A REMARK ON ASSOCIATED PRIMES
IN THE COHOMOLOGY ALGEBRA OF A FINITE GROUP
TETSURO OKUYAMA
奥山 哲郎
HOKKAIDO UNIVERSITY OF EDUCATION, ASAHIKAWA CAMPUS
北海道教育大学・旭川校
Introduction
Let $G$ be a finite group and $H^{*}(G, k)$ be the cohomology algebra of $G$
over an
al-gebraically closed field $k$ of characteristic $p>0$. It is well known that $H^{*}(G, k)$ is
a
commutative noetherian graded k-algeba. In my talk we discussed properties of the
as-sociated primes in $H^{*}(G, k)$ and gave a slight generalizaton of
a
result of Green [7].Theorem 0.1.
If
$\mathfrak{p}$ isan
associated prime in $H^{*}(G, k)$ with $\dim H^{*}(G, k)/\mathfrak{p}=s$, thenthere exists an elementary abelian p-subgroup $E$
of
rank $s$of
$G$ such that the depthof
$H^{*}(C_{G}(E), k)$ is $s$ and $\mathfrak{p}={\rm Res}_{G,E}^{-1}(\sqrt{0})$.
Conversely, let $E$ be an elementary abelian p-subgroup $E$
of
rank $s$of
$G$ and assumethat the depth
of
$H^{*}(C_{G}(E), k)$ is $s$. Then ${\rm Res}_{G,E}^{-1}(\sqrt{0})$ isan
associatedprime in $H^{*}(G, k)$.The first assertion wasknown to be true using the notion of the SteenrodAlgebra [4].We
shall give a different proof using arguments by Carlson [3]. And the second assertion is
known to be true if $C_{G}(E)=G$ by Green [7].
1. The Rank-Restriction Condition
Let $r$ be thep-rank of $G$. Let $A_{s}=\mathcal{A}_{s}(G)$ be the set of elementary abelian p-subgroups
of $G(1\leqq s\leqq r)$ and set $\mathcal{H}_{s}=\mathcal{H}_{s}(G)=\{C_{G}(E) ; E\in A_{s} \}$. And for $1\leqq s\leqq r$,
let $\mathcal{K}_{s}=\mathcal{K}_{s}(G)$ be the family of subgroups $K$ of $G$ such that the Sylow p-subgroups of $C_{G}(K)$
are
not conjugate toa
subgroup ofanyof the groups in $\mathcal{H}_{s}$. (Ifsucha
subgroup $K$does not exists, then we set $\mathcal{K}_{s}=\{1\}.)$ Notice that any elementary abelian p-subgroup
of $K\in \mathcal{K}_{s}$ have rank at most $s-1$ . For
a
nonempty family $\mathcal{P}$ of subgroups of $G$, set${\rm Im} Tr_{P,G}=\sum_{P\in P}{\rm Im}$ Tr$P,G$ and KerRes$G, \mathcal{P}=\bigcap_{P\in P}$KerRes$G,P$
.
Then bya
theorem ofBenson (Theoreml.1 [1]) $\sqrt{{\rm Im} Tk_{\mathcal{H}_{s}G}}=\sqrt{Ker{\rm Res}_{G\mathcal{K}_{s}}}$.
Let $\zeta_{1},$
$\cdots,$$\zeta_{r}$ be a homogeneous system of parameters in $H^{*}(G, k)$ satisfying the
rank-restriction condition. Then for $1\leqq s\leqq r,$ ${\rm Res}_{G,E}(\zeta_{S})=0$ for any $E\in \mathcal{A}_{s-1}$,
we
see
that $\zeta_{s}\in\sqrt{Ker{\rm Res}_{G\mathcal{K}_{s}}}=\sqrt{{\rm Im} T\}_{?i_{s}G}}$. Thus replacing $\zeta_{s}$’s by a suitable p-power, we mayassume
that $(_{s}\in{\rm Im} Tk_{\mathcal{H}_{s},G}$ for each $1\leqq s\leqq r$.
Thus we always have a homogeneoussys-tem of parameters (1,$\cdots,$ $(_{r}$ in $H^{*}(G, k)$ satisfying the following conditions. See Lemma
8.5 [2] for the condition 3 and Lemma 3.4 and Theorem 9.6 [2] for the condition 4.
Condition 1.1.
