• 検索結果がありません。

章 結論

ドキュメント内 膝前十字靭帯損傷予防への科学的基礎 (ページ 151-196)

本論文は,ACL 損傷予防における科学的基礎を確立するために,ACL 損傷発生率の調査,

着地や切り返し動作における ACL 損傷リスクファクターの検討,二次元画像を用いた膝動作 解析法の検討,ACL損傷予防プログラムの効果についての検討の検討を行った.

その結果,以下の結論を得た.

・日本女子バスケットボールリーグにおける外傷発生の傾向は先行研究と同様であり,ACL損 傷においても,先行研究と同程度の損傷リスクであった.

・片脚着地時の脛骨内旋が ACL 損傷メカニズムに関連していると考えられ,女性における大 きな脛骨内旋,大腿四頭筋優位の筋活動がACL損傷リスクファクターとして示唆された.

・片脚動作は両脚着地に比較し,膝屈曲角度が小さく,脛骨内旋変位量が大きい特徴があり,

特に切り返し方向と足部方向が異なる片脚着地-切り返しでは片脚着地に比較し,脛骨内旋変 位量,外転変位量が大きく,この動作がACL損傷リスクファクターと示唆された.

・体幹前傾角度と膝屈曲角度,体幹前傾角度と脛骨内旋変位量,体幹側方傾斜角度と脛骨内旋 変位量に相関がみられ,膝関節運動のみならず動作中の体幹位置も ACL 損傷リスクファク ター,さらにはメカニズムの一部として考えられた.

・両脚着地時の二次元膝外転角度と三次元膝外転角度の間に有意な回帰関係が得られ,二次元 膝動作解析法を ACL 損傷リスクのスクリーニングに用いることのできる可能性が示唆され た.

・着地肢位に関与する ACL 損傷リスクファクターとしてバランス能力,下肢アライメント・

特性を用いることができる可能性が示唆された.

・ACL損傷予防プログラム内に複数のトレーニング要素を含み,特にジャンプ,バランストレ ーニングに加え,トレーニング中の動作指導を行うプログラムの予防効果が高いと考えられ た.

・ACL損傷予防プログラムの実施により,片脚着地時の膝屈曲角度の増加,ハムストリングス 接地前活動の増加がみられ,一定のACL損傷予防効果があると示唆された.

付録1日本女子バスケットボールリーグ外傷調査用紙 Injury Report Form

Exposure Sheet

付録2 Point Cluster Techniqueアルゴリズム

本研究で用いられたPCTアルゴリズムはAndriacchiら[170]の報告をもとに作成された.

PCTにおいて皮膚マーカーは二種類に区別される.一つは各分節に貼付される群マーカー であり,一つは骨指標に貼付される骨マーカーである.この群マーカーに任意の質量を仮 定し,主軸変換を行うことにより慣性主軸を算出する.PCTにおいて,この慣性主軸が分 節の姿勢を表すために用いられている.主軸変換は慣性テンソルIの固有方程式を解くこ とにより得られる.

(1)

pii番目の群マーカーの座標値を示し,miはそのマーカーに与えられた任意の質量を示 す.得られた3つの固有ベクトルが慣性主軸の3軸となり,座標変換行列Rを構成する.

(2) Ejはj番目の固有ベクトルを示し,下記式で示される.

(3)

PCT計測においては,まず静止立位時における群マーカーと骨マーカーの位置関係を決

定する.ここで,(2)式Rで表される移動座標系を骨マーカーの参照座標系とする.次に動 作中における群マーカーの計測を行い,求められた(2)式Rを用いて骨マーカー位置を再計 算する.最後に慣性主軸の長軸および再計算された骨マーカー位置より,Groodら[98]の定 義にしたがい,膝関節の回転角度(屈曲・伸展,内転・外転,内旋・外旋)および並進位置(前 後方,上下方,内外方)を算出する.

I=

((pi,y)2+(pi,z)2)⋅mi

i

pi,xpi,y⋅(−mi)

i

pi,zpi,x⋅(−mi)

i

pi,xpi,y⋅(−mi)

i

((pi,z)2+(pi,x)2)⋅mi

i

pi,ypi,z⋅(−mi)

i

pi,zpi,x⋅(−mi)

i

pi,ypi,z⋅(−mi)

i

((pi,x)2+(pi,y)2)⋅mi

i

⎜ ⎜

⎜ ⎜

⎟ ⎟

⎟ ⎟

R = ( E

1

, E

2

, E

3

)

E

j

= ( e

j,x

,e

j,y

, e

j,z

)

T

引用文献

1 van Mechelen W, Hlobil H, Kemper HC: Incidence, severity, aetiology and prevention of sports injuries. A review of concepts. Sports Med 14:82-99, 1992.

