Volume 2009, Article ID 153084,26pages doi:10.1155/2009/153084
Research Article
On the Stability of a Generalized
Quadratic and Quartic Type Functional Equation in Quasi-Banach Spaces
M. Eshaghi Gordji,
1S. Abbaszadeh,
1and Choonkil Park
21Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, Iran
2Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, South Korea
Correspondence should be addressed to Choonkil Park,[email protected] Received 31 May 2009; Accepted 9 September 2009
Recommended by Nikolaos Papageorgiou
We establish the general solution of the functional equationfnxy fnx−y n2fxy n2fx−y 2fnx−n2fx−2n2−1fyfor fixed integersnwithn /0,±1 and investigate the generalized Hyers-Ulam stability of this equation in quasi-Banach spaces.
Copyrightq2009 M. Eshaghi Gordji et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
The stability problem of functional equations originated from a question of Ulam1in 1940, concerning the stability of group homomorphisms. LetG1,·be a group and let G2,∗be a metric group with the metricd·,·.Givenε > 0, does there exist a δ > 0, such that if a mappingh: G1 → G2 satisfies the inequalitydhx·y, hx∗hy < δfor allx, y ∈ G1, then there exists a homomorphismH :G1 → G2 withdhx, Hx< εfor allx∈ G1? In other words, under what condition does there exist a homomorphism near an approximate homomorphism? The concept of stability for functional equation arises when we replace the functional equation by an inequality which acts as a perturbation of the equation. In 1941, Hyers 2gave a first affirmative answer to the question of Ulam for Banach spaces. Let f:E → Ebe a mapping between Banach spaces such that
f xy
−fx−f
y≤δ 1.1
for allx, y∈E,and for someδ >0.Then there exists a unique additive mappingT :E → E such that
fx−Tx≤δ 1.2
for allx∈E.Moreover, ifftxis continuous int∈Rfor each fixedx∈E,thenT isR-linear.
In 1978, Th. M. Rassias3 provided a generalization of Hyers’ theorem which allows the Cauchy difference to be unbounded. The functional equation
f xy
f x−y
2fx 2f y
1.3
is related to a symmetric biadditive mapping4–7. It is natural that this functional equation is called a quadratic functional equation. In particular, every solution of the quadratic equation 1.3is said to be a quadratic mapping. It is well known that a mappingfbetween real vector spaces is quadratic if and only if there exists a unique symmetric biadditive mappingBsuch thatfx Bx, xfor allxsee4,7. The biadditive mappingBis given by
B x, y
1 4
f xy
−f x−y
. 1.4
The generalized Hyers-Ulam stability problem for the quadratic functional equation1.3was proved by Skof for mappingsf:A → B, whereAis a normed space andBis a Banach space see8. Cholewa9noticed that the theorem of Skof is still true if relevant domainAis replaced by an abelian group. In10, Czerwik proved the generalized Hyers-Ulam stability of the functional equation1.3. Grabiec11has generalized these results mentioned above.
In12, Park and Bae considered the following quartic functional equation:
f x2y
f x−2y
4 f
xy f
x−y 6f
y
−6fx. 1.5
In fact, they proved that a mappingf between two real vector spacesX andY is a solution of1.5if and only if there exists a unique symmetric multiadditive mappingD:X×X×X× X → Y such thatfx Dx, x, x, xfor allx. It is easy to show thatfx x4satisfies the functional equation1.5, which is called a quartic functional equationsee also13.
In addition, Kim14has obtained the generalized Hyers-Ulam stability for a mixed type of quartic and quadratic functional equation between two real linear Banach spaces.
Najati and Zamani Eskandani15have established the general solution and the generalized Hyers-Ulam stability for a mixed type of cubic and additive functional equation, wheneverf is a mapping between two quasi-Banach spacessee also16,17.
Now we introduce the following functional equation for fixed integersnwithn /0,±1:
f nxy
f nx−y
n2f xy
n2f x−y
2fnx−2n2fx−2 n2−1
f y
1.6
in quasi-Banach spaces. It is easy to see that the function fx ax4 bx2 is a solution of the functional equation1.6. In the present paper we investigate the general solution of the functional equation1.6whenf is a mapping between vector spaces, and we establish the generalized Hyers-Ulam stability of this functional equation wheneverf is a mapping between two quasi-Banach spaces.
