 1010 m

7.3 mass% 106 m 4

sp3 sp2

sp3

Amir Kalish(57) DC C6H6

a-C:H:N 10 mass%

1 mass% 5

2 1

2

sp3 sp2

DLC

XPS 2

sp3 sp2

Ferrari Robertoson (54)

a-C:H Id/Ig Id/Ig

sp3

DLC sp3

sp3-sp2-H 2.23

DLC sp3 DLC sp3/sp2

DLC sp3-sp2-H

(52)

Fig. 2.23 DLC structure transformation due to nitrogen content

(53)

2. 8

DLC DLC

DLC DLC sp3/sp2

XPS,

1) C6H6 CVD DLC

Id/Ig

G peak XPS

sp3/sp2 DLC sp3- sp2

sp3 sp2

2) DLC

DLC C=N C N sp3/sp2

3) 7.3 mass%

1010 106 4

sp3 sp2

DLC DLC

(54)

(1) DLC (2006), pp 17-39, NTS

(2) DLC

Vol.4,(2001), pp.23-26

(3) A. Erdemir, O. L. Eryilmaz, I. B. Nilufer, and G. R. Fenske, Effect of source gas chemistry on tribological performance of diamond-like carbon films, Diamond and Related Materials Vol.9, (2000), pp.632-637

(4) J. Robertson, Diamond-like amorphous carbon, Materials Science and Engineering R 37, (2002), pp.129-281

(5) Y. Lifshitz, Hydrogen-free amorphous carbon films: correlation between growth conditions and properties, Diamond and Related Materials Vol.5, (1996), pp. 388- 400

(6) A. Anders, Approaches to rid cathodic arc plasmas of macro- and nanoparticles: a review, Surface and Coatings Technology, Vol.121-123, (1999), pp. 319-330

(7) K. Oguri, T. Arai, Two different low friction mechanizms of diamond-like carbon with silicon coatings formed by plasma-assisited chemical vapor deposition, Journal of Materials Research, Vol.6, (1992), pp.1313-1316

(8) Y. Lin, E. Erdemir, E. I. Meletis, A study of the wear mechanism of diamond-like carbon films, Surface & Coatings Technology, Vol.82 (1996), pp. 48-56

(9) S. Lopez, H. M. Dunlop, M. Benmalek, G. Tourillon, M. S. Wong, W. D. Sproul;, XPS, XANES and ToF-SIMS characterization of reactively magnetron sputtered carbon nitride films, Surf. Interface Analysis, Vol.25, (1997), pp.315-323

(10) J. Hao, T. Xu, W. Liu, Preparation and characterization of hydrogenated carbon nitride films synthesized by dual DC-RF plasma system, Materals Science and Engineering A, Vol.408, (2005), pp.297-302

(11) Y. Taki, N. Yajima, O. Takai, Effects of deposition pressure on structure and hardness of amorphous carbon nitride films synthesized by shielded arc ion plating, Thin Solid Films, Vol.334, (1998), pp.165-172

(12) O. Takai, Y. Taki, T. Kitagawa, Deposition of carbon nitride thin films by arc ion plating, Thin Solid Films, Vol.317, (1998), pp.380-383

(55)

(15) K-H. Lee, Y. Inoue, H. Sugimura, O. Takai, Correlation between wear-resistance and chemical structure of CNx films synthesized by shielded arc ion plating, Surface &

Coatings Technology, Vol. 169-170, (2003), pp.336-339

(16) K-H. Lee, H. Sugimura and Y. Inoue, O. Takai, Dependence of hybridizations analyzed by XPS and visible Raman spectroscopy on nanohardness and wear resistance of amorphous carbon and carbon nitride films, Diamond and Related Materials, Vol.13, (2004), pp. 507-512

(17) K-H. Lee, O. Takai, Nanoindentation study on nanomechanical characteristics of a- CN film deposited by shielded arc ion plating, Diamond and Related Materials, Vol.

14, (2005), pp. 1444-1450

(18) K-H. Lee, O. Takai, Nanomechanical properties through nanoindentation method of amorphous carbon and carbon nitride films synthesized by shielded arc ion plating, Surface & Coatings Technology, Vo. 200, (2005), pp.2428-2432

(19) A. Y. Liu, M. L. Cohen, Structural properties and electronic structure of low- compressibility materials: -Si3N4 and hypothetical -C3N4, Physical Review B, Vol.41, (1990), pp.10727-10734

(20) , DLC , , Vol.53, (2002), pp.

715-720

(21) S.Bhattacharyya, Mechanism of high n-type conduction in nitrogen-doped nano crystalline diamond, Phsical Review B, Vol.70, (2004) pp.125412-1~10

(22) S.Bhattacharyya, S.R.P Silva, Transport properties of low-dimensional amorphous carbon films, Thin Solid Films Vol.482, (2005), pp.94-968.

