• 検索結果がありません。

A NEW EXTENSION OF HILBERT’S INEQUALITY FOR MULTIFUNCTIONS WITH BEST CONSTANT FACTORS

N/A
N/A
Protected

Academic year: 2022

シェア "A NEW EXTENSION OF HILBERT’S INEQUALITY FOR MULTIFUNCTIONS WITH BEST CONSTANT FACTORS"

Copied!
21
0
0

読み込み中.... (全文を見る)

全文

(1)

JJ J I II

Go back

Full Screen

Close

Quit

A NEW EXTENSION OF HILBERT’S INEQUALITY FOR MULTIFUNCTIONS WITH BEST CONSTANT FACTORS

H. A. AGWO

Abstract. The aim of this paper is to establish a new extension of Hilbert’s inequality and Hardy- Hilbert’s inequality for multifunctions with best constant factors. Also, we present some applications for Hilbert’s inequality which give new integral inequalities.

1. Introduction

Hilbert’s inequality has a great interest in analysis and its applications (see [10], [11]). The original Hilbert’s inequality can be stated as follows

Iff(x), g(x)≥0, such that 0<R

0 f2(x)dx <∞and 0<R

0 g2(x)dx <∞, then (see [6])

Z

0

Z

0

f(x)g(y)

x+y dxdy < π

Z

0

f2(x)dx

Z

0

g2(x)dx

1 2

, (1)

where the constant factorπis the best possible. This inequality was extended by Hardy-Riesz as (see [5]):

Received May 25, 2008.

2000Mathematics Subject Classification. Primary 26D15, 49C99.

Key words and phrases. Hilbert’s inequality; integral inequalities.

(2)

JJ J I II

Go back

Full Screen

Close

Quit

Ifp >1, 1p +1q = 1, f(x),g(x)≥0, such that 0<R

0 fp(x)dx <∞and 0<R

0 gq(x)dx <∞, then

Z 0

Z 0

f(x)g(y)

x+y dxdy < π sin(πp)

Z 0

fp(x)dx

1pZ 0

gq(x)dx 1q

, (2)

where the constant factor sin(ππ

p) is the best possible.

Hardy-Hilbert’s integral inequality is important in analysis and its applications (see[10], [11]).

In recent years, the various improvements and extensions on the inequality (1) and (2) appeared in some papers (such as [1]–[4], [7], [9], [12]–[14]) and bibliography therein. They focalize on changing the denominator of the function of the left-hand side of (2). Such as the denominator (x+y) is replaced by (Ax+By)λ in paper [13], the denominator (x+y) is replaced by (xt+yt) (tis a parameter which is independent ofxandy) in paper [7]. Generally, the denominator (x+y) is replaced by (xu(x) +yv(y))λin paper [9].

The main objective of this paper is to build some new Hilbert-type integral inequalities with best constant factors which are extensions of above results for multi-functionsf, gandh. Moreover the denominator is (m(x) +n(y) +r(z)), wherem, nandrare arbitrary functions.

2. Main results

We need the formula of theβ function as (see [8]):

β(u, v) =

Z

0

tu−1

(1 +t)u+vdt=β(v, u) u, v >0.

(3)

Before stating our results we need the following lemmas.

(3)

JJ J I II

Go back

Full Screen

Close

Quit

Lemma 2.1. Let f(x, y, z)∈Lp[0,∞]×[0,∞]×[0,∞] andg(x, y, z)∈Lq[0,∞]×[0,∞]×[0,∞], where 1p+1q = 1. Then

Z

0

Z

0

Z

0

|f(x, y, z)g(x, y, z)|dxdydz

Z

0

Z

0

Z

0

|f(x, y, z)|pdxdydz

1 p

Z

0

Z

0

Z

0

|g(x, y, z)|qdxdydz

1 q

. (4)

Lemma 2.2. Letf(x, y, z)∈Lp[0,∞]×[0,∞]×[0,∞],g(x, y, z)∈Lq[0,∞]×[0,∞]×[0,∞] and h(x, y, z)∈ Lk[0,∞]×[0,∞]×[0,∞] where 1

p+1 q +1

k = 1. Then

Z

0

Z

0

Z

0

|f(x, y, z)g(x, y, z)h(x, y, z)|dxdydz

Z

0

Z

0

Z

0

|f(x, y, z)|pdxdydz

1 p

×

Z

0

Z

0

Z

0

|g(x, y, z)|qdxdydz

1 q

×

Z

0

Z

0

Z

0

|h(x, y, z)|rdxdydz

1 k

. (5)

