• 検索結果がありません。

ハンドル体の写像類群のホモロジ-的アナロジ-について (双曲空間に関連する研究とその展望)

N/A
N/A
Protected

Academic year: 2021

シェア "ハンドル体の写像類群のホモロジ-的アナロジ-について (双曲空間に関連する研究とその展望)"

Copied!
7
0
0

読み込み中.... (全文を見る)

全文

(1)

ハンドル体の写像類群のホモロジー的アナロジーについて

Susumu Hirose

廣瀬 進 (佐賀大学理工学部)

Department ofMathematics

Faculty ofScience and Engineering

Saga University

1. INTRODUCTION

A 3-dimensional handlebody $H_{\mathit{9}}$ is

an

orientable 3-manifold constructed from

a3-ball by attaching $g1$-handles. We denote the boundary of $H_{g}$ by $\Sigma_{g}$, which is

an

orientable closed surface ofgenus $g$

.

Let $\mathcal{M}_{\mathit{9}}$ be the mapping class group of $\Sigma_{g}$ and

$\mathcal{H}_{g}$ be the mapping class group of $H_{g}$, for short, we call this group the handlebody

$group_{:}$ For elements $a$, $b$ and $c$ of agroup, we write $\overline{c}$ $=c^{-1}$, and $a*b=aba$ . Let $P_{g}$ be aplanar surface constructed from a2-disk by removing $g$ copies of disjoint

2-disks. As indicated in Figure 1, we denote the boundary components of $P_{g}$ by

$\gamma_{0}$,$\gamma_{2}$, $\ldots$ ,$\gamma_{2g}$, and denote some properly embedded arcs of $P_{g}$ by $\gamma_{1}$,$\gamma_{3}$, $\ldots$ ,$\gamma_{2g+1}$, $\beta_{2}$,$\beta_{4}$,

$\ldots$ ,$\beta_{2g-2}$ and $\beta_{2}’$,$\beta_{4}’$,

$\ldots$ ,$\beta_{2g-2}’$

.

The 3-manifold $P_{g}\cross[-1,1]$ is homeomorphic

to $H_{g}$. On $\partial(P_{g}\cross[-1,1])=\Sigma_{g}$, we define $c_{2i-1}=\partial(\gamma_{2i-1}\cross[-1,1])(1\leq i\leq g+1)$,

$b_{2j}=\partial(\beta_{2j}\cross[-1,1])$, $b_{2j}’=\partial(\beta_{2j}’\cross[-1,1])(2\leq j\leq g-1)$, and $c_{2k}=\gamma_{2k}\cross\{0\}$

$(1\leq k\leq g)$

.

In Figures 2and 3, these circles

are

illustrated and oriented. Forsimple

close curve $a$ on $\Sigma_{g}$, we define the Dehn twist $T_{a}$ about $a$

as

indicated in Figure 4.

FIGURE 1

数理解析研究所講究録 1329 巻 2003 年 156-162

(2)

FIGURE 2

FIGURE 3

$\Rightarrow$

FIGURE 4

(3)

For short, we denote $T_{c_{i}}$ by $C_{\iota}$, and $T_{b_{2}}.\cdot$ by $B_{2i}$. As elements of$H_{1}(\Sigma_{g}, \mathbb{Z})$, we take

$x_{1}=-c_{1}$, $y_{1}=-c_{2}$

$x_{i}=b_{2i}$, $y_{i}=-c_{2i}$, where $2\leq i\leq g-1$,

$x_{g}=-c_{2g}$, $y_{g}=-c_{2g+1}$

.

Then, $\{x_{1}, y_{1}, \cdots, x_{g}, y_{g}\}$ is

a

basis of$H_{1}(\Sigma_{g}, \mathbb{Z})$, and satisfy $(x_{i}, y_{j})=\delta_{\dot{|}\mathrm{j}}$, $(x_{i}, x_{j})=$

$(y_{i}, y_{j})=0$ forthe intersection form $(, )$

.

Let $E_{g}$ be aidentity $g\cross g$ matrix, and

$J=(\begin{array}{ll}0 E_{\mathit{9}}-E_{g} 0\end{array})$

.

We define Sp(2g) $=\{M\in GL(2g, \mathbb{Z})|MJM’=J\}$, where $M’$

means

atranspose of

$M$. Let $p$ be apoint

on

$\Sigma_{g}$. We can characterize the handlebody group $\mathcal{H}_{g}$ by the

actions of each elements on the fundamental group $\pi_{1}(\Sigma_{g},p)$

.