(1) $\zeta_{1},$
(2) $\zeta_{s}\in{\rm Im} Tr_{\mathcal{H}_{s},G}$
(3) For each $s$ and $E\in \mathcal{A}_{s}$, the restrictions
of
$\zeta_{1},$$\cdots,$ $\zeta_{s}$ to $H^{*}(E, k)$
form
a
homo-geneous system
of
parameters (and $(_{s+1},$ $\cdots,$ $(_{r}$ restrict to $0$). In particular, theirrestrictions to $H^{*}(C_{G}(E), k)$
form
a regular sequencefor
$H^{*}(C_{G}(E), k)$.(4)
If
$H^{*}(G, k)$ has depth $s$, then $\zeta_{1},$ $\cdots$ , $\zeta_{s}$form
a regular sequence.(5) $\dim H^{*}(G, k)/((s+1, \cdots, \zeta_{r})$ is $s$.
Lemma 1.2 (Carlson [3]). Let $0\neq\eta\in H^{*}(G, k)$ be a homogeneous element.
Assume $\dim H^{*}(G, k)/Ann_{H^{*}(G,k)}(\eta)=s$. Then the following statements hold.
(1)
If
$t>0$, thenfor
any $H\in \mathcal{H}_{t},$ ${\rm Res}_{G,H}(\eta)=0$.(2) For
some
$H\in \mathcal{H}_{s},$ ${\rm Res}_{G,H}(\eta)\neq 0$.Proof.
Set $a=Ann_{H^{*}(G,k)}(\eta)$.1. Suppose that ${\rm Res}_{G,H}(\eta)\neq 0$for
some
$H\in \mathcal{H}_{t}$ with$t>0$ andset $b=$ Ann$H^{e}(G,k)({\rm Res}_{G,H}(\eta))$.
Then
as
${\rm Res}_{G,H}^{-1}(b)\subset a$,$s=\dim H^{*}(G, k)/a\geqq\dim H^{*}(G, k)/{\rm Res}_{G,H}^{-1}(b)=\dim H^{*}(H, k)/b\geqq$depth $H^{*}(H, k)$
$H$ has
a
central elementary abelian p-subgroup of rank $t$ and depth$H^{*}(H, k)\geqq t$ bya
theorem of Duflot [5]. Thus we have a contradiction.
2. Suppose that ${\rm Res}_{G,H}(\eta)=0$ for all $H\in \mathcal{H}_{s}$. Then by the statement 1, ${\rm Res}_{G,H}(\eta)=0$
for all $H\in \mathcal{H}_{t}$ with $t\geqq s$. Thus $Ann_{H^{*}(G,k)}(\eta)$ contains $(_{s},$ $\cdots,$$\zeta_{r}$ and
$s=\dim H^{*}(G, k)/$Ann$H^{*}(G,k)(\eta)\leqq\dim H^{*}(G, k)/((S’\cdots, \zeta_{r})\leqq s-1$
This is
a contradiction.
$\square$2. Results of D.J. Green
In this section we shall prove some results on cohomology algebra of a finite group
having
a
normal elementary abelian p-subgroup. A discussion here depends heavilyon
investigations by D.J.Green [7].
2.1. In this section let $C$ be a finite group with a central elementary abelian p-subgroup
$E$ of order $p^{s}(s>0)$ and
assume
that ap-rank of $C$ is larger than $s$. Set $\overline{C}=C/E$ andfor a subgroup $E\subset H\subset C$, set $\overline{H}=H/E\subset\overline{C}$
.
Set $\mathcal{A}=\mathcal{A}_{1}(E)$ be the set of elementaryabelian p-subgroups $F$ of $C$ containing $E$ with $[F : E]=p$ and $\mathcal{H}=\{C_{C}(F);F\in \mathcal{A}\}$.
And let $\mathcal{K}$ be the family of
subgroups $K\subset C$ such that the Sylow p-subgroups of $C_{C}(K)$
are not conjugate to a subgroup of any of the groups in $\mathcal{H}$ (If $\mathcal{H}$ has a subgroup $H$ with
p’-index in $C$, then weset $\mathcal{K}=\{1\}$
as
before). Notice that if$K\in \mathcal{K}$, then anyelementaryabelian p-subgroup of $K$ is contained in $E$.
Let$\underline{F}_{1},$ $\cdots F_{k}-$, be a complete set of representatives of the C-conjugacy classes in $\mathcal{A}$.
