Photocopying permittedbylicenseonly theGordonandBreachScience Publishersimprint.
Printed in Singapore.
Nonlinear Singular Integral Inequalities for Functions in
Two and n Independent Variables*
MILAN
MEDVEI
DepartmentofMathematicalAnalysis, Faculty ofMathematics and Physics, Comenius University,Mlynskdolina,842 15Bratislava,Slovakia
(Received10 March1999; Revised 12 July1999)
Inthis paper nonlinearintegral inequalitieswithweakly singular kernels forfunctions in two andnindependentvariablesaresolved.The obtainedresultsarerelatedtothewellknown Gronwall-Bihari andHenryinequalitiesfor functions in one variableandtheWendroff inequalityfor functions intwovariables.AmodificationofOu-Iang-Pachpatte inequality and inequalities forfunctions innindependentvariablesarealso treated here.
Keywords: Integral inequality; Weakly singular kernel;Henryinequality;
Wendroff inequality;Gronwell-Bihariinequality AMS SubjectClassification (1991): 34D05,35B35,35K55
1.
INTRODUCTION
D.
Henry
proposed in his book[7]
amethod toestimate solutions of linear integral inequality with weakly singular kernel. His inequality plays the same role in the geometric theory ofparabolic partial dif- ferentialequations(see [6,7,18])
asthe wellknownGronwall inequality inthetheoryof ordinary differential equations.Inthe paper[13]
a new method to estimate solutions for nonlinear integral inequalities with* Thisworkwassupportedby the Slovak GrantAgency VEGA, Grant No.1/6179/99.
E-mail:medved@fmph.uniba.sk.
287
singular kernels ofBihari type is proposed. The resulting estimation formulas are similar to those for classical integral inequalities
(see [1,2,5,9-12,16]).
For instance the estimate ofsolution of theHenry
inequality is ofexponentialformincontrarytotheHenry’s
estimate(see [7,18])
byaninfinite seriesofacomplicated form. The method has been appliedin thepaper[14]
intheproofofglobalexistence of solutions and astability theorem foraclass of parabolicPDEs.Inthispaperwe usethe methodproposed bythe authorinthepaper
[13]
toobtain ananalogueof the Wendroffinequality(see [1,5,9,10])
forfunctions in two variables.Thandapaniand Agarwal
[19]
provedinter- esting results concermng inequalities for functions in n independent variables.Applyingourmethod of desingularization ofweaklysingular inequalitiesweproveasingularversionofoneof them.Weremarkthat the papers[3,4,15,19]containmany resultsoninequalities of Wendroff type andapplyingourdesingularization methodone canformulateand prove their singular versions in a similar way as we are doing this in Section4.Wealso presentanestimateofsolutionsofananalogueof Ou-Ianginequality whose generalization for thenonlinear casehas been givenby Pachpatte[16].
2.
WENDROFF TYPE
INEQUALITIESFirstletusrecalla definitionofaclass offunctionsfromthe paper
[13].
DEFINITION 2.1 Letq
>
0beareal number and 0<
T<
cx. Wesaythat afunction
a2"R+ R(R
+(0, )) satisfies
acondition(q)/fe-qt[(u)]
q<_ R(t)(e-qtu q) for
alluER+, (0, T), (q)
whereR(t)
isacontinuous, nonnegativefunction.
Examples
(see 13])
1.
a2(u)
Um,
m>
0 satisfiesthe condition(q)withR(t)
e(m-1)qt.2.
a2(U)
U-b- aum,
where 0<
a<
1,m_>
satisfiesthe condition(q)withR(t)
2q- eqmt.We shall need the followingwell known consequence of theJensen inequality:
(A1 + A2 +’" + An) <_
nr-l(A + Ar +... + Am) (1)
(see 8,17]).