(23) K.Teii, T.Ikeda, Conductive and resistive nanocrystalline diamond films studied by Raman spectroscopy, Diamond and Related Materials, Vol.16, (2007), pp.753-756 (24) W. Jacob, W. Moller, On the structure of thin hydrocarbon films, Surface and

Coatings Technology, Vol.63, (1993), pp.1771-1773

(25) S. Aisenberg, R. Chabot, Ion Beam Deposition of Thin Films of Diamond-like Carbon, Journal of Applied Physics, Vol.42, (1971), pp.2953-2957

(26) R. Locher, C. Wild, P. Koidl, Direct ion-beam deposition of amorphous hydrogenated carbon films, Surface and Coatings Technology, Vol.47, (1991), pp.426-432

(27) H. Hofsass, H. Binder, T. Klumpp, E. Recknagel, Doping and growth of diamond-like carbon films by ion beam deposition, Diamond and Related Materials, Vol.3, (1994), pp. 137-142

(28) M. Rubin, C.B. Hopper, N. H. Cho, B. Bhusahn, Optical and mechanical properties of dc sputtered carbon films, Journal of Materials Research. Vol.5, (1990), pp.2538-

(56)

(29) B. F. Coll. M. Chhowalla, Modelization of reaction kinetics of nitrogen and titanium during TiN arc deposition, Surface and Coatings Technology, Vol.68, (1994), pp.131-140

(30) A.A. Voevodin. M.S. Donley, Preparation of amorphous diamond-like carbon by pulsed laser deposition, Surface and Coatings Technology, Vol.828, (1996), pp.199- 213

(31) A. Bubenzer, B. Dischler, G. Brandt, P. Koidl, rf plasma deposited amorphous hydrogenated hard carbon thin films: Preparation, properties, and applications, Journal of Applied Physics, Vol.54, (1983), pp.4590-4595

(32) , DLC , Vol.58, 8, (2013), pp.557-

565

(33) , DLC ,

Vol.42 6, 1997 pp.436-441

(34) DLC 2003

(35) , DLC , Vol.54 1 2009

pp.28-33

(36) , DLC , NACHI-BUSINESS news Vol.1 2003

pp.1-6

(37) , , NEW

DIAMOND 20 Vol.22 2006 pp. 30

(38) ,

DLC , Vol42 1 2005-1 pp.42-43

(39) , DLC , Vol.58,

8 (2013), pp.538-544

(40) VDI 2840 Carbon Films Basic Knowledge, Film Types and Properties, (2005), Verein Deuttscher Ingennieure, Dusseldorf

(41) J. H. Kaufman, S. Metin, Symmetry breaking in nitrogen-doped amorphous carbon:

Infrared observation of the Raman-active G and D bands, Physical Review B, Vol.39, (1989), pp. 13053-13060

(42) D.Roy, M.Chhowalla, N.Hellgren, T.W.Clyne, G.A.J.Amaratunga, Probing carbon

(57)

Journal of Materials Research Vol.7, (1992), pp. 1564-1583

(45) A. Crunteanu, M. Charbonnier, M. Romand, F. Vasiliu, D. Pantelica, F. Negoita, R.

Alexandrescu, Synthesis and characterization of carbon nitride thin films obtained by laser induced chemical vapour deposition, Vol.125, (2000), pp.301-307

(46) U.Gelius, P.F.Heden, J.Hedman, B.J.Lindberg, R.Manne, R.Nordberg, C.Nordling, K.Siegbahn, Molecular spectroscopy by means of ESCA III, Carbon compounds, Physica Scripta, Vol.2, (1970), pp.70-80

(47) U.Gelius, C.J.Allan, G.Johansson, H.Siegbahn, D.A.Allison, K.Siegbahn, The ESCA spectra of benzene and iso-electronic series, thiophene, pyrrole and furan, Physica Scripta, 3 (1971) 237-242

(48) C.Ronning, H.Feldermann, R.Merk, H.Hofsass, P.Reinke, J.U.Thiele, Carbon nitride deposited using energetic species: A review on XPS studies, Physical Review B, Vol.58, (1998), pp.2207-2215

(49) ,

, , Vol.60, No1, (2009), pp.48-55 (50) XPS Database ; http://techdb.podzone.net/

(51) T. W. Scharf, R. D. Ott, D. Yang, J. A. Barnard, Structural and tribological characterization of protective amorphous diamond-like carbon and amorphous CNx overcoats for next generation hard disks, Journal of Applied Physics, Vol.85, (1999), pp. 3142-3154

(52) W. Gissler, P. Hammer, J. Haupt, Hardness and elasticity of diamond-like carbon films prepared by ion-beam assisted sputter deposition, Diamond and Related Materials, Vol.3, (1994), pp. 770-774

(53) S.R.Salis, D.J.Gardiner, M.Bowden, J.Savage, D.Rodway, Monitoring the quality of diamond films using Raman spectra excited at 514.5 nm and 633 nm,