We recall some basic facts concerning quasi-Banach space and some preliminary results.
Definition 1.1See18,19. LetXbe a real linear space. A quasinorm is a real-valued function onXsatisfying the following.
1x ≥0 for allx∈Xandx0 if and only ifx0.
2λ·x|λ| · xfor allλ∈Rand allx∈X.
3There is a constantM≥1 such thatxy ≤Mxyfor allx, y∈X.
It follows from the condition3that
2m
i1
xi
≤Mm
2m i1
xi,
2m1
i1
xi
≤Mm1
2m1
i1
xi 1.7
for allm≥1 and allx1, x2, . . . , x2m1∈X.
The pairX,·is called a quasinormed space if·is a quasinorm onX. The smallest possibleMis called the modulus of concavity of · . A quasi-Banach space is a complete quasi-normed space.
A quasi-norm · is called ap-norm0< p≤1if
xyp≤ xpyp 1.8 for allx, y∈X. In this case, a quasi-Banach space is called ap-Banach space.
Given ap-norm, the formuladx, y:x−ypgives us a translation invariant metric on X. By the Aoki-Rolewicz theorem 19 see also 18, each quasi-norm is equivalent to some p-norm. Since it is much easier to work withp-norms, henceforth we restrict our attention mainly top-norms. In20, Tabor has investigated a version of Hyers-Rassias-Gajda theoremsee3,21in quasi-Banach spaces.
2. General Solution
Throughout this section, X and Y will be real vector spaces. We here present the general solution of1.6.
Lemma 2.1. If a mappingf :X → Y satisfies the functional equation1.6, thenfis a quadratic and quartic mapping.
Proof. Lettingxy0 in1.6, we getf0 0. Settingx0 in1.6, we getfy f−y for ally∈X. So the mappingfis even. Replacingxbyxyin1.6and thenxbyx−yin 1.6, we get
f
nx n1y f
nx n−1y n2f
x2y
n2fx 2f
nxny
−2n2f xy
−2 n2−1
f y
, 2.1
f
nx−n−1y f
nx−n1y n2fx n2f
x−2y 2f
nx−ny
−2n2f x−y
−2 n2−1
f
y 2.2
for allx, y∈X. Interchangingxandyin1.6and using the evenness off, we get the relation
f xny
f x−ny n2f
xy n2f
x−y 2f
ny
−2n2f y
−2 n2−1
fx 2.3
for allx, y∈X. Replacingybynyin1.6and then using2.3, we have
f
nxny f
nx−ny n4f
xy n4f
x−y 2f
ny
2fnx−2n4fx−2n4f
y 2.4
for allx, y∈X. If we add2.1to2.2and use2.4, then we have
f
nx n1y f
nx−n1y f
nx n−1y f
nx−n−1y n2f
x2y n2f
x−2y 2n2
n2−1 f
xy 2n2
n2−1 f
x−y 4f
ny
4fnx
−4n42n2
fx
−4n4−4n24 f
y
2.5
for allx, y ∈ X. Replacing ybyxy in1.6and then ybyx−y in1.6and using the evenness off, we obtain that
f
n1xy f
n−1x−y n2f
2xy n2f
y
2fnx−2n2fx−2 n2−1
f xy
, 2.6
f
n1x−y f
n−1xy n2f
2x−y n2f
y
2fnx−2n2fx−2 n2−1
f
x−y 2.7
for allx, y∈X. Interchangingxwithyin2.6and2.7and using the evenness off, we get the relations
f
x n1y f
x−n−1y n2f
x2y
n2fx 2f ny
−2n2f y
−2 n2−1
f xy
, 2.8
f
x−n1y f
x n−1y n2f
x−2y
n2fx 2f ny
−2n2f y
−2 n2−1
f
x−y 2.9
for allx, y∈X. Replacingybyn1yin1.6and thenybyn−1yin1.6, we have f
nx n1y f
nx−n1y n2f