2 Miyasaka KC, Daniel DM, Stone ML: The incidence of knee ligament injuries in the general population. Am J Knee Surg 4:3-8, 1991.

3 Griffin LY, Agel J, Albohm MJ, Arendt EA, Dick RW, Garrett WE, Garrick JG, Hewett TE, Huston L, Ireland ML, Johnson RJ, Kibler WB, Lephart S, Lewis JL, Lindenfeld TN, Mandelbaum BR, Marchak P, Teitz CC, Wojtys EM: Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg 8:141-50, 2000.

4 Agel J, Arendt EA, Bershadsky B: Anterior cruciate ligament injury in national collegiate athletic association basketball and soccer: a 13-year review. Am J Sports Med 33:524-30, 2005.

5 Arendt E, Dick R: Knee injury patterns among men and women in collegiate basketball and soccer.

NCAA data and review of literature. Am J Sports Med 23:694-701, 1995.

6 Arendt EA: Anterior cruciate ligament injury patterns among collegiate men and women. J Athl Train 34:86-92, 1999.

7 Myklebust G, Maehlum S, Holm I, Bahr R: A prospective cohort study of anterior cruciate ligament injuries in elite Norwegian team handball. Scand J Med Sci Sports 8:149-53, 1998.

8 Deitch JR, Starkey C, Walters SL, Moseley JB: Injury risk in professional basketball players: a comparison of Women's National Basketball Association and National Basketball Association athletes. Am J Sports Med 34:1077-83, 2006.

9 Mihata LC, Beutler AI, Boden BP: Comparing the incidence of anterior cruciate ligament injury in collegiate lacrosse, soccer, and basketball players: implications for anterior cruciate ligament mechanism and prevention. Am J Sports Med 34:899-904, 2006.

10 Messina DF, Farney WC, DeLee JC: The incidence of injury in Texas high school basketball. A prospective study among male and female athletes. Am J Sports Med 27:294-9, 1999.

11 Huston LJ, Greenfield ML, Wojtys EM: Anterior cruciate ligament injuries in the female athlete.

Potential risk factors. Clin Orthop 50-63, 2000.

12 Boden BP, Dean GS, Feagin JA, Jr., Garrett WE, Jr.: Mechanisms of anterior cruciate ligament injury. Orthopedics 23:573-8, 2000.

13 Ireland ML: The female ACL: why is it more prone to injury? Orthop Clin North Am 33:637-51, 2002.

14 McNair PJ, Marshall RN, Matheson JA: Important features associated with acute anterior cruciate ligament injury. N Z Med J 103:537-9, 1990.

15 Olsen OE, Myklebust G, Engebretsen L, Bahr R: Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med 32:1002-12, 2004.

16 Teitz CC. Video analysis of ACL injuries. In: Griffin LY, ed. Prevention of noncontact ACL injuries. Rosemont, IL: American Academy of Orthopaedic Surgeons 87-92, 2001.

17 Krosshaug T, Nakamae A, Boden BP, Engebretsen L, Smith G, Slauterbeck JR, Hewett TE, Bahr R: Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med 35:359-67, 2007.

18 Krosshaug T, Nakamae A, Boden B, Engebretsen L, Smith G, Slauterbeck J, Hewett TE, Bahr R:

Estimating 3D joint kinematics from video sequences of running and cutting maneuvers-assessing the accuracy of simple visual inspection. Gait Posture 26:378-85, 2007.

19 Krosshaug T, Slauterbeck JR, Engebretsen L, Bahr R: Biomechanical analysis of anterior cruciate ligament injury mechanisms: three-dimensional motion reconstruction from video sequences. Scand J Med Sci Sports 2006.

20 Mink JH, Deutsch AL: Occult cartilage and bone injuries of the knee: detection, classification, and assessment with MR imaging. Radiology 170:823-9, 1989.

21 Rosen MA, Jackson DW, Berger PE: Occult osseous lesions documented by magnetic resonance imaging associated with anterior cruciate ligament ruptures. Arthroscopy 7:45-51, 1991.

22 Graf BK, Cook DA, De Smet AA, Keene JS: "Bone bruises" on magnetic resonance imaging evaluation of anterior cruciate ligament injuries. Am J Sports Med 21:220-3, 1993.

