• 検索結果がありません。

詳細な説明 研究の背景 フラッシュメモリの限界を凌駕する 次世代不揮発性メモリ注 1 として 相変化メモリ (PCRAM) 注 2 が注目されています PCRAM の記録層には 相変化材料 と呼ばれる アモルファス相と結晶相の可逆的な変化が可能な材料が用いられます 通常 アモルファス相は高い電気抵抗

N/A
N/A
Protected

Academic year: 2021

シェア "詳細な説明 研究の背景 フラッシュメモリの限界を凌駕する 次世代不揮発性メモリ注 1 として 相変化メモリ (PCRAM) 注 2 が注目されています PCRAM の記録層には 相変化材料 と呼ばれる アモルファス相と結晶相の可逆的な変化が可能な材料が用いられます 通常 アモルファス相は高い電気抵抗"

Copied!
5
0
0

読み込み中.... (全文を見る)

全文

(1)

www.tohoku.ac.jp 平成30年1月12日 報道機関 各位 東北大学大学院工学研究科 【発表のポイント】  従来材料とは逆の電気特性を持つ次世代不揮発性メモリ用の新材料開発 に成功。  今回開発した新材料を用いることで、データ書換え時の消費電力を大幅に 低減できることを確認。 【概要】 東北大学大学院工学研究科知能デバイス材料学専攻の畑山祥吾博士後期課程 学生(日本学術振興会特別研究員)と須藤祐司准教授らの研究グループは、既存 材料とは逆の電気特性を示す相変化材料(Cr2Ge2Te6)の開発に成功しました。 フラッシュメモリの限界を凌駕する、次世代不揮発性メモリとして、相変化 メモリ(PCRAM)が注目されています。しかしながら、現行の PCRAM に使われてい る材料は、耐熱性が低く、データを書き換える際の消費電力が高いことが課題 となっていました。 今回開発した材料を用いて作製した相変化メモリ(記憶素子)は、フラッシュメ モリを上回る高温データ保持性や高速動作性を維持しつつ、データ書き込みの 消費電力を大幅に低減できること(90%以上)を実証しました。本成果は、アメ リカ化学会の学術誌 ACS Applied Materials & Interfaces に 2018 年 1 月 11 日 (日本時間)に掲載されました。

次世代相変化メモリーの新材料を開発

(2)

【詳細な説明】 【研究の背景】 フラッシュメモリの限界を凌駕する、次世代不揮発性メモリ注 1として、相変 化メモリ(PCRAM)注2が注目されています。PCRAM の記録層には「相変化材料」と 呼ばれる、アモルファス相と結晶相の可逆的な変化が可能な材料が用いられま す。通常、アモルファス相は高い電気抵抗を有し、結晶相は低い電気抵抗を有 します。PCRAM では、異なる大きさの電気パルスを印加してジュール加熱する ことで相変化を可逆的に生じさせ、その変化に伴う電気抵抗変化を利用して情 報を記録します。現在、PCRAM 用の相変化材料には、Ge2Sb2Te5をはじめとする Ge-Sb-Te 系カルコゲナイド化合物(GST)注 3が利用されています。GST のメリッ トは、数十 ns(ナノ秒)の短時間で相変化を示すことで、PCRAM の高速動作を可 能にしています。しかしながら、次世代 PCRAM に向け、GST の材料的課題が指 摘されています。 第一の課題は、GST が 160℃程度の温度で容易に結晶化してしまうことです。 このため、一つのメモリに電気パルスを印加して相変化する(メモリの書き換え をする)際に、隣接する記憶素子にも熱影響が及び、意図せず記録情報が書き換 えられるリスクがあります。このことは、記憶素子の微細化・高密度化に伴っ て顕著になります。 第二の課題は、GST を相変化させるために要するエネルギー、特に、アモル ファス化するために大きなエネルギーが必要であり、PCRAM 動作の消費電力が 高いことです。これは、GST の融点が高く、また、結晶相が低い電気抵抗を有 していることに起因します。それ故、次世代 PCRAM を更に本格的に普及させる には、上記課題を解決する新しい相変化材料の開発が期待されています。 【研究成果の詳細】 以上の背景の下、東北大学大学院工学研究科知能デバイス材料学専攻の畑山 祥吾博士後期課程学生(日本学術振興会特別研究員)、須藤祐司准教授、進藤怜 史博士後期課程学生(日本学術振興会特別研究員)、安藤大輔助教、小池淳一教 授 の研究グループは、産業技術総合研究所の齊藤雄太研究員および韓国 Hanyang 大学の Y.H. Song 教授らと共同で、上記課題を解決できる新材料を見 出しました。本成果は、元素間の結合の強さを考えアモルファスの耐熱性に優 れる材料を検討する過程で見出されたものです。具体的には、Cr2Ge2Te6化合物 が 270℃程度と高い結晶化温度を有し、極めてアモルファス相の耐熱性に優れ ていることを見出しました。興味深いことに、本材料は従来材とは逆に、結晶 相の方がアモルファス相よりも高い電気抵抗を有することが分かりました。ま た、Cr2Ge2Te6のアモルファス相および結晶相共に半導体的性質を持ちますが、 この結晶化に伴う電気抵抗の上昇は、相変化に伴うキャリア濃度(電流の担い手 の濃度)の減少に起因していることを突き止めました。 本 Cr2Ge2Te6相変化材料は、結晶相が高い電気抵抗を有するというユニークな