Weshallstudyaninequality of the type
f0xf0
yu(x, y) < a(x, y) + (x s)
-1(y- t)
-1x
F(s, t)(u(s, t))
dsdt,(2)
for
(x,
y)E(0, T)
2(0, T) (0, T) (0 <
T< cxz),
where c>
0,/3 >
0.Results on integral inequalities intwo variables with regular kernels (i.e.withc 1,/3 1,F continuous)and
a(x,
y)constantarecontained inthebooks 1,5,9,10].THEOREM 2.2 Let
a(x,
y)beanonnegative, C2-function,
Oa(x,y)
( Oa(x,y) )
OZa(x’Y)
>0, >0 or >0
(C)
OxOy
OxOy
on
(0, T)
2-(0, T) (0, T) (0 <
T< cxz), u(x,
y),F(x,
y) be continuous, nonnegativefunctions
on(0, T)
2 satisfying the inequality(2),
where"
R+ R is a nonnegativeC-function.
Then the followingassertions hoM."(i) Supposec
> 1/2, fl > 1/2
andsatisfies
thecondition(q)withq 2. Thenu(x,y) <_eX+y{f-IIf(2a(x,y)2
+
2KF(s, t)2R(s + t) as at (3)
where
1(2/3 1)1-’(2o 1)
K= 4o+_1
(x,y)
E(0, T1)2 (0,
T1) (0, T1),
[’ is the Gamma function,
f(v)= fvVo dy/w(y), vo >
O,f1-1
is theinverse
of
[2 andT1 >
0 is such that the argumentof f-
in(3)
belongsto
Dom(fU)for
all(x,
y)E(0, T) 2.
(ii)
Suppose
cfl 1/(z
/1)for
somereal numberz>
andwsatisfies
thecondition(q)with q-z
+
2. Thenu(x,y) <ex+y{f-llf(2a(x,y)2
fooXfo
y1}
1/q/
Mz F(s, t)qR(s
/t)
dsat (x,
y)e (0, T2),
wherez
+
2(P!! -p5),
2/p zP
z+---f’ M \ p(-p ) --/-z+l’
T2 >
0issuch thattheargumentof f-i
belongstoDom(f -) for
all(x,
y)e(o, 7"2).
Proof
Firstlet usprovethe assertion(i). Using theCauchy-Schwarz inequalityweobtainfrom(2)
foXfo
yu(x,y) < a(x,y) + (x- s)-le’(y- t)
e-x
et[e-(S+t)F(s, t)a(u(s, t))]
dsdt[/oX/o
<_ a(x,y) + (x s)2’-Ze’(y t):z;-e2t
dsdtx e-(s+t)
F(s, t)9-a(u(s, t))2
ds dt(4)
Forthefirstintegralin
(4)
wehavethe estimate.x o/.o,(x s)-2e2S(y t) z;-zez’
dsdte2(x+Y)
cr2a-2e-2a
Yr/2-2e-2
dcrdr/
/o
xe2(x+y)
O’2-2e-r
Y22(+)_2
r/2-:Ze-
drd
e2(X+y)
<
22(+5)_2r(2/- 1)r’(2- 1).
Thereforeweobtain from
(4) u(x,y) < a(x,y) +
ex+yK1/2x
YF(s, t)2e-2(s+t)w(u(s, t))
2dsdtwhereKis asinTheorem 2.2. Usingthe inequality
(2)
with n 2,r 2 andapplying the condition (q)with q-2 we obtainf0xf0
yv(x, y) < c(x, y) +
2KF(s, t)2R(s + t)co(v(s, t))
dsdt,where
v(x, y) (e-(x+y)u(x, y)) 2,
Weneed the following lemma.
c(x, y) 2a(x, y)2. (6)
LEMMA 2.3 Let co"
R+-+
R be a nonnegative, nondecreasing C1- function, a(x,y) be a nonnegative CZ-function
on(0, T)
2(0 <
T_<oo)
such that
02a(x’Y) >
0
>
0 or>
0OxOy Oy
Oxon
(0, T)
2(0 <
T<_oo).