Let $l_{1}$ be an

arc on

$\Sigma_{g}$

which beginsfrom$p$ and ends on $c_{1}$, $l_{i}(2\leq i\leq g-1)$ be an arc $\Sigma_{g}$ which beginsfrom

$p$ and ends on $b_{2i}$, and $l_{g}$ be

an

arc on

I9

which begins from $p$ and ends on

$c_{2g}$. We

denote $N$ the normal closure of $\{l_{1}c_{1}\overline{l_{1}}, l_{2}b_{4}\overline{l_{2}}, \ldots, l_{g-1}b_{2g-2}\overline{l_{g-1}}, l_{g}c_{2g}\overline{l_{g}}\}$, then $\mathcal{H}_{g}$

$=\{\phi\in \mathcal{M}_{g}|\phi(N)=N\}$. We define ahomological analogue of $\mathcal{H}_{g}$. Let $N$ be the

$\mathbb{Z}$-submodule of

$H_{1}(\Sigma_{g}, \mathbb{Z})$ generated by $\{x_{1}, \ldots, x_{g}\}$, and $\mathcal{H}\mathcal{H}_{g}$ be asubgroupof$\mathcal{M}_{g}$

defined by $?t\mathcal{H}_{\mathit{9}}=\{\phi\in \mathcal{M}_{g}|\phi_{*}(N)=N\}$

.

We call $\mathcal{H}\mathcal{H}_{g}$ the homological handlebody

group ofgenus $g$. For each element $\phi$ of$\mathcal{M}_{g}$, we define a $2g\cross 2g$ matrix $M_{\phi}$ by

$(\phi(x_{1}), \phi(x_{2})$,$\cdots$ ,$\phi(x_{g})$,$\phi(y_{1})$, $\phi(y_{2})$,$\cdots$ ,$\phi(y_{g}))=(x_{1}, x_{2}, \cdots, x_{g}, y_{1}, y_{2}, \cdots, y_{g})M_{\phi}$

.

Then, $M_{\phi}$ is an element of Sp(2p), and the map $\mu$ from $\mathcal{M}_{g}$ to Sp(2g) defined by

mapping $\phi$ to $M_{\phi}$ is asurjection. On the other hand, $\mu|_{\mathcal{H}_{g}}$ is not asurjection. We

define asubgroup urSp(2g) ofSp(2g) by

urSp(2g)= $\{$$(\begin{array}{ll}A B0 D\end{array})\in \mathrm{S}\mathrm{p}(2g)\}$,

where $A$, $B$, and $D$

are

$g\cross g$ matrices, and 0is

a

$g\cross g$

zero

matrix. We show the

following theorem

Theorem 1.1. $\mu(\mathcal{H}_{g})=urSp(2g)$.

(4)

1 2 3 $2\mathrm{i}$

$2\mathrm{i}+1$ $2\mathrm{j}$

FIGURE 5

1 2 3 $2\mathrm{i}+1$ $2\mathrm{i}+2$ $2\mathrm{k}+1$ $2\mathrm{k}+2$

FIGURE 6

By definition, $\prime H\mathcal{H}_{g}=\mu^{-1}$(urSp$(2g)$). Let $[a]$ be the largest integer $n$which satisfies

$n\leq a$, and $d_{j}$, $d_{j}’$, $e_{k}$, $e_{k}’$

are

indicated in Figures 5and 6. We show

Theorem 1.2.

If

$g\geq 3_{f}\mathcal{H}\mathcal{H}_{g}$ isgenerated by$C_{1}$, $C_{2}C_{1}^{2}C_{2}$, $C_{2}C_{1}C_{3}C_{2}$, $C_{2i}C_{2\dot{\iota}-1}B_{2i}C_{2:}$,

$C_{2\dot{l}}C_{2\dot{l}+1}B_{2i}C_{2i}(2\leq i\leq g-1)$, $C_{2g}C_{2g-1}C_{2g+1}C_{2g}$, $T_{d_{j}}\overline{T_{d_{\acute{j}}}}(1\leq j\leq[_{\overline{2}}^{g-\underline{1}}])$, and$T_{e_{\mathrm{k}}}\overline{T_{d_{k}}}$ $(1\leq k\leq[_{2}^{\mathrm{L}^{-\underline{2}}}])$.

The author does not know whether $\mathcal{H}\mathcal{H}_{2}$ is finitely generated

or

not. This note is

asurvey of apaper [1].

