• 検索結果がありません。

patients with acute myocardial infarction. Am J Cardiol 1990;

65: 149-153.

29. Stevenson R, Umachandran V, Ranjadayalan K, et al.

Reassessment of treadmill stress testing for risk stratification in patients with acute myocardial infarction treated by thrombolysis. Br Heart J 1993; 70: 415-420.

30. Villella A, Maggioni AP, Villella M, et al. Prognostic significance of maximal exercise testing after myocardial infarction treated with thrombolytic agents: the GISSI-2 data-base. Gruppo Italiano per lo Studio della Sopravvivenza Nell'Infarto. Lancet 1995; 346: 523-529.

31. Okin PM, Kligfield P. Computer-based implementation of the ST-segment/heart rate slope. Am J Cardiol 1989; 64: 926-930.

32. 前原和平,木下弘志.運動負荷時のHR─ST関係と呼 気ガス分析による労作狭心症と負荷心電図偽陽性例の鑑 別.臨床病理 1986; 34: 1135-1141.

33. Haines DE, Beller GA, Watson DD, et al. Exercise-induced ST segment elevation 2 weeks after uncomplicated myocardial infarction: contributing factors and prognostic significance. J Am Coll Cardiol 1987; 9: 996-1003.

34. Margonato A, Chierchia SL, Xuereb RG, et al. Specificity and sensitivity of exercise-induced ST segment elevation for detection of residual viability: comparison with fluorodeoxyglucose and positron emission tomography. J Am Coll Cardiol 1995; 25: 1032-1038.

35. Lombardo A, Loperfido F, Pennestri F, et al. Significance of transient ST-T segment changes during dobutamine testing in Q wave myocardial infarction. J Am Coll Cardiol 1996; 27:

599-605.

36. Correale E, Battista R, Ricciardiello V, et al. The negative U wave: a pathogenetic enigma but a useful, often overlooked bedside diagnostic and prognostic clue in ischemic heart disease. Clin Cardiol 2004; 27: 674-677.

37. Gerson MC, McHenry PL. Resting U wave inversion as a marker of stenosis of the left anterior descending coronary artery. Am J Med 1980; 69: 545-550.

38. Bonoris PE, Greenberg PS, Christison GW, et al.

Evaluation of R wave amplitude changes versus ST-segment depression in stress testing. Circulation 1978; 57: 904-910.

39. De Feyter PJ, Jong de JP, Roos JP, et al. Diagnostic incapacity of exercise-induced QRS wave amplitude changes to detect coronary artery disease and left ventricular dysfunction. Eur Heart J 1982; 3: 9-16.

40. 里村公生,水野杏一,他.運動負荷心電図ST,R波,Q 波の判定基準の比較.Jpn J Electrocardiography 1985; 5:

635-640.

41. 西村泰豪,山村徹,他.運動負荷時のSeptalQ波の変化 による冠動脈病変部位の推定および疑陽性例の判別.呼吸 と循環.1986; 34: 999-1002.

42. Whinnery JE, Froelicher VF, Jr., Stewart AJ, et al. The electrocardiographic response to maximal treadmill exercise of asymptomatic men with left bundle branch block. Am Heart J 1977; 94: 316-324.

43. Sundqvist K, Atterhog JH, Jogestrand T. Effect of digoxin on the electrocardiogram at rest and during exercise in healthy subjects. Am J Cardiol 1986; 57: 661-665.

44. Whinnery JE, Froelicher VF, Jr., Longo MR, Jr., et al. The electrocardiographic response to maximal treadmill exercise of asymptomatic men with right bundle branch block. Chest 1977; 71: 335-340.

45. Sciller NB, Shah PM, et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr 1989; 2: 358-367 2005 updated

46. Sawada SG, Segar DS, Ryan T, et al. Echocardiographic detection of coronary artery disease during dobutamine infusion. Circulation 1991; 83: 1605-1614.