Let k(x, y) be a continuous, nonnegative C 2-function
andz(x,
y)beacontinuous,nonnegativefunction
on(0, T)
2withfoXfo
yz(x, y) < a(x, y) + k(s, t)co(z(s, t)
dsdt,(7)
(x,
y)E(0, T) 2.
Thenz(x, y) <_ (a(x, y)
/k(s, t)
ds dt(x, y)
E(0, T1)2,
where
T1 >
0 issuch that the argumentof f-
in the above inequality belongstoOom(f-l) for
all(x,
y)(0, T1) 2.
Remark Ifa(x,y) is constant then the lemma is a consequence of
[9,
Theorem7.8].
In this case it suffices to assume that co is contin- uousonly.Proof
LetV(x,
y)be the right-handsideof(7).
Then02 V(x, y) 02a(x, y)
OxOy OxOy + k(x,y)co(z(x,y)), (8)
o( v(x, y) , V(x, y) V(x, y) + ,, v(, y) o V(x, y) o V(x, y)
OxOy OxOy
OxOy
(9)
Since
9t’(V)- 1/co(V)
andf"(V) <
0weobtain from(8)
and(9)
02Ut(V(x, y))
< OZa(x, y)
+- k(x, y)
OxOy OxOy (v)
O:a(x, y)
OxOy w(a(x, y)) + k(x, y). (10)
HoweverOxOy
0 fa(x,y) dcr
f(a(x, y))
OxOy Jo co(a)
0
Oa(x, y)
0-- Oy co(a(x, y)) 02a(x,y)
co’(a(x,y)) OxOy
O:a(x, y)
> OxOy co(a(x,y))’
Oa(x,y)
Ox
co(a(x,y))
2ioe.
0
02a(x,y)
Ox-y a(a(x, y)) >_ OxOy co(a(x, y)) (ll)
(If
Oa/Oy>
0thenonecanobtain(11)
byestimating(O/OxOy)f(a(x, y)).) Thusweobtainfrom(10)
and(11)
Oza(v(x,Y))
< 029t(a(x,Y))
OxOy OxOy
andthisyields
foXfo
yf’t(v(x, y)) < a(a(x, y)) + k(s, t)
ds dt.Fromthisinequalitywe obtain
z(x,y) < V(x,y) < a - f2(a(x,y)) + k(s,t)dsdt
Nowletuscontinuetheproofof Theorem 2.2.Applying Lemma2.3 tothe inequality
(5)
weobtainv(x, y) <_ a - 9t(a(x, y)) +
2KF(s, t)2R(s + t) at
dUsing
(6)
weobtainu(x,y) <_
ex+y Ft- f(2a(x,y)
2+
2KF(s,t)2R(t + s)dtd
Now we shall prove the assertion (ii). Let p=(z+2)/(z+
1),
q---z+
2.Thenu(x, y) <_ a(x, y) + (x s)
-p6eps
yt)
-p6eptdsdtx
Ifoo
xfooYe-q(s+t)f(s,t)qw(u(s,t))qdtds] 1/q.
Wehave
o
x
Y(x s)
-p6em
yt)
-p6eptds dtfo
x(x s) -ee
m/o
yt) -ee
-e dt dseY
fO
x< P(1 p5) (x s)-P6e
psdspl-p6
ex+y
< p--2(-p6)
pp5) .
Thuswehave
u(x,y)
<_ a(x, y)
4-Kex+yF(s, t)qR(t
4-s)(e-q(s+t)u(s, t)q)
ds dt andthisyieldsv(x,y) <_ a(x,y) +
2KF(s,t)qR(t + s)a;(v(s,.t))
dsdt,where
a(x, y) 2a(x, y) 2, v(x, y) (e-(x+y)u(x, y)) q,
Mz -_p5)
2/ppl-p
andthisyields the inequality foru(x, y)fromtheassertion(ii).
Ifa
-/3,
a,/3< 1/2,
then thereare sometechnicalproblemsandweomitthis case.