(5)

2. $\mathrm{p}_{\mathrm{R}\mathrm{O}\mathrm{O}\mathrm{F}}$

OF THEOREM 1.1

It is easyto see that $\mu(\mathcal{H}7t_{g})\subset ur\mathrm{S}\mathrm{p}(2g)$. We show that $ur\mathrm{S}\mathrm{p}(2g)\subset\mu(\mathcal{H}\mathcal{H}_{g})$. Let

$S_{0}$ be

a

$g\cross g$symmeric matrix, and $U_{1}$,$U_{2_{7}}U_{3}$ be $g\cross g$ unimodular matrices given by

$S_{0}=(\begin{array}{llll}1 0 00 0 0\vdots \vdots \ddots \vdots 0 0 0\end{array})$ , $U_{1}=(\begin{array}{lllll}0 0 0 \mathrm{l}\mathrm{l} 0 0 0\vdots \vdots \ddots \vdots \vdots 0 0 0 00 0 1 0\end{array})$ ,

$U_{2}=(\begin{array}{lllll}\mathrm{l} 1 0 00 1 0 0\vdots \vdots \ddots \vdots \vdots 0 0 1 00 0 0 1\end{array})$,$U_{3}=(\begin{array}{lllll}-1 0 0 00 1 0 0\vdots \vdots \ddots \vdots \vdots 0 0 1 00 0 0 \mathrm{l}\end{array})$

.

By applying the argument by Hua and Reiner [2], we show

Lemma 2.1. The group urSP(2g) is generated by

$\{$$(\begin{array}{ll}E_{g} S_{0}0 E_{g}\end{array})$ , $(\begin{array}{ll}U_{i} 00 (U_{j},)^{-1}\end{array})$

$J$ $were$ $i=1,2,3\}$ . $\square$

Suzuki [5] introduced elements $\rho$ (cyclic translation of handles), $\omega_{1}$ (twisting

a

knob), P12 (interchanging two knobs), and $\theta_{12}$ (sliding) of$7t_{g}$. In [5], their acions on

the fundamental group of$\Sigma_{g}$

were

listed. With using this list, we show

$\mu(C_{1})=(\begin{array}{ll}E_{g} S_{0}0 E_{g}\end{array})$ , $\mu(\rho)=(\begin{array}{ll}U_{1} 00 (U_{1}’)^{-1}\end{array})$ ,

$\mu(\rho_{12}\theta_{12}\rho_{12}^{-1})=(\begin{array}{ll}U_{2} 00 (U_{2}’)^{-1}\end{array})$ , $\mu(\omega_{1})=(\begin{array}{ll}U_{3} 00 (U_{3}’)^{-1}\end{array})$ .

The above observation shows that $ur\mathrm{S}\mathrm{p}(2g)\subset\mu(\mathcal{H}_{g})$.

3. $\mathrm{p}_{\mathrm{R}\mathrm{O}\mathrm{O}\mathrm{F}}$

OF THEOREM 1.2

We denote the kernel of$\mu$ by $\mathrm{I}_{g}$ and call this the Torelli group. By Theorem 1.1,

we can show that $\mathcal{H}\mathcal{H}_{g}$ is generated by $\mathcal{H}_{g}\cup \mathrm{I}_{g}$

.

For $g\geq 3$, we find finite subsets $S$

of

I9

such that $\mathcal{H}_{g}\cup S$ generates $\mathcal{H}\mathcal{H}_{g}$. Johnson [3] showed that, when $g$ is large

(6)

$\lrcorner_{\ulcorner}$ $\sim\neg^{\llcorner}$

FIGURE 7

than or equal to 3, $\mathrm{I}_{g}$ is finitely generated. We review his result. We orient and

call simple closed curves as is indicated in Figure 2, and call $(c_{1}, c_{2}, \ldots, c_{2g+1})$ and

$(\mathrm{C}\beta, C\mathit{5}, \ldots, c_{2g+1})$

as

chains. For oriented simple closed

curves

$d$ and $e$ which

mutu-ally intersect in

one

point,

we

construct

an

oriented simple closed

curve

$d+e$ from

$d\cup e$ as follows: choose adisk neighborhood ofthe intersection point and in it make

areplacement

as

indicated in Figure 7. For aconsecutive subset $\{\mathrm{q}., c_{i+1}, \ldots, cj\}$

of achain, let $c_{i}+\cdots+\mathrm{C}j$ be the oriented simple closed

curve

constructed by

re-peated applications of the above operations. Let $(i_{1}, \ldots, i_{\mathrm{r}+1})$ be asubsequence of

$(1, 2, \ldots, 2g+1)$ (Resp. ($\beta$, 5,

$\ldots$ ,$2g+1$)). We construct the union of circles

$\mathrm{C}$

$=$

$c_{\dot{*}1}+\cdots+c_{i_{2}-1}\cup c_{\dot{1}2}+\cdots+c_{i_{3}-1}\cup\cdots\cup c_{i_{r}}+\cdots+C_{\mathrm{r}+1},-1$

.