47. Geleijnse ML, Fioretti PM, Roelandt JR. Methodology, feasibility, safety and diagnostic accuracy of dobutamine stress echocardiography. J Am Coll Cardiol 1997; 30: 595-606.

48. Marcovitz PA, Armstrong WF. Accuracy of dobutamine stress echocardiography in detecting coronary artery disease.

Am J Cardiol 1992; 69: 1269-1273.

49. Armstrong WF, Pellikka PA, Ryan T,et al. Stress echocardiography: recommendations for performance and interpretation of stress echocardiography. Stress Echocardiography Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography. J Am Soc Echocardiogr 1998; 11: 97-104.

2005 updated.

50. Armstrong WF. Stress echocardiography for detection of coronary artery disease. Circulation 1991; 84: 143-149.

51. Hozumi T, Yoshida K, Akasaka T, et al. Noninvasive assessment of coronary flow velocity and coronary flow velocity reserve in the left anterior descending coronary artery by Doppler echocardiography: comparison with invasive technique. J Am Coll Cardiol 1998; 32: 1251-1259.

52. Yoshida K, Yoshikawa J, Hozumi T, et al. Detection of left main coronary artery stenosis by transesophageal color Doppler and two-dimensional echocardiography. Circulation 1990; 81: 1271-1276.

53. Afridi I, Kleiman NS, Raizner AE, et al. Dobutamine echocardiography in myocardial hibernation. Optimal dose and accuracy in predicting recovery of ventricular function after coronary angioplasty. Circulation 1995; 91: 663-670.

54. Smart SC, Sawada S, Ryan T, et al. Low-dose dobutamine echocardiography detects reversible dysfunction after thrombolytic therapy of acute myocardial infarction.

Circulation 1993; 88: 405-415.

55. Marzullo P, Parodi O, Reisenhofer B, et al. Value of rest thallium-201/technetium-99m sestamibi scans and dobutamine echocardiography for detecting myocardial viability. Am J Cardiol 1993; 71: 166-172.

56. Watada H, Ito H, Oh H, et al. Dobutamine stress

echocardiography predicts reversible dysfunction and quantitates the extent of irreversibly damaged myocardium after reperfusion of anterior myocardial infarction. J Am Coll Cardiol 1994; 24: 624-630.

57. Arnese M, Cornel JH, Salustri A, et al. Prediction of improvement of regional left ventricular function after surgical revascularization. A comparison of low-dose dobutamine echocardiography with 201Tl single-photon emission computed tomography. Circulation 1995; 91: 2748-2752.

58. Haque T, Furukawa T, Takahashi M, et al. Identification of h i b e r n a t i n g m y o c a r d i u m b y d o b u t a m i n e s t r e s s echocardiography: comparison with thallium-201 reinjection imaging. Am Heart J 1995; 130: 553-563.

59. Sicari R, Varga A, Picano E, et al. Comparison of combination of dipyridamole and dobutamine during echocardiography with thallium scintigraphy with thallium scintigraphy to improve viability detection. Am J Cardiol 1999; 83: 6-10.

60. Bonow RO. Myocardial viability and prognosis in patients with ischemic left ventricular dysfunction. J Am Coll Cardiol 2002; 39: 1159-1162.

61. Shan K, Nagueh SF, Zoghbi WA. Assessment of myocardial viability with stress echocardiography. Cardiol Clin 1999; 17:

539-553, ix.

62. Lee KS, Marwick TH, Cook SA, et al. Prognosis of patients with left ventricular dysfunction, with and without viable myocardium after myocardial infarction. Relative efficacy of medical therapy and revascularization. Circulation 1994; 90:

2687-2694.

63. Di Carli MF, Asgarzadie F, Schelbert HR, et al. Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy. Circulation 1995; 92: 3436-3444.

64. Eriksson SV, Caidahal K, Hamsten A, et al. Long-term prognostic significance of M mode echocardiography in young men after myocardial infarction. Br Heart J 1995; 74:

124-130.