THEOREM 2.4 Let
functions
a,F beas in Theorem 2.2 andu(x,
y) bea continuous, nonnegativefunction
on(0, T)
2satisfying the inequalityu(x, y) <_ a(x, y) + (x s)
;-’(y t);-s’-lt’>F(s,t)u(s,t)dsdt, (12)
where/3 >
0,’y>
0. Then the followingassertionshold:(i)
If > 1/2,
/>
(1/2p)thenu(x, y) <_ eX+Y+(x, y), (13)
for (x,
y)E(0, T),
where[4q
-1Jo’Xfoo
y(I)(x, y)
21-(1/2q) exp KqLqF(s, t)2qe
q(s+t)ds dt(14)
K &asin Theorem2.2,L-(.’((2"7-2)p+1)) p(2,-2)p+l
2/q p_>l, q>_l, -+---1.P q
(ii) Let
/3- 1/(z
/1) for
some real number z>_
1, p-(z
/2)/(z
/1),
q z
+
1,"),>
1/r;q,wheret>
1. Thenu(x, y) <_ ex+y (x, y),
where[QrqjiX fooY
(x, y) 21-1/rqa(x, y)
exper(+t)F(s, t)
rqds dtkrq
r
>
&such that1/t
/1/r=
1,Q MzP, Mz
is as & Theorem2.2,P-[l-’(sq(’),-
1)/ 1)]
2/anda--z/(z + 1)=/3-
1.Proof
Weshall prove theassertion(i). Fromu(x,y) < a(x,y) + (x s)2"-2e2S(y t)2-2e2t
dsdtx
0
s:-2 tz’-2f(s’ t)2 (e-(S+t)u(s, t)):
ds dt<_ a(x, y) + eX+K
/[/oX/o
x
s:-zt’-ZF(s,t):(e-(S+)u(s,t))
2dsdtwhereKis asinTheorem 2.2. This yields
foXfo
yv(x, y) < c(x, y) +
2Ks2"-9tg"-2F(s, t)2v(s, t)
dsdt,(16)
where
v(x, y) (e-(X+y)u(x, y)) 2, c(x, y) 2a(x, y)2. (17)
From
(16)we
havev(x, y) <_ c(x, y) +
2K S(27-2)p(2"-2)Pe
-p(s+t)dsdtX
F(s,t)2qeq(s+t)v(s,t)
qdsdt(18)
where p, qareasintheorem.Forthe first integralin
(18)
wehaveo
x
0
yS(2’-2)pt(2"-2)Pe-P(S+t)
dsdtcr(27-2)Pe-a
7-(27-2)pe drder(p(27-2)p+l)
2< (.F((27-2)p p(2-y-2)p+ + 1))
2andthusweobtain from
(18)
thatv(x, y) < c(x, y) +
2KLF(s, t)2qe
q(s+t)V(S, t)
qdsdt,(19)
whereLisdefined intheorem.Thisyields
V(X,y)
q<
2q-1c(x,y)
q-+-2qKqLqF(s,t)2qeq(s+t)v(s,t)
qdsdt(20)
Onecan check that from theassumptionsof theoremitfollowsthat
Oc(x, y)
>
O,OxOy
Oc(x,y)
Oc(x,Y)>o
or >0Ox
Oy
Thus fromLemma2.3 and
(20)
weobtain/0 /0
v(x, y)q <_
2q-1c(x, y)q
exp KqLqF(s, t)2qe
q(s+t)ds dt andthe equalities(17)
yield(20).
Nowletusprove theassertion(ii). Fromthe inequality
(12)
weobtainu(x,y) < a(x,y) + (x- s)-PC(y- t)-Pae
p(s+t)dsdt[/x/y
Sq(’/-1)tq(’-l)e-q(s+t)F(s, t)qu(s, t)
qdsdt]l/q
< a(x, + eX+Y (F(-;1-- P))
x ssq(/-)tq(’-)e-(S+t)ds dt
x Y
r(,+lF(s, t) q(e -(’+)u(s, t)
qdsdt<_ a(x,y) +eX+yQ er(S+t)F(s,t)rq(e-(S+)u(s,t))rqdsdt
LJO JO
where
Q MzP, Mz
is as inTheorem2.2, Pis as intheorem andr, are asintheassertion(ii).The above inequality yieldsV(X, y)
"5. 2qr-1a(x, y)rq + Qrq
ewhere
v(x, y) (e
-(x+y)u(x, y))rq. (21)
Thereforewehave
V(X, y) <_
2qr-1a(x, y)rq
expQrq
eand using
(21)
weobtain(15).