If$r$ is odd, the regular

neighborhood of$\mathrm{C}$ is an oriented compact surface with 2boundary components. Let

$\phi$ be the element of$\mathcal{M}_{g}$ defined

as

the composition of the positive Dehn twist along

the boundary curve to the left of$\mathrm{C}$ and the negative Dehn twist along the boundary

curve

to the right of C. Then, $\phi$ is an element of$\mathrm{I}_{g}$. We denote $\phi$ by $[i_{1}, \ldots, i_{f+1}]$,

and call this the odd subchain map of $(c_{1}, c_{2}, \ldots, c_{2g+1})$ (Resp. ($\mathrm{C}\beta$,$c_{5}$, $\ldots$ ,$c_{2g+1}$)).

Johnson [3] showed the following theorem:

Theorem 3.1. [3, Main Theorem] For $g\geq 3$, the odd subchain maps

of

the two

chains $(c_{1}, c_{2}, \ldots , c_{2g+1})$ and $(C\beta, C\mathit{5}, \ldots, c_{2g+1})$ generate $\mathrm{I}_{g}$. $\square$

By taking conjugations of odd subchain maps by elements of $\mathcal{H}_{g}$ and apPlying the

following theorem by Takahashi [6],

we

show Theorem 1.2.

Theorem 3.2. [6] $\mathcal{H}_{g}$ is generated by $C_{1_{f}}C_{2}C_{1}^{2}C_{2}$, $C_{2}C_{1}C_{3}C_{2}$, $C_{2}|.C_{2:-1}B_{2\dot{l}}C_{2:}$,

$C_{2:}C_{2:+1}B_{2:}C_{2i}(2\leq i\leq g-1)$, $C_{2g}C_{2g-1}C_{2g+1}C_{2g}$. $\square$

(7)

ACKNOWLEDGMENTS

Apart of this work

was

done while the author stayed at Michigan State University

as

avisiting scholar sponsored by the Japanese Ministry of Education, Culture, Sports,

Science and Technology. He is grateful to the Department ofMathematics, Michigan

State University, especially to Professor Nikolai V. Ivanov, for their hospitality.

REFERENCES

1. S. Hirose, The action of the handlebodygroup onthe first homologygroupofasurface, preprint

2. L.K. Huaand I. Reiner, Onthe generators of the symplecticmodulargrouP,Trans. Amer. Math.

Soc. 65(1949), 415-426.

3. D. Johnson, The structure ofthe Torelli Group I:Afinite set of generators for I, Annals of

Math. 118(1983), 423-442.

4. D, McCullough and A, Miller, The genus 2Torelli group is not finitely generated, Topology

Appl. 22 (1986), 43-49.

5. S. Suzuki, On homeomorphisms of a3-dimensional handlebody, Canad. J. Math. 29 (1977),

111-124.

6. M. Takahashi, On the generators of the mapping class group of a3-dimensional handlebody,

Proc. JapanAcad. Ser. AMath. Sci. 71 (1995), 213-214.

DEpARTMENT 0F MATHEMATICS, FACULTYOF SCIENCE ANDENGINEERING, SAGA UNIVERSITY,

SAGA, 840 $\mathrm{i}$ApAN

$E$-mail address: hirose@ms.saga-u.ac.jp

参照

関連したドキュメント

に関して言 えば, は つのリー群の組 によって等質空間として表すこと はできないが, つのリー群の組 を用いればクリフォード・クラ イン形

Habiro con- siders an abelian group A k (H) dened by unitrivalent graphs with k trivalent vertices and with univalent vertices labelled by elements of H , subject to anti- symmetry,

実際, クラス C の多様体については, ここでは 詳細には述べないが, 代数 reduction をはじめ類似のいくつかの方法を 組み合わせてその構造を組織的に研究することができる

⑹外国の⼤学その他の外国の学校(その教育研究活動等の総合的な状況について、当該外国の政府又は関

By the algorithm in [1] for drawing framed link descriptions of branched covers of Seifert surfaces, a half circle should be drawn in each 1–handle, and then these eight half

Answering a question of de la Harpe and Bridson in the Kourovka Notebook, we build the explicit embeddings of the additive group of rational numbers Q in a finitely generated group

Shigeyuki MORITA Casson invariant and structure of the mapping class group.. .) homology cobordism invariants. Shigeyuki MORITA Casson invariant and structure of the mapping

These include the relation between the structure of the mapping class group and invariants of 3–manifolds, the unstable cohomology of the moduli space of curves and Faber’s