Diamond and Related Materials,, Vol.5, (1996), pp.589-591

(54) A. C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B, Vol.61, (2000), pp.14095-14107

(55) S. E. Rodil, A. C. Ferrari, J. Robertoson, W. I. Milne, Raman and infrared modes of hydrogenated amorphous carbon nitride, Journal of Applied Physics, Vol.89, (2001), pp.5425-5430

(56) S. R. P. Silva, G. A. J. Aamratunga; Doping of rf plasma deposited diamond-like carbon films, Thin Solid Films, Vol.270, (1995), pp.194-199

(57) O. Amir, R. Kalish, Properties of nitrogen doped amorphous hydrogenated carbon films Journal of Applied Physics, Vol.70, (1991), pp.4958-4962

(58)
(59)

3. 1

=tan Holm-Archard

Holm-Archard MKS

(60)

3. 2

15

200 100

4 (1)

1) 2) 3) 4)

Holm(2), Archard(3)

(4)

[ ] /[ ]

(3.1)

(61)

7 (5) 1) (adhesive wear)

2) (abrasive wear)

3) (corrosive wear) 4) (fatigue wear)

5) (fretting wear)

6) (impact wear)

7) (welding wear) 1922 Holm(2)

Holm

Bowden and Tabor(6)

Archard, Hirst, Lancaster mild wear, severe wear

18

Archard(3) Holm

Holm Archard Holm-

Archard

(62)

Xrushchov(7)~(10) 1965 MIT Rabinowicz(11)

Holm-

Archard mild wear, severe wear,

k

1899 Kirkaldy

1965 Kraghelsky

1977 MIT Suh

(12) Holm, Archard

(63)

3. 2. 1 (13)

2 2

3.1

Fig. 3.1 Contact model of asperity pair

D 3

h

(64)

60,000 (14)

galling

3.2

Fig. 3.2 Contact state of wear surface for two bodies

FN A

D n A A

n

(65)

k*

k*/3 kadh FN x

Holm-Archard

3~4

3. 2. 2 (13)

3.3

Fig. 3.3 Gouging of a material by a rigid cone

(66)

FN

h h

rh dx

dV

tan Archard

kadr

(67)

3.4

(3.18) 3.5

Fig. 3.4 Change in the wear coefficient with time(15)

Fig. 3.5 Abrasive wear resistance of metallic materials is proportional to the hardness(7)

(68)

3. 2. 3

3.4

3.6 k

mm3/mN m: N:

Holm-Archard h 1

1 h

Fig. 3.6 Typical wear loss chart: Unit of wear rate as mm3/mN is used(16)

kgf/mm2

Holm-Archard k

3.6 mN m[ ] N[ ]

joule

(69)

3. 3

3. 3. 1

(17) (4)

Jahanmir

(18) Kallas

(19)

1930

calorie (20)

95% (21)

700

Mohrbaacher (22)~(24) CVD DLC

DLC Fouvry(25)~(29) Liskiewicz (30)(31)

"dissipated energy"

3.7

(30)

dissipated energy

(70)

Fig 3.7 Fretting cycle loop(30)

Ed dissipated energy g

2

"dissipated energy"

dissipated energy

(71)

3. 3. 2

Holm-Archard

DLC

Holm-Archard(2)(3) Holm-Archard

(3.20)

3.20 )

k (3.20)

(Input energy)

Aghdam Khonsari(32 Leonald (33) Holm-Archard

S (3.20) S

Holm-Archard P

(72)

3. 3. 3

Holm-Archard

(3.22) (3.23)

3.8 FRP-2100

Fig. 3.8 Ball-on-disk apparatus

3.9

N

F =F/N

3.10

Wear Track

N

Load Arm

(73)

Fig. 3.10 Friction coefficient sliding distance chart by the ball-on-disk method

l F

l

3.24 3.10

F

3.11

(74)

Fig. 3.11 Extended friction coefficient sliding distance chart

3.11

F F N

=F/N

3.11 3.11

3.25 3.10

I 3.25

(3.25) 3.12

3.25

(75)

Fig. 3.12 Raw data outputted from tribo-meter

3.10 L

N

=tan

1) :Eh 2) :Ew 3)

:Ee 4) :Ep 5) :Ec

(3.27) (3.28)

1) h 2) w 3) e 4)

° 5) ½

1940 ~ 50 energy

Tim e ( sec) Frictio n force (N) Interval (m ) Fo rce x Interval

0 0 0.01 0

0.1 2.38 0.01 0..0238

0,2 1.54 0.01 0.0154

0.3 2.03 0.01 0.0203

0.4 1.65 0.01 0.0165

499.7 1.24 0.01 0.0124

499.8 1.36 0.01 0.0136

499.9 1.05 0.01 0.0105

500 1.52 0.01 0.0152

Su m 500m En ergy input

(76)