23 Kaplan PA, Gehl RH, Dussault RG, Anderson MW, Diduch DR: Bone contusions of the posterior lip of the medial tibial plateau (contrecoup injury) and associated internal derangements of the knee at MR imaging. Radiology 211:747-53, 1999.

24 Viskontas DG, Giuffre BM, Duggal N, Graham D, Parker D, Coolican M: Bone bruises associated with ACL rupture: correlation with injury mechanism. The American journal of sports medicine 36:927-33, 2008.

25 Cipolla M, Scala A, Gianni E, Puddu G: Different patterns of meniscal tears in acute anterior cruciate ligament (ACL) ruptures and in chronic ACL-deficient knees. Classification, staging and timing of treatment. Knee Surg Sports Traumatol Arthrosc 3:130-4, 1995.

26 Bellabarba C, Bush-Joseph CA, Bach BR, Jr.: Patterns of meniscal injury in the anterior cruciate-deficient knee: a review of the literature. Am J Orthop 26:18-23, 1997.

27 Nishimori M, Deie M, Adachi N, Kanaya A, Nakamae A, Motoyama M, Ochi M: Articular cartilage injury of the posterior lateral tibial plateau associated with acute anterior cruciate ligament injury.

Knee Surg Sports Traumatol Arthrosc 16:270-4, 2008.

28 Arms SW, Pope MH, Johnson RJ, Fischer RA, Arvidsson I, Eriksson E: The biomechanics of anterior cruciate ligament rehabilitation and reconstruction. Am J Sports Med 12:8-18, 1984.

29 Berns GS, Hull ML, Patterson HA: Strain in the anteromedial bundle of the anterior cruciate ligament under combination loading. J Orthop Res 10:167-76, 1992.

30 Markolf KL, Burchfield DM, Shapiro MM, Shepard MF, Finerman GA, Slauterbeck JL: Combined knee loading states that generate high anterior cruciate ligament forces. J Orthop Res 13:930-5, 1995.

31 Kanamori A, Woo SL, Ma CB, Zeminski J, Rudy TW, Li G, Livesay GA: The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: A human cadaveric study using robotic technology. Arthroscopy 16:633-9, 2000.

32 Kanamori A, Zeminski J, Rudy TW, Li G, Fu FH, Woo SL: The effect of axial tibial torque on the function of the anterior cruciate ligament: a biomechanical study of a simulated pivot shift test. Arthroscopy 18:394-8, 2002.

33 Renstrom P, Arms SW, Stanwyck TS, Johnson RJ, Pope MH: Strain within the anterior cruciate ligament during hamstring and quadriceps activity. Am J Sports Med 14:83-7, 1986.

34 Durselen L, Claes L, Kiefer H: The influence of muscle forces and external loads on cruciate ligament strain. Am J Sports Med 23:129-36, 1995.

35 Li G, Rudy TW, Sakane M, Kanamori A, Ma CB, Woo SL: The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. J Biomech 32:395-400, 1999.

36 Withrow TJ, Huston LJ, Wojtys EM, Ashton-Miller JA: The relationship between quadriceps muscle force, knee flexion, and anterior cruciate ligament strain in an in vitro simulated jump landing. Am J Sports Med 34:269-74, 2006.

37 Withrow TJ, Huston LJ, Wojtys EM, Ashton-Miller JA: Effect of varying hamstring tension on anterior cruciate ligament strain during in vitro impulsive knee flexion and compression loading. J Bone Joint Surg Am 90:815-23, 2008.

38 Withrow TJ, Huston LJ, Wojtys EM, Ashton-Miller JA: The effect of an impulsive knee valgus moment on in vitro relative ACL strain during a simulated jump landing. Clin Biomech (Bristol, Avon) 21:977-83, 2006.

39 Weinhold PS, Stewart JD, Liu HY, Lin CF, Garrett WE, Yu B: The influence of gender-specific loading patterns of the stop-jump task on anterior cruciate ligament strain. Injury 2007.

40 Henning CE, Lynch MA, Glick KR, Jr.: An in vivo strain gage study of elongation of the anterior cruciate ligament. Am J Sports Med 13:22-6, 1985.

41 Beynnon BD, Fleming BC, Johnson RJ, Nichols CE, Renstrom PA, Pope MH: Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. Am J Sports Med 23:24-34, 1995.