x n1y n2f
x−n1y
2fnx−2n2fx−2 n2−1
f
n1y , 2.10 f
nx n−1y f
nx−n−1y n2f
x n−1y n2f
x−n−1y
2fnx−2n2fx−2 n2−1
f
n−1y 2.11
for allx, y∈X. Replacingxbyyin1.6, we obtain
f
n1y f
n−1y n2f
2y
−2
2n2−1 f
y 2f
ny
2.12
for ally∈X. Adding2.10to2.11and using2.8,2.9, and2.12, we get f
nx n1y f
nx−n1y f
nx n−1y f
nx−n−1y n4f
x2y n4f
x−2y
−2n2 n2−1
f xy
−2n2 n2−1
f x−y 4f
ny
4fnx−2n2 n2−1
f 2y
2n4−4n2
fx
4n4−12n24 f
y 2.13
for allx, y∈X. By2.5and2.13, we obtain f
x2y f
x−2y 4f
xy 4f
x−y 2f
2y
−8f y
−6fx 2.14
for allx, y ∈ X. Interchanging xand y in2.14and using the evenness of f, we get the relation
f 2xy
f 2x−y
4f xy
4f x−y
2f2x−8fx−6f y
2.15
for allx, y∈X.
Now we show that2.15is a quadratic and quartic functional equation. To get this, we show that the mappingsg :X → Y, defined bygx f2x−16fx, andh:X → Y, defined byhx f2x−4fx, are quadratic and quartic, respectively.
Replacingyby 2yin2.15and using the evenness off, we have f
2x2y f
2x−2y 4f
2yx 4f
2y−x
2f2x−8fx−6f 2y
2.16
for allx, y ∈ X. Interchangingxwith y in2.16 and then using2.15, we obtain by the evenness off
f
2x2y f
2x−2y 4f
2xy 4f
2x−y 2f
2y
−8f y
−6f2x 16f
xy 16f
x−y
2f2x 2f 2y
−32fx−32f
y 2.17
for allx, y∈X. By2.17, we have f
2x2y
−16f
xy
f
2x−2y
−16f
x−y 2
f2x−16fx 2 f
2y
−16f y 2.18 for allx, y∈X. This means that
g xy
g x−y
2gx 2g y
2.19
for allx, y∈X. Thus the mappingg:X → Y is quadratic.
To prove thath:X → Y is quartic, we have to show that h
2xy h
2x−y 4h
xy 4h
x−y
24hx−6h y
2.20
for allx, y∈X. Replacingxandyby 2xand 2yin2.15, respectively, we get f
4x2y f
4x−2y 4f
2x2y 4f
2x−2y
2f4x−8f2x−6f 2y
2.21
for allx, y∈X. Sinceg2x 4gxfor allx∈Xandg:X → Y is a quadratic mapping, we have
f4x 20f2x−64fx 2.22
for allx∈X. So it follows from2.15,2.21, and2.22that h
2xy h
2x−y
f
4x2y
−4f
2xy
f
4x−2y
−4f 2x−y 4
f
2x2y
−4f
xy 4 f
2x−2y
−4f x−y 24
f2x−4fx −6 f
2y
−4f y 4h
xy 4h
x−y
24hx−6h y
2.23
for allx, y∈X. Thush:X → Yis a quartic mapping.
Theorem 2.2. A mappingf : X → Y satisfies1.6if and only if there exist a unique symmetric multiadditive mapping D : X ×X ×X×X → Y and a unique symmetric bi-additive mapping B:X×X → Y such that
fx Dx, x, x, x Bx, x 2.24
for allx∈X.
Proof. We first assume that the mappingf : X → Y satisfies1.6. Let g, h : X → Y be mappings defined by
gx:f2x−16fx, hx:f2x−4fx 2.25
for allx∈X.ByLemma 2.1, we achieve that the mappingsgandhare quadratic and quartic, respectively, and
fx: 1
12hx− 1
12gx 2.26
for allx∈X.Thus there exist a unique symmetric multiadditive mappingD:X×X×X×X → Y and a unique symmetric bi-additive mappingB : X×X → Y such thatDx, x, x, x 1/12hxandBx, x −1/12gxfor allx∈Xsee citead, ki. So
fx Dx, x, x, x Bx, x 2.27
for allx∈X.