3.
OU-IANG-PACHPATTE TYPE
INEQUALITYWe shall prove a theorem corresponding to an analog ofOu-Iang- Pachpatteinequality
(see [13,16]).
THEOREM 3.1 LetT>O,FandcobeasinTheorem2.2andabeapositive constant. Let u(x,y) be a continuous, nonnegative
function
on(0, T)
2satisfying the inequality
foXfo
yu(x,y) - < a+ (x-s)-l(y t)9-1F(s,t)co(u(s,t))dsdt, (22) (x,
y)E(0, T) 2.
Thenthefollowingassertionshold."(i) Suppose c
>1/2, /3 > 1/2
and cosatisfies
the condition (q) with q--2.Then
u(x, y) <_
ex+(x, y), (x, y) (0, T ), (23)
where
( foXfoY )]1/4
q(x, y) (x, y) (o, A -
T,A(2a 2) +
2KF(s, t)2R(s + t)ds
dtKisthe number
from
Theorem 2.2 andA(v) fv dcr/co(v/-d),
v0>
0,T1 >
0 issuch that the argumentof
A-1 belongstoDom(A-) for
all(0, T1) 2.
(ii) Suppose
c=/3-1/(z + 1)for
some real numbers z>_
and let p(z + 2)/(z + 1),
q z+
2. Assume that cosatisfies
the condition(q)withq z
+
2. Thenu(x, y) < eX+y(x, y), (x, y)
E(0, T2) 9, (24)
where
(x,y)= -(A(2q-a)) +
2q-F(s,t)qR(s + t)dsdt (x,
inequalityTheorem 2.2.y)IO,
belongsT), Ta >
to0Dom(A
issuch-)
that thefor
allargument(x,y)(0, of A T), -
inM
the aboveis as inProof
Let us prove (ii). Using the Cauchy-Schwarz inequality and inequality(1)
weobtainfx fy(x_ s)- t)-le (s+t)
u(x,y)
2a+ (y-- S+tF(s,t)e- (u(s,t))dsdt
x y
S)
2-2t) 2-2e2(s+t)
a
+ (x (y
ds dtx
F(s, t)R(s + t)(e-2(s+t)u(s, t) 2)
dsdta
+
Ke-(x+y)F(s, t) R(s + t)(e-(s+t)u(s, t) )
dsdj /2,
whereKis as inTheorem 2.2. Applying the inequality
(1)
similarlyasin theproofof Theorem 2.2 weobtainthe inequalitye-(+lu(x,y)
2a+
2F(s,t)R(s + t)(e-(S+u(s,t))dsdt,
whereKis an inTheorem 2.2.Thisyields
Zx .,
v(x, y)
c+
2KF(s, t)R(s + t)(v(s, t))
dsdr,(25)
where
(, (e-(X+, (, ), a .
Let
V(x,
y)be the right-handsideof(25).
Thenv(x,y) <_ v/v(,y), (v(x,)) <_ (v/V(x,y)). (27)
Wehave02
V(x, y)
2KF(x, y)9R(x + y)(v(x, y))
OxOy (28)
and
0
foo
v(x’y) dtOxOy o(
o o V(x, y)/Oy Ox ( v/V(x, y)
02V(x,y)
OxOy (v/V(x, y)) or(x, y) or(x, y)
Oy
Oxo2v(x,y)
< OxOy (v/V(x,y))
’ v/ V(x, y)
2V
V(x, y)w(
VV(x, y))2
i.eo
02
02V(x,y)
A( V(x, y)) <_ (29)
OxOy OxOy ( v/ V(x, y)
Fromthisinequality and
(28)
wehaveOxOy A(V(x,y)) <_
2KF(s,t)ZR(s + t)dsdt
and using
(26), (27)
weobtaintheinequality(22).