Then $F_{i}\subset C(1\leqq i\leqq)$
are
not $\overline{C}$-conjugate. let $\sigma_{i}’\in H^{2}(\overline{F_{i}}, GF(p))\subset H^{2}(\overline{F_{i}}, k)$ be a
nonzero
fixed element and set $\sigma_{i}=(\sigma_{i}’)^{p-1}$. Then using the Evens’ norm map, there canbe constructed a homogeneous element $\lambda\in H^{*}(\overline{C}, k)$ such that ${\rm Res}_{\overline{C},\overline{F_{l}}}(\lambda)$ is
a
p-powerof $\sigma_{i}$ for each $i$ (see a discussion in Section 7.1 [7]). Now set $\kappa=Inf_{\overline{C},C}(\lambda)\in H^{*}(C, k)$. $\kappa$ is a primitive element. We know that ${\rm Res}_{C,K}(\kappa)=0$ for any $K\in \mathcal{K}$ and therefore,
replacing $\kappa$ by
some
power, we mayassume
that$\kappa\in{\rm Im} H_{\mathcal{H},C}$ (see a proofof Lemma 2.6
Proposition 2.1. The homogeneous element $\kappa\in H^{*}(C, k)$ given above
satisfies
thefol-lowing properties.
(1) $\kappa\in{\rm Im}$Tr
$H,C$.
(2) ${\rm Res}_{C,H}(\kappa)\in H^{*}(H, k)$ is a regular element
for
every $H\in \mathcal{H}$.(3) Ann$H^{*}(C,k)(\kappa)=Ker{\rm Res}_{C,H}$
(4) Suppose that $\xi_{1},$
$\cdots,$$\xi_{t}$ is a sequence
of
homogeneous elementsof
$H^{*}(C, k)$ whoserestrictions
form
a regular sequence in $H^{*}(E, k)$. Then (a) $\xi_{1},$$\cdots,$$\xi_{t}$ is a regular sequence
for
$H^{*}(C, k)/H^{*}(C, k)\cdot\kappa$. In particular, as a$k[\xi_{1}, \cdots, \xi_{t}]$-module, $H^{*}(C, k)/H^{*}(C, k)\cdot\kappa$ is
free.
(b) KerRes$C,\mathcal{H}$ is
a
free
$k[\xi_{1}, \cdots, \xi_{t}]$-module(5)
If
the depthof
$H^{*}(C, k)$ is $s$, then $\kappa$ isa
zero
divisor in $H^{*}(C, k)$. In particular,KerRes$C,\mathcal{H}\neq 0$.
Proof.
All the statements inthe proposition except the assertion $(b)$ in thestatement 4are
included in [7]. We shall prove the stetement 4, $(b)$. Set $R=k[\xi_{1}, \cdots, \xi_{t}]$
.
Then $H^{*}(C, k)$is
a
free R-module by a result of Duflot [5]. We have the following exact sequence ofR-modules
$0arrow$ Ann$H^{*}(C,k)(\kappa)arrow H^{*}(C, k)arrow\kappa H^{*}(C, k)arrow H^{*}(C, k)/H^{*}(C, k)\kappaarrow 0$
and Ann$H^{*}(C,k)(\kappa)=Ker{\rm Res}_{C,H}$ . Thus by the assertion $(a),$ $4$, it follows that $Ker{\rm Res}_{C,H}$
is a projective R-module. So the result follows because a projective R-module is a free
R-module (see, for example, Theorem 2.5 [8]). $\square$
2.2. In this section let $N$ be a finite group with normal elementary abelian subgroup $E$
of rank $s$ and set $C=C_{N}(E)$. We
use
notations in the previous section for $C$. We shallprove the following proposition.
Proposition 2.2. Assume that the depth
of
$H^{*}(C, k)$ is $s$. Then(1) As a $kN/C$-module $Ker{\rm Res}_{C,\mathcal{H}}$ contains a regular module $kN/C$.