(3)

特徴を有するため、ジュール加熱によるアモルファス化に必要な電流を大幅に 低減できます。また、記憶素子の電気抵抗は界面接触抵抗注 4(この場合、金属 電極と相変化材料の界面に生じる電気抵抗)に支配されるため、高い電気抵抗を 示す結晶相を持つ Cr2Ge2Te6相変化材料では電極界面上に極小のアモルファス 領域が形成されるだけで大きな電気抵抗変化が得られ、PCRAM 動作の消費電力 を従来材に比して 90%以上低減できることを実証しています(図 1)。加えて、 Cr2Ge2Te6相変化材料は、30ns での高速書き換え動作が可能であり、低消費電力、 高速動作、高温データ保持性を兼ね備える PCRAM の実現が大いに期待出来ます (図 2)。 今後は、本 Cr2Ge2Te6相変化材料を用いた PCRAM 実現に向け、長期データ書き 換え性などのメモリ動作性能の更なる評価と共に、Cr2Ge2Te6の高速相変化メカ ニズムを解明していく計画です。 図 1 (a) 本研究で作製した記録素子の動作特性。Cr2Ge2Te6では、低抵抗状 態がアモルファス相、高抵抗状態が結晶相を呈する。尚、Cr2Ge2Te6では 30ns、 GST では 50ns での電圧パルス幅で動作を行った。(b) 図(a)の結果より見 積もられたデータ書き換えに必要な動作エネルギー。 0 200 400 600 800 1000 1 2 動作 エネルギー( pJ ) 48 pJ 922 pJ 動作エネルギー を90%以上 低減することに 成功 GST Cr2Ge2Te6 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 0 1 2 3 4 5 6 7 8 9 10 リセット状態 セット状態 102 103 104 105 106 9 10 8 7 6 5 4 3 2 1 0 記憶素子抵抗( Ω ) 印加電圧(V) GST Cr2Ge2Te6 (a) (b)

(4)

図 2 種々の相変化材料の結晶化温度と動作速度の関係。Cr2Ge2Te6は、既存 相変化材料より高温データ保持性かつ高速動作が可能。 謝辞 本研究は、JSPS 科研費 15H04113、17J02967、二国間交流事業(日韓)並びに公 益財団法人 加藤科学振興会の助成を受け遂行されました。 【論文情報】

タ イ ト ル :Inverse resistance change Cr2Ge2Te6-based PCRAM enabling

ultralow-energy amorphization

著者:Shogo Hatayama, Yuji Sutou, Satoshi Shindo, Yuta Saito, Yun-Heub Song, Daisuke Ando and Junichi Koike