(4)

JJ J I II

Go back

Full Screen

Close

Quit

Lemma 2.3. Ifp1>1, 1 p1 + 1

q1 = 1,p >1, 1 p+1

q +1

k = 1then for0< ε < 1

qk, we have

Z

0

vp11qkpε1−1 (1 +v)qk1

dv=β 1

p1qk, 1 q1qk

+ 0(1) ε→0+. (6)

Proof. Since

Z

0

vp11qkpε1−1 (1 +v)qk1

dv−β 1

p1qk, 1 q1qk

=

Z

0

vp11qkpε1−1−vp11qk−1 (1 +v)qk1

dv

1

Z

0

vp11qkpε1−1−vp11qk−1 (1 +v)qk1

dv+

Z

1

vp11qkpε1−1−vp11qk−1 (1 +v)qk1

dv

1

Z

0

vp11qkpε1−1−vp11qk−1 dv+

Z

1

vp11qk−1−vp11qkpε1−1 vqk1 dv

= 1

1 p1qk− ε

p1

− 1

1 p1qk

+ −1 1 q1qk

+ 1

1 q1qk− ε

q1

→0 for ε→0.

(5)

JJ J I II

Go back

Full Screen

Close

Quit

Lemma 2.4. Ifp1>1, 1 p1 + 1

q1 = 1,p >1, 1 p+1

q +1

k = 1and0< ε < 1

qk, setting

J1:=

Z

1

Z

1

n(y) m(x) +n(y)

qk1

(m(x))p11qkpε1−1

×(n(y))p11qkqε1−1dm(x) dx

dn(y) dy dxdy, then we have

1 ε

β

1 p1qk, 1

q1qk

+o(1)

−O(1)

≤J1≤ 1 ε

β

1 p1qk, 1

q1qk

+o(1)

, ε→0+. (7)

Proof. For fixedy,settingm(x) =n(y)v,then by (6), we obtain J1 =

Z

1

(n(y))p11qkqε1−1dn(y) dy

×

Z

1

n(y) m(x) +n(y)

qk1

(m(x))p11qkpε1−1dm(x) dx dx

dy

=

Z

1

(n(y))−ε−1dn(y) dy

Z

1 n(y)

vp11qkpε1−1 (1 +v)qk1 dv

 dy

(6)

JJ J I II

Go back

Full Screen

Close

Quit

=

Z

1

(n(y))−ε−1dn(y) dy

Z

0

vp11qkpε1−1 (1 +v)qk1

dv

dy

Z

1

(n(y))−ε−1dn(y) dy

1 n(y)

Z

0

vp11qkpε1−1 (1 +v)qk1

dv

dy

≥ 1 ε

β

1 p1qk, 1

q1qk

+ 0(1)

Z

1

(n(y))−ε−1dn(y) dy

1

Z

0

vp11qkpε1−1dv

dy

= 1

ε

β 1

p1qk, 1 q1qk

+ 0(1)

−1 ε

1 1

p1qk− ε p1

= 1

ε

β 1

p1qk, 1 q1qk

+o(1)

−O(1).

By the same way, we have J1

Z

1

Z

0

n(y) m(x) +n(y)

qk1

(m(x))p11qkpε1−1

×(n(y))p11qkqε1−1dm(x) dx

dn(y) dy dxdy,

= 1

ε

β 1

p1qk, 1 q1qk

+o(1)

.

The lemma is proved.