Conversely assume that
fx Dx, x, x, x Bx, x 2.28
for allx∈X,where the mappingD :X×X×X×X → Y is symmetric multi-additive and B:X×X → Y is bi-additive. By a simple computation, one can show that the mappingsD andBsatisfy the functional equation1.6, so the mapping f satisfies1.6.
3. Generalized Hyers-Ulam Stability of 1.6
From now on, letX andY be a quasi-Banach space with quasi-norm · X and ap-Banach space withp-norm · Y, respectively. LetM be the modulus of concavity of · Y. In this section, using an idea of G˘avruta22, we prove the stability of1.6in the spirit of Hyers, Ulam, and Rassias. For convenience we use the following abbreviation for a given mapping
f:X → Y:
Δf x, y
f nxy
f nx−y
−n2f xy
−n2f x−y
−2fnx 2n2fx 2 n2−1
f
y 3.1
for allx, y∈X. Letϕpqx, y: ϕqx, yp. We will use the following lemma in this section.
Lemma 3.1see15. Let 0< p≤1 and letx1, x2, . . . , xnbe nonnegative real numbers. Then n
i1
xi
p
≤n
i1
xip. 3.2
Theorem 3.2. Letϕq :X×X → 0,∞be a function such that
mlim→ ∞4mϕq
x 2m, y
2m
0 3.3
for allx, y∈Xand
∞ i1
4piϕqp
x 2i,y
2i
<∞ 3.4
for allx∈X and ally∈ {x,2x,3x, nx,n1x,n−1x,n2x,n−2x,n−3x}.Suppose that a mappingf:X → Ywithf0 0 satisfies the inequality
Δf x, y
Y ≤ϕq x, y
3.5
for allx, y∈X.Then the limit
Qx: lim
m→ ∞4m
f x
2m−1
−16f x 2m
3.6
exists for allx∈XandQ:X → Y is a unique quadratic mapping satisfying
f2x−16fx−Qx
Y ≤ M11 4
ψqx 1/p 3.7
for allx∈X,where
ψqx:∞
i1
4pi
1 n2pn2−1p
ϕpq
x
2i,n2x 2i
ϕpq
x
2i,n−2x 2i
4pϕpq
x
2i,n1x 2i
4pϕpq x
2i,n−1x 2i
4pϕpq
x 2i,nx
2i
ϕpq 2x
2i ,2x 2i
4pϕpq
2x 2i,x
2i
n2pϕpq x
2i,3x 2i
2p
3n2−1p ϕpq
x 2i,2x
2i
17n2−8p ϕpq
x 2i,x
2i
n2p n2−1p
ϕpq
0,xn1x 2i
ϕpq
0,n−3x 2i
10pϕpq
0,n−1x 2i
4pϕpq
0,nx 2i
4pϕpq
0,n−2x 2i
n41p
n2−1pϕpq
0,2x 2i
2
3n4−n22p n2−1p ϕpq
0,x
2i
.