(2) $Ker{\rm Res}_{C,\mathcal{H}}$ contains a
nonzero
N-invariant element.Set $E=\langle a_{1},$ $\cdots,$ $a_{s}\},$ $\alpha_{i}\in H^{1}(E, k)=Hom(E, k)$ be the element dual to
$a_{i}$ and $\beta_{i}=$ $\beta(\alpha_{i})$, where $\beta$ is the Bockstein map. We have a polynomial subalgebra $k[\beta_{1}, \cdots, \beta_{s}]$ in
$H^{*}(E, k)$. Using Evens’ norm map, we obtain homogeneous elements $\xi_{1},$ $\cdots\xi_{s}\in H^{*}(C, k)$
such that ${\rm Res}_{C,E}(\xi_{i})=\beta_{i}^{p^{a}}$ for
some
p-power$p^{a}$. The subalgebra $k[\beta_{1}, \cdots, \beta_{s}]\subset H^{*}(E, k)$is N-stable, but thesubalgebra $k[\xi_{1}, \cdots, \xi_{s}]\subset H^{*}(C, k)$ may not be N-stable. For$g\in N$,
let $\beta_{i}^{g}=\sum_{j=1}^{s}\lambda_{ij}\beta_{j},$ $\lambda_{ij}\in GF(p)$ and consider the element $\xi=\xi_{i}^{g}-(\sum_{j=1}^{s}\lambda_{ij}\xi_{j})$. Then ${\rm Res}_{C,E}(\xi)=0$ and therefore ${\rm Res}_{C,K}(\xi)$ is nilpotent for any $K\in \mathcal{K}$ because elementary
abelian p-subgroups of such $K$
are
contained in $E$.
Hence by a theorem of Benson(The-orem
1.1 [1]$)$some
p-power of $\xi$ is contained in ${\rm Im} Tr_{H,C}$. Replacing the $\xi_{i}’s$ by suitablep-powers, we have proved the following.
Lemma 2.3. There exist homogeneous elements$\xi_{i}(1\leqq i\leqq s)$ and ap-power$p^{b}$ satisfying
the following.
(2) $k[\xi_{1}, \cdots, \xi_{s}]+{\rm Im} Tr_{\mathcal{H},C}$ is N-stable and$k[\xi_{1}, \cdots, \xi_{s}]+{\rm Im} Tr_{\mathcal{H},C}/{\rm Im} Tr_{\mathcal{H},C}\cong k[\beta_{1}^{p^{b}}, \cdots, \beta_{1}^{p^{b}}]$
as
N-modules.Proof of
Proposition 2.2Now
we
shall prove the proposition. Firstwe
prove the statement 1. Set $R_{0}=$$k[\beta_{1}^{p^{b}}, \cdots , \beta_{s}^{p^{b}}]$ and $R=k[\xi_{1}, \cdots , \xi_{s}]$. Then it is well known that the
sequence
$\xi_{1},$$\cdots,$$\xi_{s}$is
a
regular sequence for $H^{*}(C, k)$ and $H^{*}(C, k)$ isa
free R-module (see [5]).By Proposition 2.1, $Ker{\rm Res}_{C,7\{}\neq 0$. Let $n$ be the least integer such that $V=$
KerRes$C,H\cap H^{n}(C, k)\neq 0$. Then $V$ is N-stable and any k-basis of$V$ canbe extendedto a
set of R-free generators of Ker Res$C,\mathcal{H}$. Then by Lemma 1.2, Proposition 2.1 and the fact
that ${\rm Im} Tr_{7\{,C}$ annihilates Ker Res$C,H$, it follows that $V\cdot R$ is N-stable and $V\cdot R\cong V\otimes_{k}R_{0}$
as
N-modules.
It is known that $R_{0}$ contains $kN/C$as
a
$kN/C$-module (see [9]).Therefore
the statement (1) follows.
The statement 2 is
an
easy consequence of the statement 1.3. Proof of Theorem 0.1
First we shall show that the first statement of the theorem hold. Let $\mathfrak{p}$ be
an
associatedprime in $H^{*}(G, k)$ with $\dim H^{*}(G, k)/\mathfrak{p}=s$ and take
a
homogeneous element $0\neq\eta\in$$H^{*}(G, k)$ such that Ann$H^{*}(G,k)(\eta)=a$. Then by Lemma 1.2, there exists $E\in \mathcal{A}_{s}$ such
that ${\rm Res}_{G,C_{G}(E)}(\eta)\neq 0$. Set $C=C_{G}(E),$ $\eta_{0}={\rm Res}_{GC)}(\eta)$ and
we
shalluse
the notations in Section 2. Again by Lemma 1.2, $\eta_{0}\in$ KerRes$C,?t$.Let $\alpha\in H^{*}(C, k)$ such that ${\rm Res}_{C,E}(\alpha)=0$. Then $\alpha\in\sqrt{Ker{\rm Res}_{C\mathcal{K}}}$by
an
argument inSection
1 and therefore $\alpha\in\sqrt{{\rm Im} Tr_{HC}}$. Thus $\alpha\in\sqrt{Ann_{H^{*}(Ck)}(\eta_{0})}$.By
a
result of Benson in [1] there exists a homogeneous element $\tau\in H^{*}(C, k)$ such that ${\rm Res}_{N,C}$Tr$C,N(\tau)$ is a regular element in $H^{*}(C, k)$ and restricts to zero on every subgroup$A$ of $C$ with $A\not\supset E$, where $N=N_{G}(E)$. Set $\sigma=$ Tr$c,c(\tau)$ and consider the element $\alpha=\eta\sigma$. We shall show the following equality hold.