Input energy friction energy

Input energy (friction energy) energy

( Input energy, joule) ( Watt,

joule/sec) ( dissipated energy)

(77)

3. 3. 4

Ein=

(3.31)

(3.29)

(W)

(78)

, Power (W)

V (3.29) h

N

(3.37)

3.13 DLC

100 m =0 (3.38)

3.13

(3.38) / l

dV/dt

(79)

Fig. 3.13 Friction coefficient behavior of alumina ball against DLC film

V (3.29) T E

h

(3.30)

(3.40) (3.41)

< 0 > 0

(80)

3. 4

DLC 2

DLC DLC 4.8 mm

SUJ2 SUJ2 , SUS440C

SUS440C

SUJ2 DLC SUJ2 DLC SUS440C DLC SUS440C DLC

DLC DLC

3 3 50

30

20 ~ 25 10 ~ 20 %

1 ~ 20 N 25, 50, 75, 100 mm/sec 1000 m

3.3.3

3. 4. 1

3.1 (SUJ2, SUS440C)(10),(11)

SUJ2

SUS440C 200

3.2

100 g 10 SUJ2

SUS440C MIL

GPa

(81)

Table 3.1 Elemental composites of SUJ2, SUS440C and alumina balls Ball Material Crystal

Structure

Fe (%)

C (%)

Cr (%)

Ni (%)

Si (%)

Al (%)

O (%)

SUJ2 Carbon

steel

BCC 98 1 1 - 0.25

SUS440C Stainless steel

BCC 82 1 17 - 0.25

Al2O3 Almina Trigonal crystal - - - 54 48

Table 3.2 Vickers hardnesses of SUJ2, SUS440C and alumina balls Ball Vickers Hardness

(kgf/mm2)

Hardness (GPa)

SUJ2 846 8.3

SUS440C 867 8.5

alumina 1450 14.2

(82)

3. 4. 2 DLC

DLC (KEYENCE 9500)

4 3.14 DLC

10 nm

DLC 4

Fig. 3.14 Wear track profile of DLC film measured by the laser microscope after ball-on- disk test: load 19.6 N, Sliding length 200 m

3. 4. 3

3.15

(83)

3.16

r = s =

Fig. 3.16 Geometric relationship between the ball shape and the scar diameter

(84)

3. 4. 4 DLC

3.17 SUJ2 SUS440C DLC 9.8 N

100 mm/sec

SUJ2

0.4 0.2

0.3 ~ 0.4

SUS440C 0.2

0.05 3.18

SUJ2 SUS440C

2 1

DLC

(85)

Fig. 3.17 Friction coefficient-sliding distance data of SUJ2 (carbon steel), SUS440C (stainless steel) and alumina balls against DLC films

Fig. 3.18 Optical images of the wear scars of SUJ2 (carbon steel), SUS440C (stainless steel) and alumina balls against DLC films

(86)

3. 5

1) Holm Archard (

Ein h: )

2)

3) (Ein N: L

)

1) :Eh 2) :Ew 3)

:Ee 4) :Ep 5) :Ec

(87)

3 (1)

(2) R. Holm; Electric Contact (1946), pp.214

(3) J.F. Archard, The temperature of rubbing surfaces, Wear, Vol.2, (1959), pp.438-455 (4) K.Hokkirigawa, K.Kato, An experimental and theoretical investigation of ploughing,

cutting and wedge formation during abrasive wear, Tribology International, Vol. 21, (1988), pp.51-57

(5) S.Miyake, Tribological properties of hard carbon films: extremely low friction mechanism of amorphous hydrogenated carbon films and amorphous hydrogenated SiC films in vacuum,, Surface Coating and Technology, Vol.54-55, (1992), pp.563-569 (6) F.P. Bowden and D. Tabor, The Friction and Lubrication of Solids, (1954), Oxford (7) M. M. Khruschov, A new method for the determination of wear of machine parts, Wear,

Vol.3, (1960), pp.60-71

(8) M. M. Khruschov, Wear measurement with the aid of scintillation suppression,,Wear Vol.23, (1973), pp.225-229

(9) M. M. Khruschov, A method of testing the wearing ability of finished steel surfaces, Wear Vol.26, (1973), pp.45-51

(10) M. M. Khruschov, Principles of abrasive wear, Wear, Vol.28, (1974), pp.69-88

(11) E.Robinowicz, The Determination of the Compatibility of Metals through Static Friction Tests, ASLE Transactions, Vol.14, (1971), pp.198-205

(12)

(13) V. L. Popov; Contact Mechanics and Friction, (2010), pp. 271-284, Springer (14) E.Robinowicz; Friction and wear of materials, John Wiley &Sons, inc., (1995) (15) T. O. Mulhearn, L. E. Samuels, The abrasion of metals: A model of the process, Wear,