3.8 Proof. Settingx0 in3.5and then interchangingxandy, we get
n2−1
fx− n2−1
f−x≤ϕq0, x 3.9
for allx∈X. Replacingybyx, 2x,nx,n1xandn−1xin3.5, respectively, we get fn1x fn−1x−n2f2x−2fnx
4n2−2
fx≤ϕqx, x, 3.10 fn2x fn−2x−n2f3x−n2f−x−2fnx 2n2fx
2 n2−1
f2x≤ϕqx,2x,
3.11 f2nx−n2fn1x−n2f1−nx 2
n2−2
fnx 2n2fx≤ϕqx, nx, 3.12 f2n1x f−x−n2fn2x−n2f−nx−2fnx 2n2fx
2 n2−1
fn1x≤ϕqx,n1x,
3.13 f2n−1x fx−n2f2−nx−
n22
fnx 2n2fx 2
n2−1
fn−1x≤ϕqx,n−1x, 3.14
f2n1x f−2x−n2fn3x−n2f−n1x−2fnx 2n2fx 2
n2−1
fn2x≤ϕqx,n2x, 3.15
f2n−1x f2x−n2fn−1x−n2f−n−3x−2fnx 2n2fx 2
n2−1
fn−2x≤ϕqx,n−2x, 3.16
fn3x fn−3x−n2f4x−n2f−2x−2fnx 2n2fx 2
n2−1
f3x≤ϕqx,3x 3.17
for all x ∈ X. Combining 3.9 and 3.11–3.17, respectively, yields the following ine- qualities:
fn2x fn−2x−n2f3x−n2fx−2fnx 2n2fx 2 n2−1
f2x
≤ϕqx,2x n2
n2−1ϕq0, x,
3.18 f2nx−n2fn1x−n2fn−1x 2
n2−2
fnx 2n2fx
≤ϕqx, nx n2
n2−1ϕq0,n−1x,
3.19 f2n1x fx−n2fn2x−n2fnx−2fnx 2n2fx 2
n2−1
fn1x
≤ϕqx,n1x n2
n2−1ϕq0, nx 1
n2−1ϕq0, x,
3.20 f2n−1x fx−n2fn−2x−
n22
fnx 2n2fx 2 n2−1
fn−1x
≤ϕqx,n−1x n2
n2−1ϕq0,n−2x,
3.21 f2n1xf2x−n2fn3x−n2fn1x−2fnx2n2fx2
n2−1
fn2x
≤ϕqx,n2x n2
n2−1ϕq0,n1x ϕq0,2x, 3.22
f2n−1xf2x−n2fn−1x−n2fn−3x−2fnx2n2fx2 n2−1
fn−2x
≤ϕqx,n−2x n2
n2−1ϕq0,n−3x, 3.23
fn3x fn−3x−n2f4x−n2f2x−2fnx 2n2fx 2 n2−1
f3x
≤ϕqx,3x n2
n2−1ϕq0,2x
3.24 for allx∈X.
Replacingxandyby 2xandxin3.5, respectively, we obtain f2n1x f2n−1x−n2f3x−2f2nx 2n2f2x
n2−2
fx≤ϕq2x, x 3.25
for allx∈X. Putting 2xand 2yinstead ofxandyin3.5, respectively, we have f2n1x f2n−1x−n2f4x−2f2nx 2
2n2−1
f2x≤ϕq2x,2x 3.26
for allx∈X. It follows from3.10,3.18,3.19,3.20,3.21, and3.25that f3x−6f2x 15fx
≤ M5 n2n2−1
ϕqx,n1x ϕqx,n−1x ϕq2x, x 2ϕqx, nx n2ϕqx,2x
4n2−2
ϕqx, x n2 n2−1
2ϕq0,n−1x ϕq0, nx ϕq0,n−2x
n41
n2−1ϕq0, x
3.27
for allx∈X. Also, from3.10,3.18,3.19,3.22,3.23,3.24, and3.26, we conclude f4x−4f3x 4f2x 4fx
≤ M6 n2n2−1
ϕqx,n2x ϕqx,n−2x ϕq2x,2x 2ϕqx, nx n2
ϕqx,3x ϕqx, x 2
n2−1
ϕqx,2x n2
n2−1
2ϕq0,n−1x ϕq0,n−3x ϕq0,n1x
n41
n2−1ϕq0,2x 2n2ϕq0, x
3.28
for allx∈X. Finally, combining3.27and3.28yields f4x−24f2x 64fx
≤ M8 n2n2−1
ϕqx,n2x ϕqx,n−2x 4ϕqx,n1x 4ϕqx,n−1x 10ϕqx, nx ϕq2x,2x 4ϕq2x, x n2ϕqx,3x 2
3n2−1
ϕqx,2x
17n2−8
ϕqx, x n2
n2−1
ϕq0,n1x ϕq0,n−3x 10ϕq0,n−1x
4ϕq0, nx4ϕq0,n−2x
n41
n2−1ϕq0,2x 2
3n4−n22
n2−1 ϕq0, x
3.29
for allx∈X. Let
ψqx: 1 n2n2−1
ϕqx,n2x ϕqx,n−2x 4ϕqx,n1x
4ϕqx,n−1x 10ϕqx, nx ϕq2x,2x 4ϕq2x, x n2ϕqx,3x 2
3n2−1
ϕqx,2x
17n2−8
ϕqx, x n2
n2−1
ϕq0,n1xϕq0,n−3x10ϕq0,n−1x4ϕq0, nx
4ϕq0,n−2x
n41
n2−1ϕq0,2x2
3n4−n22
n2−1 ϕq0, x
. 3.30
Then the inequality3.29implies that
f4x−20f2x 64fx≤M8ψqx 3.31
for allx∈X.
