• 検索結果がありません。

さらなる高効率化のためにはまず電気特性の改善必要であり,その方法としてはナノ結 晶相内の塩素の排除および酸素析出体の抑制,キャリア濃度の最適化が考えられる.ナノ結 晶相内の塩素の排除は,SiCl4を用いてプラズマCVDで作製したSiナノ粒子をHClによっ てエッチングする,またはSiCl4の代わりにSiH4を用いて合成することでナノ粒子表面の塩 素を水素に置き換えることができる.また,キャリア濃度は,プラズマCVDでのSiナノ粒 子作製の際に不純物として用いるトリメチルホスフィンの流量によって制御できる.先行 研究と比較して本研究で作製した試料のキャリア濃度は小さく,今後はさらにキャリア濃 度を高くして試料を作製することで性能が向上すると考えられる.

一方,熱伝導率の低減は,ナノ結晶相の粒径の低減によって実現する.本研究では,6 nm のSiナノ粒子が焼結中に30 nmへと粒成長している.電子の平均自由行程は300 Kにおい

44

て20 nm以下である31ので,焼結条件を最適化して粒成長を抑制することで電気特性への

影響を抑えつつ熱伝導率をさらに下げられると考えられる.

45

参考文献

1 Yang, J. 24th International Conference on Thermoelectrics, 170-174 (2005).

2 Scherrer, H., Vikhor, L., Lenoir, B., Dauscher, A. & Poinas, P. Solar thermolectric generator based on skutterudites. Journal of Power Sources 115, 141-148 (2003).

3 Xi, H., Luo, L. & Fraisse, G. Development and applications of solar-based thermoelectric technologies. Renewable and Sustainable Energy Reviews 11, 923-936 (2007).

4 Maneewan, S., Hirunlabh, J., Khedari, J., Zeghmati, B. & Teekasap, S. Heat gain reduction by means of thermoelectric roof solar collector. Solar Energy 78, 495-503, doi:10.1016/j.solener.2004.08.003 (2005).

5 Maneewan, S., Khedari, J., Zeghmati, B., Hirunlabh, J. & Eakburanawat, J. Investigation on generated power of thermoelectric roof solar collector. Renewable Energy 29, 743-752, doi:10.1016/j.renene.2003.10.005 (2004).

6 Bell, L. E. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science 321, 1457-1461, doi:10.1126/science.1158899 (2008).

7 梶川武信. 熱電変換技術ハンドブック. (NTS, 2008).

8 Ioffe, A. F. Semiconductor thermoelements and thermoelectric cooling. (1957).

9 Goldsmid, H. J. THE ELECTRICAL CONDUCTIVITY AND THERMOELECTRIC POWER OF BISMUTH TELLURIDE. Proceedings of the Physical Society of London 71, 633-646, doi:10.1088/0370-1328/71/4/312 (1958).

10 Goldsmid, H. J. The thermal conductivity of bismuth telluride. Proceedings of the Physical Society of London Section B 69, 203-209, doi:10.1088/0370-1301/69/2/310 (1956).

11 Goldsmid, H. J., Sheard, A. R. & Wright, D. A. THE PERFORMANCE OF BISMUTH TELLURIDE THERMOJUNCTIONS. British Journal of Applied Physics 9, 365-370, doi:10.1088/0508-3443/9/9/306 (1958).

12 Steele, M. C. & Rosi, F. D. THERMAL CONDUCTIVITY AND THERMOELECTRIC POWER OF GERMANIUM-SILICON ALLOYS. Journal of Applied Physics 29, 1517-1520, doi:10.1063/1.1722984 (1958).

13 Borisova, L. D. Thermoelectric properties of impurity doped PbTe. physica status solidi (a) 53, K19-K22, doi:10.1002/pssa.2210530157 (1979).

14 Patrick, L. & Lawson, A. W. Thermoelectric Power of Pure and Doped AgBr. The Journal of Chemical Physics 22, 1492-1495, doi:doi:http://dx.doi.org/10.1063/1.1740446 (1954).