Vol.5, (1962), pp.478-498

(16) Dorner-Reisel, L.Kubler, G.Irmer, G.Reisel, V.Klemm, E. Muller, Characterisation of nitrogen modified diamond-like carbon films deposited by radio-frequency plasma enhanced chemical vapour deposition, Diamond & Related Materials, Vol.14, (2005), pp.1073-1077

(17) A. Beheshti, M. M. Khonsari, A Thermodynamic Approach for Prediction of Wear Coefficient Under Unlubricated Sliding Condition, Tribology Letters, Vol.38, (2010), pp.347-354

(18) S. Jahanmir: International Conference on Fundamentals of Tribology Cambridge, Mass., (1980), pp.455

(19) P.Kallas, Indentation energy and abrasive wear of metals, Wear, Vol.198, (1996),

(88)

(20) J.F. Archard, The temperature of rubbing surface, Wear, Vol.2, (1959), pp.438-455 (21) D. Majcherczak, P. Dufrenoy and Y. Berthier Tribological, thermal and mechanical

coupling aspects of the dry sliding contact, Tribology International, Vol.40, (2007), pp.834-843

(22) H. Mohrbacher, B. Blanpin, J. P. Celis and J. R.Roos (1995), Frictional Behaviour of Diamond-like carbon and diamond coatings in oscillating sliding, Surface and Coatings Technology, Vol.62, (1993), pp.583-588

(23) H. Mohrbacher, J.P. Celis, and J. R. Roos, Laboratory testing of displacement and load induced fretting, Tribology International, Vol.28, (1995), pp.269-278

(24) H. Mohrbacher, and J. P. Celis, Friction mechanisms in hydrogenated amorphous carbon coatings, Diamond and Related Materials, Vol.4, (1995), pp.1267-1270 (25) S. Fouvry, P. Kapsa, L. Vincent, Fretting behaviour of hard coatings under high

normal load, Surface and Coatings Technology, Vol.68-69, (1994), pp.494-499

(26) S. Fouvry, P. Kapsa, L. Vincent, Analysis of sliding behaviour for fretting loadings:

determination of transition criteria, Wear, Vol.185, (1995), pp.35-46.

(27) S. Fouvry, P. Kapsa, L. Vincent, Wear analysis in fretting of hard coatings through a dissipated energy concept, Wear, Vol.200, (1996), pp.186-205

(28) S. Fouvry, P. Kapsa, H. Zahouani, L. Vincent, Wear analysis in fretting of hard coatings through a dissipated energy concept, Wear, Vol.203-204, (1997), pp.393-403.

(29) S. Fouvry, T. Liskiewicz, P. Kapsa, S. Hannel, E. Sauger, An energy description of wear mechanisms and its applications to oscillating sliding contacts, Wear, Vol. 255, (2003), pp.287-298

(30) T. Liskiewicz, S. Fouvry, B. Wendler, Impact of variable loading conditions on fretting wear, Surface and Coatings technology, Vol.163-164, (2003), pp.465-471.

(31) T. Liskiewicz, T., and S. Fouvry, Development of a friction energy capacity approach to predict the surface coating endurance under complex oscillating sliding conditions, Tribology International, Vol.38, (2005), pp.69-79i

(32) Aghdam, A. B. and Khonsari, M. M., Prediction of wear in reciprocating dry sliding via dissipated energy and temperature rise, Tribology Letters, Vol.50, (2013), pp 365- 378.

(89)

DLC

(90)

4.

3

) )

) 4) 5)

5

Quinn(1)

700 Wang (2) 52100

200

1930 Blok(3)(4), Jaeger(5)

Archard (6)

2

(7)

%

DLC 400

(91)

4. 2

Holm-Archard

(8) DLC DLC

N5.4DLC N7.3DLC N10.7DLC

DLC

(92)

4. 2. 1 4. 2. 1. 1

3 4 DLC DLC

SUJ2 SUS440C DLC

9.8 N 100 mm/sec 1000 m

4. 2. 1. 2 DLC DLC

(100)

DLC DLC (011)

(0 1) MVK-G2500AT

100, 200, 300, 500 gf 3 4

3 × 4 12

DLC

(9)

DLC

I Irwin

(total work of fracture)

2

GT=2 GT= 2 + Wp

Wp

(93)

Fig. 4.1 Schematic side view of a radical in crack of a coating film and substrate configuration.