42 Fleming BC, Renstrom PA, Beynnon BD, Engstrom B, Peura GD, Badger GJ, Johnson RJ: The

effect of weightbearing and external loading on anterior cruciate ligament strain. J Biomech 34:163-70, 2001.

43 Fleming BC, Ohlen G, Renstrom PA, Peura GD, Beynnon BD, Badger GJ: The effects of compressive load and knee joint torque on peak anterior cruciate ligament strains. Am J Sports Med 31:701-7, 2003.

44 Heijne A, Fleming BC, Renstrom PA, Peura GD, Beynnon BD, Werner S: Strain on the anterior cruciate ligament during closed kinetic chain exercises. Med Sci Sports Exerc 36:935-41, 2004.

45 Cerulli G, Benoit DL, Lamontagne M, Caraffa A, Liti A: In vivo anterior cruciate ligament strain behaviour during a rapid deceleration movement: case report. Knee Surg Sports Traumatol Arthrosc 11:307-11, 2003.

46 Li G, Defrate LE, Rubash HE, Gill TJ: In vivo kinematics of the ACL during weight-bearing knee flexion. J Orthop Res 23:340-4, 2005.

47 Livingston LA: The quadriceps angle: a review of the literature. J Orthop Sports Phys Ther 28:105-9, 1998.

48 Horton MG, Hall TL: Quadriceps femoris muscle angle: normal values and relationships with gender and selected skeletal measures. Phys Ther 69:897-901, 1989.

49 Woodland LH, Francis RS: Parameters and comparisons of the quadriceps angle of college-aged men and women in the supine and standing positions. Am J Sports Med 20:208-11, 1992.

50 Nguyen AD, Shultz SJ: Sex differences in clinical measures of lower extremity alignment. J Orthop Sports Phys Ther 37:389-98, 2007.

51 Pantano KJ, White SC, Gilchrist LA, Leddy J: Differences in peak knee valgus angles between individuals with high and low Q-angles during a single limb squat. Clin Biomech (Bristol, Avon) 20:966-72, 2005.

52 Brody DM: Techniques in the evaluation and treatment of the injured runner. Orthop Clin North Am 13:541-58, 1982.

53 Beckett ME: Incidence of hyperpronation in the ACL injured knee: A clinical perspective. J Athl

Train 27:58-62, 1992.

54 Woodford-Rogers B, Cyphert L, Denegar CR: Risk Factors for Anterior Cruciate Ligament Injury in High School and College Athletes. J Athl Train 29:343-6, 1994.

55 Allen MK, Glasoe WM: Metrecom Measurement of Navicular Drop in Subjects with Anterior Cruciate Ligament Injury. J Athl Train 35:403-6, 2000.

56 Smith J, Szczerba JE, Arnold BL, Perrin DH, Martin DE: Role of Hyperpronation as a Possible Risk Factor for Anterior Cruciate Ligament Injuries. J Athl Train 32:25-8, 1997.

57 Yoshioka Y, Cooke TD: Femoral anteversion: assessment based on function axes. J Orthop Res 5:86-91, 1987.

58 Braten M, Terjesen T, Rossvoll I: Femoral anteversion in normal adults. Ultrasound measurements in 50 men and 50 women. Acta orthopaedica Scandinavica 63:29-32, 1992.

59 Dejour H, Bonnin M: Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg Br 76:745-9, 1994.

60 Meister K, Talley MC, Horodyski MB, Indelicato PA, Hartzel JS, Batts J: Caudal slope of the tibia and its relationship to noncontact injuries to the ACL. Am J Knee Surg 11:217-9, 1998.

61 Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF: The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy 22:894-9, 2006.

62 Stijak L, Herzog RF, Schai P: Is there an influence of the tibial slope of the lateral condyle on the ACL lesion? A case-control study. Knee Surg Sports Traumatol Arthrosc 16:112-7, 2008.

63 Anderson AF, Dome DC, Gautam S, Awh MH, Rennirt GW: Correlation of anthropometric measurements, strength, anterior cruciate ligament size, and intercondylar notch characteristics to sex differences in anterior cruciate ligament tear rates. Am J Sports Med 29:58-66, 2001.

64 Charlton WP, St John TA, Ciccotti MG, Harrison N, Schweitzer M: Differences in femoral notch anatomy between men and women: a magnetic resonance imaging study. Am J Sports Med 30:329-33, 2002.

65 Davis TJ, Shelbourne KD, Klootwyk TE: Correlation of the intercondylar notch width of the femur to the width of the anterior and posterior cruciate ligaments. Knee Surg Sports Traumatol Arthrosc 7:209-14, 1999.