65. Poldermans D, Fioretti PM, Boersma E, et al. Long-term p r o g n o s t i c v a l u e o f d o b u t a m i n e - a t r o p i n e s t r e s s echocardiography in 1737 patients with known or suspected coronary artery disease: A single-center experience.

Circulation 1999; 99: 757-762.

66. Shiina A, Tajik AJ, et al. Prognostic significance of reginal wall motion abnormality in patients with prior myocardial infarction: A prospective correlative study of two-dimensional echocardiography and angiography. Mayo Clin Proc 1986;

61: 254-262.

67. White HD, Norris RM, Brown MA, et al. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 1987; 76:

44-51.

68. Pfeffer MA, Braunwald E, Moye LA, et al. Effect of captopril on mortality and morbidity in patients with left

ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med 1992; 327: 669-677.

69. St John Sutton M, Pfeffer MA, Plappert T, et al.

Quantitative two-dimensional echocardiographic measurements are major predictors of adverse cardiovascular events after acute myocardial infarction. The protective effects of captopril. Circulation 1994; 89: 68-75.

70. Serruys PW, Simoons ML,Suryapranata H, et al.

Preservation of global and regional left ventricular function after early thrombolysis in acute myocardial infarction. J Am Coll Cardiol 1986; 7: 729-742.

71. American Society of Nuclear Cardiology. Updated imaging guidelines for nuclear cardiology procedures. J Nucl Cardiol 2001; 8: G5-G58.

72. Klocke FJ, Baird MG, Lorell BH, et al. American College of Cardiology; American Heart Association; American Society for Nuclear Cardiology. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging-executive summary: a report of the American College of Cardiology/

American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). J Am Coll Cardiol 2003; 42: 1318-1333.

73. Thompson RC, Cullom J. Issues regarding radiation dosage of cardiac nuclear and radiography procedures. J Nucl Cardiol 2006; 13: 19-23.

74. Einstein AJ, Moser KW, Thompson RC, et al. Radiation dose to patients from cardiac diagnostic imaging. Circulation 2007; 116: 1290-1305.

75. 栗林幸夫,陣崎雅弘,佐藤浩三,他.マルチスライス CTによる冠動脈の画像化.呼と循 2004; 52: 667-675.

76. Schroeder S, Kopp AF, Baumbach A, et al. Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol 2001; 37: 1430-1435.

77. Nieman K, Cademartiri F, Lemos PA, et al. Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 2002;

106: 2051-2054.

78. Ropers D, Baum U, Pohle K, et al. Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction.

Circulation 2003; 107: 664-666.

79. Kuettner A, Beck T, Drosch T, et al. Diagnostic accuracy of noninvasive coronary imaging using 16-detector slice spiral computed tomography with 188 ms temporal resolution. J Am Coll Cardiol 2005; 45: 123-127.

80. Mollet NR, Cademartiri F, Nieman K, et al. Multislice spiral computed tomography coronary angiography in patients with stable angina pectoris. J Am Coll Cardiol 2004; 43:

2265-2270.

81. Hoffmann U, Moselewski F, Cury RC, et al. Predictive value of 16-slice multidetector spiral computed tomography

to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease; patient-versus segment-based analysis. Circulation 2004; 110: 2638-2643.

82. Mollet NR, Cademartiri F, van Mieghem CA, et al. High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 2005; 112: 2318-2323.

83. Raff GL, Gallagher MJ, O'Neill WW, et al. Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 2005; 46:

552-557.

84. Leschka S, Alkadhi H, Plass A, et al. Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 2005; 26: 1482-1487.

85. Schroeder S, Achenbach S, Bengel F, et al. Cardiac computed tomography: indications, applications, limitations, and training requirements: Report of a Writing Group deployed by the Working Group Nuclear Cardiology and Cardiac CT of the European Society of Cardiology and the European Council of Nuclear Cardiology. Eur Heart J 2008;

29: 531-556.