15 Brinson, M. & Dunstant, W. Thermal conductivity and thermoelectric power of heavily doped n-type silicon. Journal of Physics C: Solid State Physics 3, 483 (1970).

16 Abeles, B. & Cohen, R. W. Ge–Si Thermoelectric Power Generator. Journal of Applied Physics

46 35, 247-248, doi:doi:http://dx.doi.org/10.1063/1.1713078 (1964).

17 Meddins, H. R. & Parrott, J. E. THERMAL AND THERMOELECTRIC PROPERTIES OF SINTERED GERMANIUM-SILICON ALLOYS. Journal of Physics C-Solid State Physics 9, 1263-1276, doi:10.1088/0022-3719/9/7/017 (1976).

18 Yim, W. M., Fitzke, E. V. & Rosi, F. D. Thermoelectric Properties of Bi2Te3-Sb2Te3-Sb2Se3 Pseudo-Ternary Alloys in the Temperature Range 77 to 300 degrees K. Journal of Materials Science 1, 52-65, doi:10.1007/bf00549720 (1966).

19 Abeles, B., Beers, D. S., Dismukes, J. P. & Cody, G. D. THERMAL CONDUCTIVITY OF GE-SI ALLOYS AT HIGH TEMPERATURES. Physical Review 125, 44-&, doi:10.1103/PhysRev.125.44 (1962).

20 Glen, A. S. in CRC Handbook of Thermoelectrics (CRC Press, 1995).

21 Sharp, J. W., Jones, E. C., Williams, R. K., Martin, P. M. & Sales, B. C. THERMOELECTRIC PROPERTIES OF COSB3 AND RELATED ALLOYS. Journal of Applied Physics 78, 1013-1018, doi:10.1063/1.360402 (1995).

22 Uher, C., Yang, J., Hu, S., Morelli, D. T. & Meisner, G. P. Transport properties of pure and doped MNiSn (M=Zr, Hf). Physical Review B 59, 8615-8621, doi:10.1103/PhysRevB.59.8615 (1999).

23 Hanada, Y., Suzuki, R. O. & Ono, K. Seebeck coefficient of (Fe,V)(3)Al alloys. Journal of Alloys and Compounds 329, 63-68, doi:10.1016/s0925-8388(01)01677-2 (2001).

24 Nolas, G. S., Weakley, T. J. R., Cohn, J. L. & Sharma, R. Structural properties and thermal conductivity of crystalline Ge clathrates. Physical Review B 61, 3845-3850, doi:10.1103/PhysRevB.61.3845 (2000).

25 Terasaki, I., Sasago, Y. & Uchinokura, K. Large thermoelectric power in NaCo2O4 single crystals.

Physical Review B 56, 12685-12687 (1997).

26 Funahashi, R. et al. An oxide single crystal with high thermoelectric performance in air. Japanese Journal of Applied Physics Part 2-Letters 39, L1127-L1129, doi:10.1143/jjap.39.l1127 (2000).

27 Hicks, L. & Dresselhaus, M. Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B 47, 12727-12731, doi:10.1103/PhysRevB.47.12727 (1993).

28 Hicks, L. & Dresselhaus, M. Thermoelectric figure of merit of a one-dimensional conductor.

Physical Review B 47, 16631-16634, doi:10.1103/PhysRevB.47.16631 (1993).

29 Fairbanks, J. W. THERMOELECTRIC DEVELOPMENTS FOR VEHICULAR APPLICATIONS.

Diesel Engine Efficiency and Emissions Review (2006).

30 塩見淳一郎. ナノスケールにおける半導体のフォノン熱伝導. 伝熱 50, 21-28 (2011).

31 Qiu, B., Tian, Z. & Vallabhaneni, A. First-Principles Simulation of Electron Mean-Free-Path Spectra and Thermoelectric Properties in Silicon. (2014).