66 Shelbourne KD, Facibene WA, Hunt JJ: Radiographic and intraoperative intercondylar notch width measurements in men and women with unilateral and bilateral anterior cruciate ligament tears. Knee Surg Sports Traumatol Arthrosc 5:229-33, 1997.

67 Shelbourne KD, Davis TJ, Klootwyk TE: The relationship between intercondylar notch width of the femur and the incidence of anterior cruciate ligament tears. A prospective study. Am J Sports Med 26:402-8, 1998.

68 Souryal TO, Moore HA, Evans JP: Bilaterality in anterior cruciate ligament injuries: associated intercondylar notch stenosis. Am J Sports Med 16:449-54, 1988.

69 Anderson AF, Lipscomb AB, Liudahl KJ, Addlestone RB: Analysis of the intercondylar notch by computed tomography. Am J Sports Med 15:547-52, 1987.

70 LaPrade RF, Burnett QM, 2nd: Femoral intercondylar notch stenosis and correlation to anterior cruciate ligament injuries. A prospective study. Am J Sports Med 22:198-202; discussion 3, 1994.

71 Uhorchak JM, Scoville CR, Williams GN, Arciero RA, St Pierre P, Taylor DC: Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med 31:831-42, 2003.

72 Souryal TO, Freeman TR: Intercondylar notch size and anterior cruciate ligament injuries in athletes. A prospective study. Am J Sports Med 21:535-9, 1993.

73 Teitz CC, Lind BK, Sacks BM: Symmetry of the femoral notch width index. Am J Sports Med 25:687-90, 1997.

74 Schickendantz MS, Weiker GG: The predictive value of radiographs in the evaluation of unilateral and bilateral anterior cruciate ligament injuries. Am J Sports Med 21:110-3, 1993.

75 Jansson A, Saartok T, Werner S, Renstrom P: General joint laxity in 1845 Swedish school children

of different ages: age- and gender-specific distributions. Acta Paediatr 93:1202-6, 2004.

76 Rozzi SL, Lephart SM, Gear WS, Fu FH: Knee joint laxity and neuromuscular characteristics of male and female soccer and basketball players. Am J Sports Med 27:312-9, 1999.

77 Ramesh R, Von Arx O, Azzopardi T, Schranz PJ: The risk of anterior cruciate ligament rupture with generalised joint laxity. J Bone Joint Surg Br 87:800-3, 2005.

78 Myer GD, Ford KR, Paterno MV, Nick TG, Hewett TE: The Effects of Generalized Joint Laxity on Risk of Anterior Cruciate Ligament Injury in Young Female Athletes. The American journal of sports medicine 2008.

79 Shultz SJ, Shimokochi Y, Nguyen AD, Schmitz RJ, Beynnon BD, Perrin DH: Measurement of varus-valgus and internal-external rotational knee laxities in vivo--Part II: relationship with anterior-posterior and general joint laxity in males and females. J Orthop Res 25:989-96, 2007.

80 Huston LJ, Wojtys EM: Neuromuscular performance characteristics in elite female athletes. Am J Sports Med 24:427-36, 1996.

81 Chu D, LeBlanc R, D'Ambrosia P, D'Ambrosia R, Baratta RV, Solomonow M: Neuromuscular disorder in response to anterior cruciate ligament creep. Clinical Biomechanics 18:222-30, 2003.

82 Dyhre-Poulsen P, Krogsgaard MR: Muscular reflexes elicited by electrical stimulation of the anterior cruciate ligament in humans. J Appl Physiol 89:2191-5, 2000.

83 Markolf KL, Graff-Radford A, Amstutz HC: In vivo knee stability. A quantitative assessment using an instrumented clinical testing apparatus. J Bone Joint Surg Am 60:664-74, 1978.

84 Lloyd DG, Buchanan TS: Strategies of muscular support of varus and valgus isometric loads at the human knee. J Biomech 34:1257-67, 2001.

85 Wojtys EM, Ashton-Miller JA, Huston LJ: A gender-related difference in the contribution of the knee musculature to sagittal-plane shear stiffness in subjects with similar knee laxity. J Bone Joint Surg Am 84-A:10-6, 2002.

86 Wojtys EM, Huston LJ, Schock HJ, Boylan JP, Ashton-Miller JA: Gender differences in muscular

ドキュメント内 膝前十字靭帯損傷予防への科学的基礎 (ページ 151-196)

関連したドキュメント