86. Budoff MJ, Dowe D, Jollis JG, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease.

J Am Coll Cardiol 2008; 52: 1724-1732.

87. Miller JM, Rochitte CE, Deway M, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 2008; 359: 2324-2336.

88. Wexler L, Brundage B, Crouse J, et al. Coronary artery calcification: pathophysiology, epidemiology, imaging methods, and clinical implications. A statement for health professionals from the American Heart Association.

Circulation 1996; 94: 1175-1192.

89. O’Rourke RA, Brundage BH, Froelicher VF, et al.

American College of Cardiology/American Heart Association Expert Consensus document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. Circulation 2000; 102: 126-140.

90. Budoff MJ, Achenbache S, Blumenthal RS, et al.

Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation 2006; 114: 1761-1791.

91. Agatston AS, Janowitz WR, Hildner FJ, et al.

Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1990; 15: 827-832.

92. 日本アイソトープ協会訳.ICRP Publication 73 医学にお ける放射線の防護と安全.丸善.1997.

93. 日本アイソトープ協会訳.ICRP Publication 87 CTにお ける患者線量の管理.丸善2004.

94. Katayama H, Yamaguchi K, Kozuka T, et al. Radiation

exposures of cancer patients from medical X-rays: How relevant are they for individual patients and population exposure? Radiology 1990; 175: 621-628.

95. Katayama H, Yamaguchi K, Kozuka T, et al. Full-scale investigation into adverse reaction in Japan. Risk factor analysis. The Japanese Committee on the Safety of Contrast Media. Invest Radiol 1991; 26 (S1): S33-36.

96. Morcos SK, Thomsen HS, Webb JA. Contrast-media-induced nephrotoxicity: a consensus report. Contrast Media Safety Committee, European Society of Urogenital Radiology (ESUR). Eur Radiol 1999; 9: 1602-1613.

97. Rihal CS, Textor SC, Grill DE, et al. Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention. Circulation 2002; 105:

2259-2264.

98. Dangas G, Iakovou I, Nikolsky E, et al. Contrast-induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables. Am J Cardiol 2005; 95: 13-19.

99. Lang DM, Alpern MB, Visintainer PF, et al. Elevated risk of anaphylactoid reaction from radiographic contrast media is associated with both beta-blocker exposure and cardiovascular disorders. Arch Intern Med 1993; 153: 2033-2040.

100. Lang DM, Alpern MB, Visintainer PF, et al. Increased risk for anaphylactoid reaction from contrast media in patients on beta-adrenergic blockers or with asthma. Ann Intern Med 1991; 115: 270-276.

101. Larose E, Ganz P, Reynolds HG, et al. Right ventricular dysfunction assessed by cardiovascular magnetic resonance imaging predicts poor prognosis late after myocardial infarction. J Am Coll Cardiol 2007; 49: 855-862.

102. Ebeling Barbier C, Bjerner T, Hansen T, et al. Clinically unrecognized myocardial infarction detected at MR imaging may not be associated with atherosclerosis. Radiology 2007;

245: 103-110.

103. Schwitter J, Wacker CM, van Rossum AC, et al. MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J 2008; 29: 480-489.

104. Kwong RY, Chan AK, Brown KA, et al. Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease.

Circulation 2006; 113: 2733-2743.

105. Lund GK, Stork A, Muellerleile K, et al. Prediction of left ventricular remodeling and analysis of infarct resorption in patients with reperfused myocardial infarcts by using contrast-enhanced MR imaging. Radiology 2007; 245: 95-102.

106. Ingkanisorn WP, Kwong RY, Bohme NS, et al. Prognosis of negative adenosine stress magnetic resonance in patients presenting to an emergency department with chest pain. J Am

Coll Cardiol 2006; 47: 1427-1432.