Letg :X → Y be a mapping defined bygx : f2x−16fxfor allx ∈X.From 3.31, we conclude that
g2x−4gx≤M8ψqx 3.32
for allx∈X.If we replacexin3.32byx/2m1and multiply both sides of3.32by 4m,then we get
4m1g x
2m1
−4mg x 2m
Y
≤M84mψq x
2m1
3.33
for allx∈Xand all nonnegative integersm. SinceYis a p-Banach space, the inequality3.33 gives
4m1g x
2m1
−4kg x
2k p
Y
≤m
ik
4i1g x
2i1
−4ig x
2i p
Y
≤M8p m ik
4ipψqp x
2i1
3.34
for all nonnegative integersmandkwithm≥kand allx∈X.Since 0< p≤1, byLemma 3.1 and3.30, we conclude that
ψqpx≤ 1 n2pn2−1p
ϕpqx,n2x ϕpqx,n−2x 4pϕpqx,n1x 4pϕpqx,n−1x10pϕpqx, nxϕpq2x,2x 4pϕpq2x, x n2pϕpqx,3x2p
3n2−1p
ϕpqx,2x
17n2−8p
ϕpqx, x n2p n2−1p
×
ϕpq0,n1xϕpq0,n−3x10pϕpq0,n−1x4pϕpq0, nx 4pϕpq0,n−2x
n41p
n2−1pϕpq0,2x 2
3n4−n22p
n2−1p ϕpq0, x
3.35
for allx∈X.Therefore, it follows from3.4and3.35that ∞
i1
4ipψqp
x 2i
<∞ 3.36
for allx∈X.It follows from3.34and3.36that the sequence{4mgx/2m}is Cauchy for allx∈X.SinceY is complete, the sequence{4mgx/2m}converges for allx∈X.So one can define the mappingQ:X → Yby
Qx lim
m→ ∞4mg x 2m
3.37
for allx∈X.Lettingk0 and passing the limitm → ∞in3.34, we get gx−Qxp
Y ≤M8p ∞
i0
4ipψqp x
2i1
M8p 4p
∞ i1
4ipψqp x
2i
3.38
for allx∈X.Thus3.7follows from3.4and3.38.
Now we show thatQis quadratic. It follows from3.3,3.33and3.37that
Q2x−4QxY lim
m→ ∞
4mg x
2m−1
−4m1gx 2m
Y
4 lim
m→ ∞
4m−1g x
4m−1
−4mg x 2m
Y
≤M11 lim
m→ ∞4mψq x 2m
0
3.39
for allx∈X.So
Q2x 4Qx 3.40
for allx∈X.On the other hand, it follows from3.3,3.5,3.6and3.37that ΔQx, y
Y lim
m→ ∞4mΔgx 2m, y
2m
Y
lim
m→ ∞4m Δf
x 2m−1, y
2m−1
−16Δfx 2m, y
2m
Y
≤Mlim
m→ ∞4m Δf
x 2m−1, y
2m−1
Y
16Δf x 2m, y
2m
Y
≤Mlim
m→ ∞4m
ϕq
x 2m−1, y
2m−1
16ϕq
x 2m, y
2m 0
3.41
for allx, y ∈ X.Hence the mappingQ satisfies1.6. ByLemma 2.1, the mappingQ2x− 4Qxis quadratic. Hence3.40implies that the mappingQis quadratic.