Now let us prove (ii). Following the proofof the assertion (ii) of Theorem2.2 one can showthat
x
00
yw(x, y)2 <
c+
2K2F(s, t) qR(S + I)CO(W(S, l))
dsdt,(30)
where
ct- 2a
2, w(x, y) (e-(X+Y)u(x, y)) q.
Applyingthesameprocedureto
(30)
as wehaveusedintheproofof the assertion(ii)aswellasthatonefromtheproofof(ii)
of Theorem 2.2one canprovethe inequality(24).
4.
ON A LINEAR INTEGRAL
INEQUALITY IN nINDEPENDENT VARIABLES
Inthis section we stateand provearesulton asingularintegral inequal- ity in n variable. In the proofofthis result we apply ourmethod of desingularization ofweakly singular inequalities and the well known resultbyThandapani andAgarwal [19,Theorem
2.3].
Firstletusformu- latethisresult.Let9Z
c
R beanopen boundedsetandlet apoint(x,..., x)
E f bedenotedbyx
i.
Lety(Yl, Yn),
x (xl,...,x)
Ef(y<
x,i.e.Yi<
xi,1,2,...,
n)
anddenotebyDparallelepipeddefinedby y<
s<
x. Thefff.ds
indicates the n-fold integralfyX,’...fyX"
.dsl...ds, andUx(X)
denotes
Onu(x)/(Ox Ox,,).
THEOREM 4.1 [19, Theorem
2.3]
characteristic initialvalueproblem
Let
V(s,x)
be the solutionof
m
Vs( , e; (s, b) V(s, o
r=l
in f,
(31)
V(s,x)
onS Xi,< <_
n(32)
andletD+beaconnectedsubdomain
off
containing xsuch thatV(s, x) >_
0for
s D+.
LetDCD+beaparallelepiped andu D+ Rbea continuousfunction
satisfying the inequalitym
u(x) <_ a(x) + b(x) Z Er(x’ u),
xD, (33)
r=l
where
X Xr-I
Er(X’U) fy frl(Xl)J! xlfr2(x2)’’" ayl frr(xr)u(xr)dxr"’dx"
(34)
a,
b,frj
:D+ R, j--1,2,...,r are continuous, nonnegativefunctions.
Then
u(x) <_ a(x) + b(x) Z E2(s’a)V(s,x)as,
x ED.(35)
r=l
Inthesequelweusethe notations"e :=
elXl,
x" x
x2"2 x,’n
forx=(xl,x2,...,x,)eR", "),--(’1,72,...,%) e R_ {(kl,k,...,k,) ki R, ki >_
0,1,2,...,n},where Ixl =x
+x2++x,.
Wealsodenote by
[/3]
the vector(/3,/3,...,/3)
Rn,
by 1,2,... the vectors(1,
1,...,l)
Rn, (2,
2,...,2)E
Rn,
andby p[elwemean the vector (p/q,... ,p/q).THEOREM 4.2 Let
,
D, D+, V(s, x), a(x),
b(x),fi(x),... ,fir(x) be asin Theorem 4.1 andleta
(a an) R_,
0<
a<
(i.e.0<
ai<
1, i--1,2,...,n).
Letu:D+--
R be a continuous, nonnegativefunction
satisfyingtheinequality
m
u(x) <_ a(x) + b(x) Z Fr(x’ u),
where
r=l
Fr (x, u)
xr-1
X X
Thenthefollowingassertionshold."
(i) Supposea
(a
l,...,a) > .
Thenx
_>
0,(36)
xr)-l frr(Xr)U(X r)
dxr dx1"
(37)
u(x) <_
ex2a(x)
2+ 4b(x) 2S
2Z frj(a)
2dcrr=l j=l
xl.
x2Lr(xr_ 1)2a( xr-1)2 dxr-1 dxr-1
X
W(x 1, x) dxl I
1/2(38)
where
2211_9.