4.1

2C 4.1

1/2 C

A

/ /

(4.2)

4.1 C A

(94)

/

/ /

d=0 1/2 C = C0

[(C0/C)3-1] 1/C a =2d/ (Gf/Gs+

Ef/Es) SEM

4. 2. 1. 3

DLC (FE-

SEM)1 10 (Winroof) 1

(95)

4. 2. 2

4. 2. 2. 1 DLC DLC

a) DLC DLC

4.2 (a)~(d) Si Si DLC N5.4DLC N7.3DLC N10.7DLC SEM SEM

(4.8) [(C0/C)3-1] 1/C

4.3 C0 Si (4.8)

a

4.3 Gs= 2

= 3.04 J/m2 Es=180 GPa Ef DLC

Gf Gf = 2 4.1

N7.3DLC SEM

N7.3DLC

Table 4.1 Surface energy of DLC and nitrogenated DLC films

Film Young s modulus

(GPa)

gradient

(J/m2) Si (substrate) 180

DLC 263 5.66 x 10-5 548

N5.4DLC 221 1.02 x 10-5 821

N7.3DLC 193 4.69 x 10-5 2470

N10.7DLC 173 5.66 x 10-5 749

(96)

Si DLC N5.3DLC N7.4DLC N10.7DLC Fig. 4.2 (a) SEM images of cracks generated from edges of indentation mark on Si and

DLCs films: Load 500g

Si DLC N5.3DLC N7.4DLC N10.7DLC

Fig. 4.2 (b) SEM images of cracks generated from edges of indentation mark on Si and DLCs films: Load 300g

Si DLC N5.3DLC N7.4DLC N10.7DLC

Fig. 4.2 (c) SEM images of cracks generated from edges of indentation mark on Si and DLCs films: Load 200g

(97)

Fig. 4.3 Gradient obtained by crack length data from DLC films on Si

b) DLC DLC

4.4 (a) N5.4DLC 4.4 (b)

SEM

10 10

(a) SEM image of wear particles on N5.4DLC film

(b) Image analysis of initial wear particles

Fig. 4.4 Image analyses of wear particles on N5.4DLC film generated by tribo-test

(98)

4.5 (a)~(d) DLC, N5.4DLC N7.3DLC N10.7DLC

1

10 nm 10 nm 1 m 10 nm

DLC 10 nm

10 nm 1

/

4.2 DLC DLC

(99)

Fig. 4.5 (a) Wear particle size distribution of DLC film against alumina ball.

Fig. 4.5 (b) Wear particle size distribution of N5.4DLC film against alumina ball.

(100)

Fig. 4.5 (c) Wear particle size distribution of N7.3DLC film against alumina ball.

Fig. 4.5 (d) Wear particle size distribution of N10.7DLC film against alumina ball.

Table 4.2 Volume/surface area ratio of wear particles obtained from wear particle size

(101)

c) DLC DLC

/

(Wear particle creation energy: WPCE) 4.3 ~ 4.6 DLC, N5.4DLC, N7.3DLC, N10.7DLC

DLC

µm m

DLC DLC

ppm DLC

Table 4.3 Wear energy of DLC film obtained by a product of the estimated wear particle surface area and measured surface energy in terms of input energy generated in each tribo-test

Input energy

(J)

Wear volume Surface area Wear

Particle creation energy (J)

Wear/Input ratio

3) (m3) 2) (m2)

84 2.45I104 2.45I10-14 3.80I105 3.80I10-7 1.04I10-4 1.24×10-6 126 7.52I104 7.52I10-14 1.17I106 1.17I10-6 3.21I10-4 2.54×10-6 177 1.16I105 1.16I10-13 1.80I106 1.80I10-6 4.96I10-4 2.80×10-6 235 2.24I105 2.24I10-12 3.47I106 3.47I10-5 9.56I10-4 4.07×10-6

(102)

Table 4.4 Wear energy of N5.4DLC film obtained by a product of the estimated wear particle surface area and measured surface energy in terms of input energy generated in each tribo-test

Input energy

(J)

Wear volume Surface area Wear

particle creation energy (J)

Wear/Input ratio

3) (m3) 2) (m2)

292 2.74I105 2.74I10-13 7.04I106 7.04I10-6 2.89I10-3 9.90×10-6 530 4.00I105 4.00I10-13 1.03I107 1.03I0-5 4.22I10-3 7.96×10-6 865 6.97I105 6.97I10-13 1.79I107 1.79I10-5 7.35I10-3 8.50×10-6 1463 9.67I105 9.67I10-13 2.49I107 2.49I10-5 1.02I10-2 6.97×10-6

Table 4.5 Wear energy of N7.3DLC film obtained by a product of the estimated wear particle surface area and measured surface energy in terms of input energy generated in each tribo-test

Input energy

(J)

Wear volume Surface area Wear

particle creation energy (J)

Wear/Input ratio

3) (m3) 2) (m2)

137 1.76I105 1.80I10-13 3.04I106 3.04I10-6 3.76I10-3 3.74×10-5 559 5.07I105 5.10I10-13 8.77I106 8.77I10-6 1.08I10-2 1.94×10-5 1141 8.84I105 8.80I10-13 1.53I107 1.53I10-5 1.89I10-2 1.66×10-5 1440 9.97I105 9.80I10-13 1.72I107 1.72I10-5 2.13I10-2 1.48×10-5

Table 4.6 Wear energy of N10.7DLC film obtained by a product of the estimated wear particle surface area and measured surface energy in terms of input energy generated in each tribo-test