107. Jahnke C, Nagel E, Gebker R, et al. Prognostic value of cardiac magnetic resonance stress tests: adenosine stress perfusion and dobutamine stress wall motion imaging.

Circulation 2007; 115: 1769-1776.

108. Bodi V, Sanchis J, Lopez-Lereu MP, et al. Prognostic value of dipyridamole stress cardiovascular magnetic resonance imaging in patients with known or suspected coronary artery disease. J Am Coll Cardiol 2007; 50: 1174-1179.

109. Levine GN, Gomes AS, Arai AE, et al. Safety of magnetic resonance imaging in patients with cardiovascular devices.

An American Heart Association Scientific Statement from the Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology, and the Council on Cardiovascular Radiology and Intervention.

Circulation 2007; 116: 2878-2891.

110. Kanal E, Broome DR, Martin DR, et al. Response to the FDA's May 23, 2007, nephrogenic systemic fibrosis update.

Radiology 2008; 246: 11-14.

111. Kuo PH, Kanal E, Abu-Alfa AK, et al. Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis.

Radiology 2007; 242: 647-649.

112. Niemann PS, Pinho L, Balbach T, et al. Anatomically oriented right ventricular volume measurements with dynamic three-dimensional echocardiography validated by 3-Tesla magnetic resonance imaging. J Am Coll Cardiol 2007; 50:

1668-1676.

113. Sakuma H, Fujita N, Foo TK, et al. Evaluation of left ventricular volume and mass with breath-hold cine MR imaging. Radiology 1993; 188: 377-380.

114. Grothues F, Smith GC, Moon JC, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol 2002; 90: 29-34.

115. Kim RJ, Fieno DS, Parrish TB, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 1999; 100: 1992-2002.

116. Amado LC, Gerber BL, Gupta SN, et al. Accurate and objective infarct sizing by contrast-enhanced magnetic resonance imaging in a canine myocardial infarction model. J Am Coll Cardiol. 2004;44:2383-2389.

117. Kereiakes DJ, Teirstein PS, Sarembock IJ, et al. The truth and consequences of the COURAGE trial. J Am Coll Cardiol 2007; 50: 1598-1603.

118. Ishida N, Sakuma H, Motoyasu M, et al. Noninfarcted myocardium: correlation between dynamic first-pass contrast-enhanced myocardial MR imaging and quantitative coronary angiography. Radiology 2003; 229: 209-216.

119. Weber OM, Martin AJ, Higgins CB. Whole-heart steady-state free precession coronary artery magnetic resonance angiography. Magn Reson Med 2003; 50: 1223-1228.

120. Sakuma H, Ichikawa Y, Chino S, et al. Detection of

coronary artery stenosis with whole-heart coronary magnetic resonance angiography. J Am Coll Cardiol 2006; 48: 1946-1950.

121. Pennell DJ, Sechtem UP, Higgins CB, et al. Clinical indications for cardiovascular magnetic resonance (CMR):

Consensus Panel report. Eur Heart J 2004; 25: 1940-1965.

122. Bluemke DA, Achenbach S, Budoff M, et al. Noninvasive coronary artery imaging: Magnetic resonance angiography and multidetector computed tomography angiography: A Scientific Statement From the American Heart Association Committee on Cardiovascular Imaging and Intervention of the Council on Cardiovascular Radiology and Intervention, and the Councils on Clinical Cardiology and Cardiovascular Disease in the Young. Circulation 2008; 118: 586-606.

123. Saito Y, Sakuma H, Shibata M, et al. Assessment of coronary flow velocity reserve using fast velocity-encoded cine MRI for noninvasive detection of restenosis after coronary stent implantation. J Cardiovasc Magn Reson 2001;

3: 209-214.

124. Ishida N, Sakuma H, Cruz BP, et al. MR flow measurement in the internal mammary artery-to-coronary artery bypass graft: comparison with graft stenosis at radiographic angiography. Radiology 2001; 220: 441-447.