1"(2ci 1)
i=1
and
W(s, x)
isthesolutionof
characteristic initialvalueproblemm
(-- l)
nWs(S X) Z K; (s, B) W(s, x)
0r=l
in
a (39)
W(S, X)
OnSi Xi, 1,2,...,n,(40)
b(x)
)<
x x
Ifrr( xr)2B(xr)2
dx dx (ii)Suppose
c[1/(z + 1)] for
a real number z>
and let q z+
2,p
(z + 2)/(z + 1),
i.e. 1/p+
1/q 1. Thenu(x) <_
2’-l/qexa(x)
q+ b(x)qT or)
pdrr=l j=l
x
fo fr(xr)q2q-la(x)q
dxr’""dx:
x
Z(x x)
dx]
/qwhere
(r(1 p6)")
lip(41)
(42)
Z(s, x)
isthesolutionof
characteristic &itialvalueproblem(- 1)"Zs(s, x) R(s,
C)Z(s, x)
0r=l
in f
(43)
Z(s, x)
O on si xi, --1, 2, n,(44)
where
C(x)
2q-1a(x) q,
Rr(s,x) rqp frj(O’)
pdcrj=l
(fo
x’fo
x- [’..r_xr_q2
q-1b(xr)
qdx dx2)
dxProof
Weshall prove(i). LetusestimatethefunctionFr(x, u)
usingthe Cauchy-Schwarz inequality and the inequalityX(x
cr)-e:"
do< eXS,
whereSis as intheorem.
Wehave
X X
F(x, u) <_ fr xl fr2(X2) frr-1
/
(X
r-1xr)(2a-2)e2X
dxfrr(Xr)2e-2Xrtl(xr)2
dx1/2
dxr-1 dx
X X
__ sl/2ex frl(X frz(X 2) frr-1
frr(xr)2e-2xrbt(xr)2
dx dxr-1 dxxr-3
X X
.10
X
frr-1 xr-1 )2 dxr-1
x
u dx dx dx
X
frr(Xr)2e-2Xr (xr)2
r-1 r-2(/o
x<_ S1/2e
xfrr-1 (a)
dcrx’
(x )
x
f_(x_
x
f(x ) f
(foX- [
xr_)
1/2dx ...dxX
frr(Xr)2e-2xu(xr)2 dxr-1
r-2dO
Proceedingin thiswayusing the Cauchy-Schwarz inequality one can prove that
F(x, u) <_ S/2e
xfj(r)
2dcrj=l
]
1/2fO
xfrr(xr)2e-2Xru(xr)2
dxdxr-1..,
dxFrom this inequality and
(36)
wehavev(x) <_ a(x) + S1/2eXb(x) Z frj(o’)
2dor=l j=l
x’
frr(Xr)2v(xr)
2dx dxX
[xr_
1/2,/0
where
v(x)= e-Xu(x).
Then using the Jensen inequality(1)
we obtainv(x)
2_< 2a(x)
2+ 2Sb(x)Zy fj(cr)
dcrr=l j=l
X X Xr-I
X
o/0" fO0 f frr(xr-1)2v(xr)2dxr’"dxl.
From Theorem 4.1 itfollows that
where
W(s, x)
is as in theorem and from definition ofv(x)
we obtain the inequality(38).