Input energy

Wear volume Surface area Wear

particle

Wear/Input ratio

3) (m3) 2) (m2)

(103)

4. 2. 2. 2 SUJ2 SUS440C

SUJ2 SUS440C DLC

DLC DLC

/

20 J/m2 (10)

a) SUJ2 SUS440C

FE-SEM 1 10 Winroof

4.6 (a) FE-SEM

DLC SUJ2 4.6 (b)

4.7 (a) (b) SUS440C FE-SEM DLC

SUJ2 SUS440C

4.8 (a) (b) DLC

4.7

(104)

(a) SEM image of wear particles of SUJ2

(b) Image analysis of wear particles of SUJ2

Fig. 4.6 Image analysis of wear particles of SUJ2 generated by tribo-test

(a) SEM image of wear particles of SUS440C

(b) Image analysis of wear particles of SUS440C

Fig. 4.7 Image analysis of wear particles of SUS440C generated by tribo-test

(105)

Fig. 4.8 (a) Wear particle size distribution of SUJ2 against alumina ball.

Fig. 4.8 (b) Wear particle size distribution of SUS440C against alumina ball.

Table 4.7 Volume/surface area ratio of wear particles obtained from wear particle size distributions for SUJ2 and SUS440C

Ball material Particles volume ( m3)

Particles surface area ( m2)

Surface/volume ratio

SUJ2 0.231 13.6 59.0

(106)

b SUJ2 SUS440C

4.8 SUJ2 4.9 SUS440C

DLC DLC

µm m

SUJ2 SUS440C ppm

Table 4.8 Wear energy of SUJ2 obtained by a product of the estimated wear particle surface area and the surface energy in terms of energy input generated in each tribo-test

Input energy

(J)

Wear volume Surface area Wear

particle creation Energy (J)

Wear/Input ratio ( m3) (m3) ( m2) (m2)

8 1.81I104 1.81I10-14 1.07I106 1.07I10-6 2.14I10-5 2.67 ×10-6 50 3.82I104 3.82I10-14 2.25I106 2.25I10-6 4.51I10-5 9.02 ×10-7 395 5.40I104 5.40I10-14 3.19I106 3.19I10-6 6.37I10-5 1.61×10-7 972 7.96I104 7.96I10-14 4.70I106 4.70I10-6 9.39I10-5 9.66×10-8 1749 1.05I105 1.05I10-13 6.20I106 6.20I10-6 1.24I10-4 7.08×10-8 2961 1.22I105 1.22I10-13 7.20I106 7.20I10-6 1.44I10-4 4.86 ×10-8

Table 4.9 Wear energy of SUS440C obtained by a product of the estimated wear particle surface area and the surface energy in terms of input energy generated in each tribo-test

Input energy

(J)

Wear volume Surface area Wear

particle creation energy (J)

Wear/Input ratio ( m3) (m3) ( m2) (m2)

(107)

4. 2. 3

4. 2. 3. 1 DLC DLC

Jahanmir(11)

Rosenfield(12)

1 mm3 100

22 mm3 10000 104 mm3 5

DLC 10 mJ

10 nm 10 nm

600 1

joule

4. 2. 3. 2

DLC N5.4DLC N10.7DLC N7.3DLC

N7.3DLC DLC

N7.3DLC

G = 2 + Wp Wp

DLC DLC

/ 4.9

(108)

(13) 4.10 DLC

DLC 10

/ ( )

/ N7.3DLC

7.3 mass% DLC

Wp G

DLC C-N Takai (14)

Shield Arc Ion Plating (SAIP) 0V 500V CNx

[N]/[C] CNx

300V (15) Lee

Takai(16) SAIP CNx CNx

CNx

/ Martron (17) IBD (Ion

Beam Deposition), DC magnetron sputtering, ECR (Electron Cyclotron Resonance) 3 DLC C-N XPS, RBS (Rutherford

Backscattering Spectrometry), AES (Auger Electron Spectroscopy)

[N]/[C] C-N C C5 C4N2 CN

C-N / 7.3 mass % DLC

(109)

Fig 4.9 Plastic and elastic regions of penetration work of nano-indentation

Fig 4.10 Plastic energy / total work energy ratio of DLC and nitrogenated DLC films

(110)

4. 2. 3. 3 SUJ2 SUS440C

4.11 SUJ2 SUS440C

SUJ2

SUS440C SUS440C SUJ2 1

4.12 SUJ2 SUS440C DLC

/ SUJ2 SUS440C

/

DLC /

(111)

Fig 4.11 Relationship between input energy and wear particle creation energy of SUJ2 and SUS440C

Fig 4.12 Wear particle creation energy/input energy ratios of DLC film,

(112)