125. Connolly DC, Elveback LR, Oxman HA. Coronary heart disease in residents of Rochester, Minnesota. IV. Prognostic value of the resting electrocardiogram at the time of initial diagnosis of angina pectoris. Mayo Clin Proc 1984; 59: 247-250.

126. Sugishita Y, Koseki S, Matsuda M, et al. Significance of ST-segment and T wave changes in the resting electrocardiograms of patients with exertional angina, studied by exercise radionuclide angiocardiograms. J Electrocardiol 1985; 18: 175-814.

127. Levy D, Salomon M, D'Agostino RB, et al. Prognostic implications of baseline electrocardiographic features and their serial changes in subjects with left ventricular hypertrophy. Circulation 1994; 90: 1786-1793.

128. Bonoris PE, Greenberg PS, Castellanet MJ, et al.

Significance of changes in R wave amplitude during treadmill stress testing: angiographic correlation. Am J Cardiol 1978;

41: 846-851.

129. Michaelides AP, Boudoulas H, Antonakoudis H, et al.

Effect of a number of coronary arteries significantly narrowed and status of intraventricular conduction on exercise-induced QRS prolongation in coronary artery disease. Am J Cardiol 1992; 70: 1487-1489.

130. Michaelides A, Ryan JM, VanFossen D, et al. Exercise-induced QRS prolongation in patients with coronary artery disease: a marker of myocardial ischemia. Am Heart J 1993;

126: 1320-1325.

131. 長谷川浩一,藤原武,他.狭心症時の右側胸部誘導にお

ける一過性陽性U波増高の意義─左回旋枝 / 右冠動脈狭窄 の指標─.心臓 1988; 1033: 20.

132. Diamond GA, Forrester JS. Analysis of probability as an

aid in the clinical diagnosis of coronary-artery disease. N Eng J Med. 1979; 300: 1350-1358.

133. Diamond GA. A clinical relevant classification of chest discomfort. J Am Coll Cardiol 1983; 1: 574-575.

134. Pryor DB, Harrell FE Jr, Lee KL, et al. Estimating the likelifood of significant coronary artery disease. Am J Med 1983; 75: 771-780.

135. Pryor DB, Shaw L, McCants CB, et al. Value of the history and physical in identifying patients at increased risk for coronary artery disease. Ann Intern Med 1993; 118: 81-90.

136. Lipinski M, Froelicher V, Atwood E, et al. Comparison of treadmill scores with physician estimates of diagnosis and prognosis in patients with coronary artery disease. Am Heart J 2002; 143: 650-658.

137. 三谷秀樹,西岡利彦,他.負荷断層心エコー法.運動負

荷断層心エコー法.日本臨牀(増)1994; 52: 339-350.

138. Armstrong WF. Treadmill exercise echocardiography:

methodology and clinical role. Eur Heart J 1997; 18 (Suppl D): D2-D8.

139. 平野豊,土生裕史,他.Dipyridamole負荷断層心エコー

図法による虚血性心疾患の診断.J Cardiol 1994; 24: 9-16.

140. P i c a n o E . S t r e s s e c h o c a r d i o g r a p h y : F r o m pathophysiological toy to diagnostic tool. Circulation 1992;

85: 1604-1612.

141. Fung AY, Gallagher KP, Buda AJ. The physiologic basis of dobutamine as compared with dipyridamole stress interventions in the assessment of critical coronary stenosis.

Circulation 1987; 76: 943-951.

142. Beleslin BD, Ostojic M, Stepanovic J, et al. Stress echocardiography in the detection of myocardial ischemia.

Head-to-head comparison of exercise, dobutamine and dipyridamole tests. Circulation 1994; 90: 1168-1176.

143. Higashiue S, Watanabe H, Yokoi Y, et al. Simple detection of severe coronary stenosis using transthoracic Doppler echocardiography at rest. Am J Cardiol 2001;87:1064-1068.