It remains to show that Q is unique. Suppose that there exists another quadratic mappingQ : X → Y which satisfies1.6and 3.7. Since Qx/2m 1/4mQxand Qx/2m 1/4mQxfor allx∈X, we conclude from3.7that
Qx−Qxp
Y lim
m→ ∞4mpgx 2m
−Q x 2m
Y
p≤ M8p 4p lim
m→ ∞4mpψq
x 2m
3.42
for allx∈X.On the other hand, since
mlim→ ∞4mp ∞ i1
4ipϕqp x
2mi, y 2mi
lim
m→ ∞
∞ im1
4ipϕqp x
2i,y 2i
0 3.43
for allx∈Xand ally∈ {x,2x,3x, nx,n1x,n−1x,n2x,n−2x,n−3x},then
mlim→ ∞4mpψqx 2m
0 3.44
for allx∈X. Using3.44and3.42, we getQQ,as desired.
Theorem 3.3. Letϕq :X×X → 0,∞be a function such that
mlim→ ∞
1 4mϕq
2mx,2my
0 3.45
for allx, y∈Xand
∞ i0
1 4piϕqp
2ix,2iy
<∞ 3.46
for allx∈X and ally∈ {x,2x,3x, nx,n1x,n−1x,n2x,n−2x,n−3x}.Suppose that a mappingf:X → Ywithf0 0 satisfies the inequality
Δf x, y
Y ≤ϕq
x, y
3.47
for allx, y∈X.Then the limit
Qx: lim
m→ ∞
1 4m
f
2m1x
−16f2mx
3.48
exists for allx∈XandQ:X → Y is a unique quadratic mapping satisfying
f2x−16fx−Qx
Y ≤ M8 4
ψqx 1/p 3.49
for allx∈X, where
ψqx:∞
i0
1 4pi
1 n2pn2−1p
ϕpq
2ix,2in2x ϕpq
2ix,2in−2x 4pϕpq
2ix,2in1x
4pϕpq
2ix,2in−1x 10pϕpq
2ix,2inx ϕpq
2i2x,2i2x 4pϕpq
2i2x,2ix
n2pϕpq
2ix,2i3x 2p
3n2−1p ϕpq
2ix,2i2x
17n2−8p ϕpq
2ix,2ix
n2p n2−1p
ϕpq
0,2in1x ϕpq
0,2in−3x 10pϕpq
0,2in−1x
4pϕpq
0,2inx
4pϕpq
0,2in−2x
n41p
n2−1pϕpq 0,2i2x
2
3n4−n22p
n2−1p ϕpq
0,2ix .
3.50
Proof. The proof is similar to the proof ofTheorem 3.2.
Corollary 3.4. Letθ, r, sbe nonnegative real numbers such thatr, s > 2 ors < 2. Suppose that a mappingf:X → Ywithf0 0 satisfies the inequality
Δfx, y
Y ≤
⎧⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎨
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎩
θ, r s0,
θxrX, r >0, s0, θys
X, r 0, s >0, θ
xrXys
X
, r, s >0
3.51
for allx, y∈X.Then there exists a unique quadratic mappingQ:X → Y satisfying
f2x−16fx−Qx
Y ≤ M8θ n2n2−1
⎧⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎨
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎩
δq, rs0,
αqx, r >0, s0, βqx, r0, s >0,
αpqx βpqx1/p
, r, s >0
3.52
for allx∈X,where
δq
1 4p−1n2−1p
6n2−2p
n2−1p
17n2−8p
n2−1p
6n4−2n24p
n2p210p2∗4p
n41p n2p
n2−1p
3∗4p
n2−1p
10p
n2−1p 3
n2−1p1/p ,
αqx
4p22rp 10p
6n2−2p
17n2−8p
2rpn2p
|4p−2rp|
1/p xrX,
βqx
1
n2−1p|4p−2sp|
2sp
6n2−2p
n2−1p
17n2−8pn2−1p
6n4−2n24p n2p
n1sp n−3sp10pn−1sp4pnsp4pn−2sp 2sp
n41p
3spn2pn2−1p4pn2−1pn2sp
n2−1p
n−2sp
n2−1p
4pn1spn2−1p4pn−1sp
n2−1p
10pnsp
n2−1p1/p xsX.