4. 2. 4

1) DLC

DLC DLC N5.3DLC N7.4DLC

N10.7DLC 548, 821, 2466, 749 J/m2

N7.4DLC

2) Winroof DLC DLC

ppm

3) DLC SUJ2 , SUS440C

ppm /

DLC

SUJ2 SUS440C

(113)

4. 3

1881 Hertz

(18) 1971 Johnson, Kendall, Roberts

Hertz (JKR ) (19) JKR

Hertz

( ) (20)

JKR Hertz

4. 3. 1

1881 H.R. Hertz(18)

4. 3. 1. 1

4.13 O

a

a O r p

k

(114)

4.13 a 2 a3/3

(2/3) a3k P

Fig. 4.14 Displacement of semi-infinite plate

J.V.Boussinesq(20) P

4.14 C P s

z

z

s D

C

P=ps ds d

(115)

4.15 D P = pds sd

(4.13) C r O a

p C

Fig. 4.15 Displacement of contact surface

4.15 mn

O mn h h

mn 2 oh rsin mh

mh h s O r

r (4.10) p(r )

a

r s

ds

n m

o r' h

D

C

(116)

0

Fig. 4.16 Deformation in the adjacent of the contact point

4.16 O E1, E2,

1, 2

1 2 = 1+ 2 O r

S1, S2 S1 1= z1+ 1 , S2 2= z2+

2

(4.19)

(117)

z1

r R2

O(x4) 0 (4.23) (4.22)

(4.20), (4.21), (4.24), (4.25) (4.26)

r r2 0

(118)

a (4.29)

(4.28), (4.30)

p0 (4.10)

4. 3. 1. 2

R1= R0 R2

øìòíí÷

(119)

p0

4. 3. 1. 3

4.17

Fig. 4.17 Stress evaluation region in the adjacent contact point

O

O P z Hertz

J.V.Boussinesq(20) 4.18

(120)

O

r O' O

øìòíì÷

øìòíë÷

(121)

O a p (4.34)

(4.35) (4.34) z

O (4.34) r (4.36)

a

z z x)r = 0, y)r = 0 z)r = 0

z z 45

p

1 1

øìòíé÷

(122)

= 0.3 z=0.637a 1)max= 0.33p

1)z= 0 = (1-2 )p/4 0.1p

p (4.10) (4.38)

= 0.3 z = 0.47a 1)max= 0.31p

0.31p 0.47a

4. 3. 1. 4

E1 210 GPa DLC E2 263 GPa 1= 2

= 0.3 9.8 N 4.19 (4.33)

9.8 N 50 m

(123)

4. 3. 2 4. 3. 2. 1

(4.33)

9.8 N, 19.6 N, 29.4 N = /2r

(4.43) 4.10

Table 4.10 Elastic energy dependent on load in the steel ball Load

(N)

Displacement ( m) Strain Elastic energy (mJ)

9.8 0.9 1.9I10-4 0.2

19.6 0.14 3I10-4 0.5

29.4 0.18 4I10-4 0.9

1 mJ

4. 3. 2. 2 4.20

(124)

4.21 t t F

S =F/S

= / t

=G

U 1/2 F

U

S S= (r2-(r-t)2)= (2rt-t2)

Fig. 2.9 Typical AFM image of NDLC surface prepared from C 6 H 6 and nitrogen 100 sccm
Fig. 2.11 Schematic of the normal force versus indenter penetration depth S E f , 5 mN DLC (kgf)/ (mm 2 ) (Pa)
Fig. 2.13 Fitting curves of the sp 2 structure and sp 3 structure at C1s: DLC film
Fig. 2.14 (b) Fitting curves of sp 3 , sp 2 , sp 3 -N and sp 2 =N peaks N 10.7 DLC film
+7

参照

関連したドキュメント

[11] Karsai J., On the asymptotic behaviour of solution of second order linear differential equations with small damping, Acta Math. 61

In particular, we consider a reverse Lee decomposition for the deformation gra- dient and we choose an appropriate state space in which one of the variables, characterizing the

In Section 3, we show that the clique- width is unbounded in any superfactorial class of graphs, and in Section 4, we prove that the clique-width is bounded in any hereditary

Answering a question of de la Harpe and Bridson in the Kourovka Notebook, we build the explicit embeddings of the additive group of rational numbers Q in a finitely generated group

Then it follows immediately from a suitable version of “Hensel’s Lemma” [cf., e.g., the argument of [4], Lemma 2.1] that S may be obtained, as the notation suggests, as the m A

In our previous paper [Ban1], we explicitly calculated the p-adic polylogarithm sheaf on the projective line minus three points, and calculated its specializa- tions to the d-th

In order to be able to apply the Cartan–K¨ ahler theorem to prove existence of solutions in the real-analytic category, one needs a stronger result than Proposition 2.3; one needs

Our method of proof can also be used to recover the rational homotopy of L K(2) S 0 as well as the chromatic splitting conjecture at primes p &gt; 3 [16]; we only need to use the