${\rm Res}_{G,C}(\alpha)=\eta_{0}{\rm Res}_{N,C}Tr_{C,N}(\tau)$
As $\alpha=\eta$Tr$c,c(\tau)=Tr_{C,G}({\rm Res}_{G,C}(\eta)\tau)=$ Tr$c,c(\eta_{0}\tau)$, the Mackey double coset formula shows that
${\rm Res}_{G,C}( \alpha)=\sum_{g\in C\backslash G/C}$Tr$c 9\cap c,c{\rm Res}_{C^{g},C^{g}\cap C}((r_{0}\tau)^{g})=\sum_{g\in C\backslash G/C}$Tr
$c9\cap c,c{\rm Res}_{C^{g},C^{g}\cap C}(\eta_{0}\tau^{q})$
Suppose that $C^{-1}\not\supset E$. Then
as
${\rm Res}_{C,C\cap C^{g^{-1}}}(\tau)=0$, it follows that${\rm Res}_{C,C\cap C^{g^{-1}}}(\eta_{0}\tau)=0$and therefore ${\rm Res}_{C^{g},C^{g}\cap C}(\eta\tau^{g})=0$. If $E\subset C^{g^{-1}}$ and $E\neq E^{g^{-1}}$, then $F=EE^{g}$
‘1
is
elementary abelian, $F\supsetneq E$ and $C\cap C^{g^{-1}}=C_{G}(F)$. So ${\rm Res}_{C,C\cap C^{g^{-1}}}(\eta_{0})=0$ and therefore ${\rm Res}_{C^{g},C9\cap C}(\eta\tau^{g})=0$. Thus
we
have the desired equality. a $\neq 0$ and therefore $\mathfrak{p}=$Ann$H^{*}(G,k)(\eta)=$ Ann$H^{*}(G,k)(\alpha)$. In these notations, we shall show that for $\rho\in H^{*}(G, k)$, $\rho\alpha=0$ if and only if ${\rm Res}_{G,C}(\rho)\eta_{0}=0$.
Assume that ${\rm Res}_{G,C}(\rho)\eta_{0}=0$, then ${\rm Res}_{G,C}(\rho)\eta_{0}\tau=0$ and $\rho\alpha=$ Tr$c,c({\rm Res}_{G,C}(\rho)\eta_{0}\tau)=$ $0$. Thus we have $\mathfrak{p}={\rm Res}_{G,C}^{-1}($Ann$H^{*}(C,k)(\eta_{0}))$.
As ${\rm Res}_{\overline{C}^{1}E}(\sqrt{0})\subset\sqrt{Ann_{H^{*}(Ck)}(\eta_{0})}$, we have
${\rm Res}_{G,E}^{-1}(\sqrt{0})\subset{\rm Res}_{G,C}^{-1}($Ann$H^{*}(C,k)(rlo))=\mathfrak{p}$
As ${\rm Res}_{G,E}^{-1}(\sqrt{0})$ is
a
prime ideal and $\dim H^{*}(G, k)/{\rm Res}_{G,E}^{-1}(\sqrt{0})=s$, we can conclude that${\rm Res}_{G,E}^{-1}(\sqrt{0})=\mathfrak{p}$ and the first statement in the theorem follows.
We next shall prove the second statement in the theorem. Let $E\in \mathcal{A}_{s}$ and
assume
that the depth of $H^{*}(C_{G}(E), k)$ is $s$. Set $C=C_{G}(E),$ $N=N_{G}(E)$ and
we
shalluse
thenotations Section 2. As before let $\tau$ be
a
homogeneous element in $H^{*}(C, k)$ such that${\rm Res}_{N,C}$Tr$C,N(\tau)$ is
a
regular element in $H^{*}(C, k)$ and restricts tozero
on
every subgroup$A$ of $C$ with $A\not\supset E$,
By Proposition 2.2, there exists a non zero homogeneous element $\eta_{0}\in$ Ker Res$C,?t$
which is N-invariant. Notice that ${\rm Res}_{\overline{C}^{1}E}(\sqrt{0})\subset\sqrt{Ann_{H^{*}(Ck)}(\eta_{0})}$. Consider the element $\gamma=\eta_{0}\tau$
.