掲載誌:ACS Applied Materials & Interfaces

URL: http://pubs.acs.org/doi/full/10.1021/acsami.7b16755

【用語説明】

注 1:不揮発性メモリ

コンピュータに用いられるメモリのことを指し、特に、コンピュータの電源 を切ってもデータ(情報)を記録保持しているメモリのことを言います。 注 2:相変化メモリ(PCRAM:Phase Change Random Access Memory)

アモルファス/結晶相変化は、電気パルスによるジュール加熱により行い、通 常、電気抵抗が高いアモルファス相をリセット「0」、電気抵抗が低い結晶相を セット「1」として情報を記録します。それ故、PCRAM メモリセルは、相変化材 料の上下を電極で挟みこんだ単純な構造を有するため、FeRAM(強誘電体メモリ) や MRAM(磁気抵抗メモリ)に比して、製造コストや集積度の面で有利とされてい 高速動作性 高温データ保持性 100 150 200 250 300 0 10 20 30 40 50 60 70 80 90 100 110 結晶化温度 (˚ C) 動作速度 (ns) GaSb Sb44Te11Se45 Si10.7Sb39.5Te49.8 GST Ga2Te3Sb5 Al1.3Sb3Te GeTe CuSb4Te2 Ti0.32Sb2Te3 Cr2Ge2Te6 (本研究) 既存材料 0 10 20 30 40 50 60 70 80 90 100 110 300 250 200 150 100

(5)

ます。既に、携帯電話などにも一部実用されてきましたが、最近では、DRAM と フラッシュメモリのアクセス時間の差を埋めるストレージクラスメモリとして も期待されています。 注 3:Ge-Sb-Te カルコゲナイド化合物(GST) GST は、アモルファス/結晶相変化に伴い大きな反射率変化を示すため、PCRAM に先立って光記録ディスクに実用されました。GST は、反射率変化のみならず、 相変化に伴う大きな電気抵抗変化を示し、また、数十 ns(ナノ秒)レベルの高速 相変化を示すため、PCRAM 用材料として実用されています。 注 4:界面接触抵抗 2 つの異なる材料を接触させた時、その界面に生じる電気抵抗のこと。微細 PCRAM では、金属電極と相変化材料の界面に生じる電気抵抗がメモリセルの電 気抵抗を支配することが指摘されています。 【内容についてのお問い合わせ先】 東北大学大学院工学研究科 担当 准教授 須藤祐司 電話&FAX: 022-795-7338 E-mail: ysutou@material.tohoku.ac.jp 【報道についてのお問い合わせ】 東北大学工学研究科・工学部情報広報室 電話&FAX: 022-795-5898 E-mail: eng-pr@eng.tohoku.ac.jp

図 2 種々の相変化材料の結晶化温度と動作速度の関係。Cr 2 Ge 2 Te 6 は、既存 相変化材料より高温データ保持性かつ高速動作が可能。  謝辞  本研究は、JSPS 科研費 15H04113、17J02967、二国間交流事業(日韓)並びに公 益財団法人 加藤科学振興会の助成を受け遂行されました。  【論文情報】

参照

関連したドキュメント

断面が変化する個所には伸縮継目を設けるとともに、斜面部においては、継目部受け台とすべり止め

※ 硬化時 間につ いては 使用材 料によ って異 なるの で使用 材料の 特性を 十分熟 知する こと

名刺の裏面に、個人用携帯電話番号、会社ロゴなどの重要な情

Q-Flash Plus では、システムの電源が切れているとき(S5シャットダウン状態)に BIOS を更新する ことができます。最新の BIOS を USB

次亜塩素酸ナトリウムは蓋を しないと揮発されて濃度が変 化することや、周囲への曝露 問題が生じます。作成濃度も

(自分で感じられ得る[もの])という用例は注目に値する(脚注 24 ).接頭辞の sam は「正しい」と

父親が入会されることも多くなっています。月に 1 回の頻度で、交流会を SEED テラスに

しかしながら、世の中には相当情報がはんらんしておりまして、中には怪しいような情 報もあります。先ほど芳住先生からお話があったのは