3.53 Proof. InTheorem 3.2, puttingϕqx, y:θxrXysXfor allx, y ∈X, we get the desired result.
Corollary 3.5. Letθ≥0 andr, s >0 be nonnegative real numbers such thatλ:rs /2. Suppose that a mapingf:X → Y withf0 0 satisfies the inequality
Δf x, y
Y ≤θxrXys
X 3.54
for allx, y∈X.Then there exists a unique quadratic mappingQ:X → Y satisfying f2x−16fx−Qx
Y
≤ M8θ n2n2−1
1 4p−2λp
n2sp n−2sp4pn1sp
4pn−1sp10pnsp2rsp4p2rpn2p3sp 2sp
6n2−2p
17n2−8p1/p xλX
3.55
for allx∈X.
Proof. InTheorem 3.2, puttingϕqx, y : θxrXysX for allx, y ∈ X, we get the desired result.
Theorem 3.6. Letϕt:X×X → 0,∞be a function such that
m→ ∞lim16mϕt
x 2m, y
2m
0 3.56
for allx, y∈Xand
∞ i1
16piϕtp
x 2i,y
2i
<∞ 3.57
for allx∈X and ally∈ {x,2x,3x, nx,n1x,n−1x,n2x,n−2x,n−3x}.Suppose that a mappingf:X → Ywithf0 0 satisfies the inequality
Δf x, y
Y ≤ϕt
x, y
3.58 for allx, y∈X.Then the limit
Tx: lim
m→ ∞16m
f x
2m−1
−4f x 2m
3.59
exists for allx∈XandT :X → Y is a unique quartic mapping satisfying f2x−4fx−Tx
Y ≤ M8 16
ψtx 1/p 3.60
for allx∈X,where
ψtx:∞
i1
16pi
1 n2pn2−1p
ϕpt
x
2i,n2x 2i
ϕpt
x
2i,n−2x 2i
4pϕpt
x
2i,n1x 2i
4pϕpt x
2i,n−1x 2i
10pϕpt
x 2i,nx
2i
ϕpt 2x
2i,2x 2i
4pϕpt
2x 2i, x
2i
n2pϕpt x
2i,3x 2i
2p
3n2−1p
ϕpt x
2i,2x 2i
17n2−8p
ϕpt x
2i,x 2i
n2p n2−1p
ϕpt
0,xn1x 2i
ϕpt
0,n−3x 2i
10pϕpt
0,n−1x 2i
4pϕpt
0,nx 2i
4pϕpt
0,n−2x 2i
n41p n2−1pϕpt
0,2x
2i
2
3n4−n22p
n2−1p ϕpt
0,x 2i
.
3.61
Proof. Similar to the proofTheorem 3.2, we have
f4x−20f2x 64fx≤M8ψtx 3.62 for allx∈X,where
ψtx 1 n2n2−1
ϕtx,n2x ϕtx,n−2x 4ϕtx,n1x
4ϕtx,n−1x 10ϕtx, nx ϕt2x,2x 4ϕt2x, x n2ϕtx,3x 2
3n2−1
ϕtx,2x
17n2−8 ϕtx, x n2
n2−1
ϕt0,n1x ϕt0,n−3x 10ϕt0,n−1x 4ϕt0, nx
4ϕt0,n−2x
n41
n2−1ϕt0,2x 2
3n4−n22 n2−1 ϕt0, x
. 3.63
Leth:X → Y be a mapping defined byhx:f2x−4fx. Then we conclude that
h2x−16hx ≤M8ψtx 3.64
for allx ∈ X.If we replacexin3.65byx/2m1 and multiply both sides of3.65by 16m, then we get
16m1h x
2m1
−16mh x 2m
Y
≤M816mψt
x 2m1
3.65
for allx∈Xand all nonnegative integersm. SinceYis ap-Banach space, the inequality3.66 gives
16m1h x
2m1
−16kh x
2k p
Y
≤m
ik
16i1h x
2i1
−16ih x
2i p
Y
≤M8p m ik
16piψtp x
2i1
3.66