32 Hicks, L. D., Harman, T. C., Sun, X. & Dresselhaus, M. S. Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B 53, 10493-10496

47 (1996).

33 Harman, T. C., Taylor, P. J., Walsh, M. P. & LaForge, B. E. Quantum dot superlattice thermoelectric materials and devices. Science 297, 2229-2232, doi:10.1126/science.1072886 (2002).

34 Venkatasubramanian, R., Siivola, E., Colpitts, T. & O'Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597-602, doi:10.1038/35098012 (2001).

35 Lin, Y.-M., Cronin, S. B., Ying, J. Y., Dresselhaus, M. S. & Heremans, J. P. Transport properties of Bi nanowire arrays. Applied Physics Letters 76, 3944-3946, doi:doi:http://dx.doi.org/10.1063/1.126829 (2000).

36 Boukai, A. I. et al. Silicon nanowires as efficient thermoelectric materials. Nature 451, 168-171, doi:10.1038/nature06458 (2008).

37 Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163-167, doi:10.1038/nature06381 (2008).

38 Minnich, A. J., Dresselhaus, M. S., Ren, Z. F. & Chen, G. Bulk nanostructured thermoelectric materials: current research and future prospects. Energy & Environmental Science 2, 466, doi:10.1039/b822664b (2009).

39 Jeng, M.-S., Yang, R., Song, D. & Chen, G. Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation. Journal of Heat Transfer 130, 042410, doi:10.1115/1.2818765 (2008).

40 Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634-638, doi:10.1126/science.1156446 (2008).

41 Biswas, K. et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures.

Nature 489, 414-418, doi:10.1038/nature11439 (2012).

42 Wang, X. W. et al. Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Applied Physics Letters 93, 193121, doi:10.1063/1.3027060 (2008).

43 Glassbrenner, C. & Slack, G. Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point. Physical Review 134, A1058-A1069, doi:10.1103/PhysRev.134.A1058 (1964).

44 Bux, S. K. et al. Nanostructured Bulk Silicon as an Effective Thermoelectric Material. Advanced Functional Materials 19, 2445-2452, doi:10.1002/adfm.200900250 (2009).

45 Claudio, T. et al. Nanocrystalline silicon: lattice dynamics and enhanced thermoelectric properties.

Physical chemistry chemical physics : PCCP 16, 25701-25709, doi:10.1039/c3cp53749h (2014).

46 Yusufu, A. et al. Bottom-up nanostructured bulk silicon: a practical high-efficiency thermoelectric material. Nanoscale 6, 13921-13927, doi:10.1039/c4nr04470c (2014).

47 Schierning, G. et al. Role of oxygen on microstructure and thermoelectric properties of silicon nanocomposites. Journal of Applied Physics 110, 113515, doi:10.1063/1.3658021 (2011).

48 Kessler, V. et al. Thermoelectric Properties of Nanocrystalline Silicon from a Scaled-Up Synthesis

48 Plant. Advanced Engineering Materials 15, 379-385, doi:10.1002/adem.201200233 (2013).

49 Gresback, R., Nozaki, T. & Okazaki, K. Synthesis and oxidation of luminescent silicon nanocrystals from silicon tetrachloride by very high frequency nonthermal plasma.

Nanotechnology 22, 305605, doi:10.1088/0957-4484/22/30/305605 (2011).

50 Zhou, S. et al. Boron- and Phosphorus-Hyperdoped Silicon Nanocrystals. Particle & Particle Systems Characterization, n/a-n/a, doi:10.1002/ppsc.201400103 (2014).

51 Kessler, V. et al. Fabrication of High-Temperature-Stable Thermoelectric Generator Modules Based on Nanocrystalline Silicon. Journal of Electronic Materials 43, 1389-1396, doi:10.1007/s11664-014-3093-6 (2014).