Thenan
entirelysame
argumentas
above,we
have${\rm Res}_{G,C}$ Tr$c,c(\gamma)={\rm Res}_{N,C}$Tr$C,N(\gamma)=\eta_{0}{\rm Res}_{N,C}$Tr$C,N(\tau)$
Set $\alpha=$ Tr$c,c(\gamma)\in H^{*}(G, k)$. We shall show that for $\rho\in H^{*}(G, k),$ $\rho\alpha=0$ if and only if ${\rm Res}_{G,C}(\rho)\eta_{0}=0$.
Assume that $\rho\alpha=0$. Then Tr$c,c({\rm Res}_{G,C}(\rho)\gamma)=0$. Hence ${\rm Res}_{G,C}$Tr$c,c({\rm Res}_{G,C}(\rho)\gamma)=$
$0$. By the similar argument in the above
we
have that${\rm Res}_{G,C}$ Tr$c,c({\rm Res}_{G,C}(\rho)\gamma)={\rm Res}_{N,C}$Tr$c,N({\rm Res}_{G,C}(\rho)\gamma)=({\rm Res}_{G,C}(\rho)\eta_{0}){\rm Res}_{N,C}$Tr$C,N(\tau)$
As ${\rm Res}_{N,C}$Tr$C,N(\tau)$ is a regular element in $H^{*}(C, k)$, it follows that ${\rm Res}_{G,C}(\rho)\eta_{0}=0$
.
Conversely, if ${\rm Res}_{G,C}(\rho)\eta_{0}=0$, then ${\rm Res}_{G,C}(\rho)\gamma=0$ and $\rho\alpha=$ Tr$C,G({\rm Res}_{G},c(\rho)\gamma)=0$.A standard argument in commutative noetherian rings says that there exists $\delta\in$
$H^{*}(G, k)$ such that $\eta=\alpha\delta\neq 0$ and $\mathfrak{p}=Ann_{H^{*}(G,k)}(\eta)$ is
a
prime ideal. Then $\eta_{1}=$ ${\rm Res}_{G,C}(\delta)\eta_{0}\neq 0$ and byan
entirelysame
argumentas
before, we haveAnn$H^{*}(G,k)(\eta)={\rm Res}_{G,C}^{-1}($Ann$H^{*}(C,k)(\eta_{1}))$
As ${\rm Res}_{\overline{C}^{1}E}(\sqrt{0})\subset\sqrt{Ann_{H^{*}(Ck)}(\eta_{0})}\subset\sqrt{Ann_{H^{*}(Ck)}(\eta_{1})},$ ${\rm Res}_{G,E}^{-1}(\sqrt{0})\subset\sqrt{Ann_{H^{*}(Gk)}(\eta)}=$
$\mathfrak{p}$ and $\dim H^{*}(G, k)/\mathfrak{p}=\dim H^{*}(H, k)/$ Ann$H^{*}(C,k)(\eta_{1})=s$. Thus ${\rm Res}_{G,E}^{-1}(\sqrt{0})=\mathfrak{p}$ and
the second statement in the theorem follows.
REFERENCES
[1] D.J.Benson, The image ofthe transfermap, Arch. Math., 61, 7-11, 1993
[2] D.J.Benson, Dickson invariant, regularity and computation in group cohomology, Preprint, 2004
[3] J.F.Carlson, Depth and transfer maps in the cohomology ofgroups, Math. Z., 218, 461-468, 1995
[4] J.F.Carlson, L.Townsley, L.Valero-Elizondo and M.Zhang, Cohomology Rings of Finite Groups,
Kluwer Academic Publishers, 2003
[5] J.Duflot, Depth and equivalriant cohomology, Comment. Math. Helvetici, 56, 627-637, 1981
[6]
[7] D.J.Green, On Carlson’s depth conjecture in group cohomology, Math. Z., 244, 711-723, 2003
[8] H.Matsumura, Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, 8,
Cam-bridge University Press, 1986
[9] P.Symonds, The action ofautomorphisms on the cohomology