144. Hozumi T, Yoshida K, Akasaka T, et al. Value of acceleration flow and the prestenotic to stenotic coronary flow velocity ratio by transthoracic color Doppler echocardiography in noninvasive diagnosis of restenosis after percutaneous transluminal coronary angioplasty. J Am Coll Cardiol 2000; 35: 164-168.

145. Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 1974; 33:

87-94.

146. Hozumi T, Yoshida K, Ogata Y, et al. Noninvasive assessment of significant left anterior descending coronary artery stenosis by coronary flow velocity reserve with transthoracic color Doppler echocardiography. Circulation 1998; 97: 1557-1562.

147. Matsumura Y, Hozumi T, Watanabe H, et al. Cut-off value of coronary flow velocity reserve by transthoracic Doppler echocardiography for diagnosis of significant left anterior

descending artery stenosis in patients with coronary risk factors. Am J Cardiol 2003; 92: 1389-1393.

148. Pizzuto F, Voci P, Mariano E, et al. Assessment of flow velocity reserve by transthoracic Doppler echocardiography and venous adenosine infusion before and after left anterior descending coronary artery stenting. J Am Coll Cardiol 2001;

38: 155-162.

149. Daimon M, Watanabe H, Yamagishi H, et al. Physiologic assessment of coronary artery stenosis by coronary flow reserve measurements with transthoracic Doppler echocardiography: comparison with exercise thallium-201 single piston emission computed tomography. J Am Coll Cardiol 2001; 37: 1310-1315.

150. Takeuchi M, Ogawa K, Wake R, et al. Measurement of coronary flow velocity reserve in the posterior descending coronary artery by contrast-enhanced transthoracic Doppler echocardiography. J Am Soc Echocardiogr 2004; 17: 21-27.

151. Watanabe H, Hozumi T, Hirata K, et al. Noninvasive coronary flow velocity reserve measurement in the posterior descending coronary artery for detecting coronary stenosis in the right coronary artery using contrast-enhanced transthoracic Doppler echocardiography. Echocardiography 2004; 21: 225-233.

152. Fujimoto K, Watanabe H, Hozumi T, et al. New noninvasive diagnosis of myocardial ischemia of the left circumflex coronary artery using coronary flow reserve measurement by transthoracic Doppler echocardiography:

comparison with thallium-201 single photon emission computed tomography. J Cardiol 2004; 43: 109-116.

153. Kapur A, Latus KA, Davies G, et al. A comparison of three radionuclide myocardial perfusion tracers in clinical practice:

the ROBUST study. Eur J Nucl Med Mol Imaging 2002; 29:

1608-1616.

154. Benoit T, Vivegnis D, Lahiri A, et al. Tomographic myocardial imaging with technetium-99m tetrofosmin.

Comparison with tetrofosmin and thallium planar imaging and with angiography. Eur Heart J 1996; 17: 635-642.

155. Hendel RC, Parker MA, Wackers FJ, et al. Reduced variability of interpretation and improved image quality with a technetium 99m myocardial perfusion agent: comparison of thallium 201 and technetium 99m-labeled tetrofosmin. J Nucl Cardiol 1994; 1: 509-514.

156. Iskandrian AS, Heo J, Kong B, et al. Use of technetium-99m isonitrile (RP-30A) in assessing left ventricular perfusion and function at rest and during exercise in coronary artery disease, and comparison with coronary arteriography and exercise thallium-201 SPECT imaging. Am J Cardiol 1989;

64: 270-275.

157. Kahn JK, McGhie I, Akers MS, et al. Quantitative rotational tomography with 201Tl and 99mTc 2-methoxy-isobutyl-isonitrile. A direct comparison in normal individuals and patients with coronary artery disease. Circulation 1989;

79: 1282-1293.

158. Kiat H, Maddahi J, Roy LT, et al. Comparison of

関連したドキュメント