Now let us prove the assertion (ii). We shall estimatethe function
Fr(x, u)
using the H61der inequality:where
Tp
is as intheorem. Similarlyasin thecase(i)using the H61der inequalityonecan prove thatFr(x, u)<_ Tpe
xf.j(s)
pdsj=l,/0
xr_
]
1/q0" frr(Xr)ql(xr)q
dxr"dxl
Fromthisinequality,
(36)
and theJenseninequality(1)
itfollows thatV(X)
q<_
2q-1a(x)
q+ b(x)qTqp frj(Cr)
pdcrr=l j=l
X
fO0
Xfo
xlf,
jOxr-Ifrr(xr)qv(xr)qdxr...dxl]
and from Theorem4.1 we have
I __(_fx )q/P
Y(X)
q 2q-1a(x)
q+ b(x)qTt frj(O’)
pdrr=l j=l,/0
frr(Xr)
q(2
q-1a(xr) q)
dzr...dxZ)Z(x x)
dx,lo ,!o
whereZ(s,
x)
is asin theoremandfrom definition ofv(x)
weobtainthe inequality(41).
Remark The case a
< 1/2,
a not equal to some [/3], is much morecomplicatedthanthe case(ii) from theabove theorem and we donot solve it.
Iwishtoexpress mygratitudetoProfessor Ravi P. Agarwalfor the information on papers containing results on integral inequalitiesin n variables.
References
[1] E.F.Beckenbach andR. Bellman, Inequalities, Springer-Verlag,BerlinGSttingen, Heidelberg,1961.
[2] J.A.Bihari,Ageneralization ofalemma of Bellman anditsapplicationtouniqueness problems ofdifferentialequations, ActaMath.Acad.Sci.Hungary7(1965),81-94.
[3] B.K.BondgeandB.G. Pachpatte, Onnonlinearintegral inequalitiesoftheWendroff type,J. Math.Anal.Appl.70(1979),161-169.
[4] B.K. Bondge, B.G. PachpatteandW.Walter, On generalized Wendroff type inequal- ities and their applications, Nonlinear Analysis, Theory Methods Appl. 4 (1980), 491-495.
[5] A.N.FilatovandL.V.Sharova, IntegralInequalities andTheoryofNonlinear Oscil- lations,Nauka,Moscow,1976(Russian).
[6] J.K. Hale, AsymptoticBehaviorofDissipativeSystems,MathematicalSurveysand Monographs 25,AMS,Providence,1988.
[7] D. Henry, Geometric TheoryofSemilinear Parabolic Equations, Springer-Verlag, Berlin, Heidelberg,NewYork,1981.
[8] M. Kuczma, AnIntroductiontotheTheoryofFunctional Equations and Inequalities.
Cauchy’sEquation andJensen’sInequality, University ofKatowice, Katowice,1985.
[9] A.A.Martyniuk, V.LakshmikanthanandS. Leela,MotionStability:The Methodof
IntegralInequalities,NaukovaDumka, Kiev,1977(Russian).
[10] A.A. Martyniuk and R. Gutowski, IntegralInequalities andStability ofMotion,
Naukova
D
umka, Kiev,1979(Russian).[11] M.Medved,Ageneralizationof Biharilemma andtheirapplications,Matematick asopis20(1970),225-232(Slovak).
[12] M. Medved, Bihari type inequalities with multiple integral and delay, Periodica Mathematica Hungarica27(1993),207-212.
[13] M.Medved,Anewapproachtoananalysis ofHenrytypeintegral inequalities and theirBiharitypeversions, J.Math. Analysis andAppl. 214(1997),349-366.
[14] M. Medved, Singular integral inequalities and stability of semilinear parabolic equations,Archivum Mathematicum(Brno)34(1998),183-190.
[15] B.G. Pachpatte, Onsomenewintegrodifferential inequalitiesoftheWendroff type, J.Math. Anal.Appl.73(1980),491 500.
[16] B.G. Pachpatte, Onsome newinequalities in thetheoryof differential equations, J.Math. Anal.Appl.189(1995),128-144.
[17] W.Rudin, Real andComplexAnalysis, Mc-Graw-Hill,Inc., New York,1974.
[18] H.Sano and N.Kunimatsu, Modified Gronwall’sinequalityand itsapplicationto stabilizationproblemfor semilinearparabolicsystems,SystemsControlLetters 22 (1994),145-156.
[19] E. Thandapani and R.P. Agarwal, On some new inequalities in n independent variables, J.Math. Anal.Appl.86(1982),542-561.