Solve the following problems in Snyder and Nicholson (11th):. 1.[r]

1 さらに読み込む

Solve the following problems in Snyder and Nicholson (11th):. 1.[r]

1 さらに読み込む

(b) Revenue equivalence theorem claims that the equilibrium bidding strategy under the …rst-price auction is ALWAYS identical to the one under the second- price auction.
(c) EVERY perfect Bayesian equilibrium is a weak perfect Bayesian equilibrium. **2**. Dynamic Game (14 points)

2 さらに読み込む

Explain.
(b) Show that any risk averse decision maker whose preference satisfies indepen- dence axiom must prefer L **2** to L 3 .
3. Question 3 (4 points) Suppose a monopolist with constant marginal costs prac- tices third-degree price discrimination. Group A’**s** elasticity of demand is ǫ A and

2 さらに読み込む

b + (1 )b 0
where b is the winner’**s** bid, b 0 is the loser’**s** bid, and is some constant
satisfying 0 1. (In case of ties, each company wins with equal probability.) Assume the valuation of the spectrum block for each company is independently and uniformly distributed between 0 and 1.

2 さらに読み込む

(a) Derive each partner’**s** payo¤ function.
(b) Derive each partner’**s** best reply function and graphically draw them in a …gure. (Taking m in the horizontal axis and n in the vertical axis.)
(c) Is this game strategic complementarity, strategic substitution, or neither of them? Explain why.

2 さらに読み込む

Arrow’**s** Requirements of the SWF (1)
Unrestricted Domain (UD) The domain of f must include all possible combinations of individual preference relations on X.
Weak Pareto Principle (WP) For any pair of alternatives x and y in X, if xP i y for all i, then xP y.

13 さらに読み込む

5. Bayesian Game (20 points)
There are 10 envelopes and each of them contains a number 1 through 10. That is, one envelope contains 1, another envelope contains **2**, and so on; these numbers cannot be observable from outside. Suppose there are two individuals. Each of them randomly receives one envelope and observes the number inside of her/his own envelope. Then, they are given an option to exchange the envelope to the other person; exchange occurs if and only if both individuals wish to exchange. Finally, individuals receive prize ($) equal to the number, i.e., she receives $X if the number is X. Assume that both individuals are risk-neutral so that they maximize expected value of prizes.

さらに見せる
3 さらに読み込む

3. Auction (9 points)
Consider a “common-value auction” with two players, where the value of the object being auctioned is identical for both players. Call this value V and suppose that V = v 1 + v **2** , where v i is independently and uniformly distributed between 0 and 1,

2 さらに読み込む

Hint: Your answers in (a) – (c) may change depending on the value of θ.
4. Duopoly (20 points)
Consider a duopoly game in which two firms, denoted by firm 1 and firm **2**, simul- taneously and independently select their own price, p 1 and p **2** . The firms’ products are differentiated. After the prices are set, consumers demand 24 − p i +

3 さらに読み込む

Proof of Pratt’**s** Theorem (1) Sketch of the Proof.
To establish (i) ⇔ (iii), it is enough to show that P is positively related to r. Let ε be a “small” random variable with expectation of zero, i.e., E(ε) = 0. The risk premium P (ε) (at initial wealth x) is defined by

14 さらに読み込む

Rm Each of these utility functions measures the change in the player’**s** utility. If there is no trade, then there is no change in utility. It would make no difference to define, say, the seller’**s** utility to be p if there is trade at price p and v **s** if there is no trade.

13 さらに読み込む

1 **2** .
A leader never becomes worse off since she could have achieved Cournot profit level in the Stackelberg game simply by choosing the Cournot output: a gain from commitment. A follower does become worse off although he has more information in the Stackelberg game than in the Cournot game, i.e., the rivals output.

13 さらに読み込む

Rm Since every subgame of an infinitely repeated game is identical to the game as a whole, we have to consider only two types of subgames: (i) subgame in which all the outcomes of earlier stages have been (C1, C**2**), and (ii) subgames in which the outcome of at least one earlier stage differs from (C1, C**2**).

12 さらに読み込む

First-Price: General Model (1)
Consider a first-price auction with n bidders in which all the conditions in the previous theorem are satisfied.
Assume that bidders play a symmetric equilibrium, β(x). Given some bidding strategy b, a bidder’**s** expected payoff becomes

15 さらに読み込む

1 Nature draws a type t i for the Sender from a set of feasible
types T = {t1 , ..., t I} according to a probability distribution
p(ti), where p(ti) > 0 for every i and p(t 1 ) + · · · + p(tn) = 1.
**2** Sender observes ti and then chooses a message mj from a set

12 さらに読み込む

Problem Set **2**: Posted on November 4
Advanced Microeconomics I (Fall, 1st, 2014)
1. Question 1 (7 points)
A real-valued function f (x) is called homothetic if f (x) = g(h(x)) where g : R → R is a strictly increasing function and h is a real-valued function which is homo- geneous of degree 1. Suppose that preferences can be represented by a homothetic utility function. Then, prove the following statements.

1 さらに読み込む

Solve the following problems in Snyder and Nicholson (11th):. 1.[r]

1 さらに読み込む

Problem Set **2**: Due on May 14
Advanced Microeconomics I (Spring, 1st, 2013)
1. Question 1 (6 points)
(a) Suppose the utility function is continuous and strictly increasing. Then, show that the associated indirect utility function v(p, ω) is quasi-convex in (p, ω). (b) Show that the (minimum) expenditure function e(p, u) is concave in p.

2 さらに読み込む

Open Set and Closed Set (**2**)
Boundary and interior
◮ A point x is called a boundary point of a set S in R n
if every ε-ball centered at x contains points in S as well as points not in S. The set of all boundary points of a set S is called boundary, and is denoted ∂S .

15 さらに読み込む