52 Yamda, R., Gresback, R., Yi, D., Okazaki, K. & Nozaki, T. Plasma Synthesis of Silicon Nanoparticles Optimization of Yield, Size Distribution, and Crystallinity. 日本機械学会論文集 B 79, 1616-1623 (2013).

53 Suzuki, S. Fabrication of hard metal. Proceedings of the First Symposium on Spark Plasma Sintering, 13 (1996).

54 Nagata, S., Takahashi, Y., Yorizumi, M. & Aso, K. Fine grained Mn-Zn ferrite produced by plasma sintering method (PAS). Ferrites Proc ICF 6, 1191-1194 (1992).

55 Parker, W. J., Jenkins, R. J., Butler, C. P. & Abbott, G. L. Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity. Journal of Applied Physics 32, 1679, doi:10.1063/1.1728417 (1961).

56 Cowan, R. D. Pulse Method of Measuring Thermal Diffusivity at High Temperatures. Journal of Applied Physics 34, 926, doi:10.1063/1.1729564 (1963).

57 Shanks, H., Maycock, P., Sidles, P. & Danielson, G. Thermal Conductivity of Silicon from 300 to 1400°K. Physical Review 130, 1743-1748, doi:10.1103/PhysRev.130.1743 (1963).

58 早稲田嘉夫 & 松原英一郎. X線構造解析: 原子の配列を決める. (内田老鶴圃, 1998).

59 荒木信幸. フーリエの法則と非フーリエ熱伝導. 伝熱 50, 1-4 (2011).

60 Chen, G. Nanoscale energy transport and conversion: a parallel treatment of electrons, molecules, phonons, and photons. (Oxford University Press, USA, 2005).

61 Srivastava, G. P. The Physics of Phonons. (Taylor & Francis, 1990).

62 Ashcroft, N. W. & Mermin, N. D. Solid State Physics. (Saunders College, 1976).

63 Klemens, P. The scattering of low-frequency lattice waves by static imperfections. Proceedings of the Physical Society. Section A 68, 1113 (1955).

64 Casimir, H. Note on the Conduction of Heat in Crystals. Physica 5, 495-500 (1938).

65 Esfarjani, K., Chen, G. & Stokes, H. T. Heat transport in silicon from first-principles calculations.

Physical Review B 84, doi:10.1103/PhysRevB.84.085204 (2011).

66 Slack, G. A. Thermal Conductivity of Pure and Impure Silicon, Silicon Carbide, and Diamond.

Journal of Applied Physics 35, 3460, doi:10.1063/1.1713251 (1964).

49 67 Kirchhof, M., Schmid, H. J. & Peukert, W. Three-dimensional simulation of viscous-flow

agglomerate sintering. Physical Review E 80, doi:10.1103/PhysRevE.80.026319 (2009).

68 Andersson, S. & Dzhavadov, L. Thermal conductivity and heat capacity of amorphous SiO2 pressure and volume dependence. Journal of Physics: Condensed Matter 4, 6209-6216 (1992).

69 Goldsmid, H. The thermal conductivity of bismuth telluride. Proceedings of the Physical Society.

Section B 203, 2-9 (1956).

70 Streetman, B. & Banerjee, S. Solid State Electronic Devices (5th Edition). (Prentice Hall, 1999).

71 Apsley, N. & Hughes, H. P. TEMPERATURE-DEPENDENCE AND FIELD-DEPENDENCE OF HOPPING CONDUCTION IN DISORDERED SYSTEMS. Philosophical Magazine 30, 963-972, doi:10.1080/14786437408207250 (1974).

72 Minnich, A. & Chen, G. Modified effective medium formulation for the thermal conductivity of nanocomposites. Applied Physics Letters 91, 073105, doi:10.1063/1.2771040 (2007).

73 Hurley, D. H., Khafizov, M. & Shinde, S. L. Measurement of the Kapitza resistance across a bicrystal interface. Journal of Applied Physics 109, 083504, doi:10.1063/1.3573511 (2011).

関連したドキュメント