(7)

JJ J I II

Go back

Full Screen

Close

Quit

Theorem 2.5. Assume thatm,n,rare increasing functions defined on[0,∞[such thatm(0) = n(0) =r(0) = 0, lim

x→∞m(x) = lim

x→∞n(x) = lim

x→∞r(x) =∞, andf,g,hsatisfy

Z

0

(m(x))

q1

p1(1+pq1) dm(x)

dx

−q1(pk+p1

1)

|f(x)|kq21 dx <∞ (8)

Z

0

(m(x))

p1

q1qk1 dm(x) dx

−pq1

1 |f(x)|pp21 dx <∞, (9)

Z

0

(n(y))pq11(1+qk1)

dn(y) dy

−q1(pk+p1

1)

|g(y)|

pq1

2 dy <∞, (10)

Z

0

(n(y))

p1

q1pk1 dn(y) dy

−pq11

|g(y)|qp21dy <∞, (11)

Z

0

(r(z))

q1

p1(1+pk1)dr(z) dz

−q1(kp+p1

1)

|h(z)|qq21 dz <∞, (12)

Z

0

(r(z))

p1 q1pk1

dr(z) dz

−pq1

1 |h(z)|kp21 dz <∞, (13)

where 1 p+1

q +1

k = 1, 1 p1

+ 1 q1

= 1, then

(8)

JJ J I II

Go back

Full Screen

Close

Quit

Z

0

Z

0

Z

0

|f(x)g(y)h(z)|

m(x) +n(y) +r(z)dxdydz≤ π sinqkπ β

1 q1qk, 1

p1qk !1p

×

Z

0

(m(x))

p1

q1qk1 dm(x) dx

−p1 q1

|f(x)|pp21 dx

1 pp1

×

Z

0

(n(y))qp11(1+qk1)

dn(y) dy

−q1(pk+p1

1)

|g(y)|

pq1 2 dy

1 pq1

× π

sinpkπ β 1

q1pk, 1 p1pk

!1q

×

Z

0

(n(y))pq11pk1

dn(y) dy

−pq1

1 |g(y)|qp21 dy

1 qp1

×

Z

0

(r(z))

q1

p1(1+pk1)dr(z) dz

−q1(pk+p1

1)

|h(z)|qq21 dz

1 qq1

× π

sinpqπ β 1

q1pq, 1 p1pq

!1k

Z

0

(r(z))

p1 q1pk1

dr(z) dz

−pq1

1 |h(z)|kp21 dz

1 kp1

×

Z

0

(m(x))

q1

p1(1+pq1) dm(x)

dx

−q1(pk+p1

1)

|f(x)|kq21 dx

1 kq1

, (14)

(9)

JJ J I II

Go back

Full Screen

Close

Quit

where the constant factors π

sinqkπ β 1

q1qk, 1 p1qk

, π

sinpkπ β 1

q1pk, 1 p1pk

, π

sinpqπ β 1

q1pq, 1 p1pq

are best possible.

Proof. Since I=

Z

0

Z

0

Z

0

|f(x)g(y)h(z)|

m(x) +n(y) +r(z)dxdydz

=

Z

0

Z

0

Z

0

|f(x)|12 |g(y)|12 (m(x) +n(y) +r(z))1p

m(x) +n(y) r(z)

pqk1 n(y) m(x) +n(y)

pqk1 dr(z) dz

1pdn(y) dy

−1k

× |g(y)|12 |h(z)|12 (m(x) +n(y) +r(z))1q

n(y) +r(z) m(x)

pqk1 r(z) n(y) +r(z)

pqk1 dm(x) dx

1qdr(z) dz

−1p

× |f(x)|12 |h(z)|12 (m(x) +n(y) +r(z))1k

r(z) +m(x) n(y)

pqk1 m(x) r(z) +m(x)

pqk1

×

dn(y) dy

1kdm(x) dx

−1q

dxdydz.

(15)

Applying H¨older’s inequality on (15) we get I≤I

1 p

1I

1 q

2I

1 k

(16) 3

(10)

JJ J I II

Go back

Full Screen

Close

Quit

where

I1=

Z

0

Z

0

Z

0

|f(x)|p2 |g(y)|p2 m(x) +n(y) +r(z)

m(x) +n(y) r(z)

qk1 n(y) m(x) +n(y)

qk1

×dr(z) dz

dn(y) dy

−pk

dxdydz, (17)

I2=

Z

0

Z

0

Z

0

|g(y)|q2 |h(z)|q2 m(x) +n(y) +r(z)

n(y) +r(z) m(x)

pk1 r(z) n(y) +r(z)

pk1

×dm(x) dx

dr(z) dz

−qp

dxdydz, (18)

I3=

Z

0

Z

0

Z

0

|f(x)|k2 |h(z)|k2 m(x) +n(y) +r(z)

r(z) +m(x) n(y)

pq1

m(x) r(z) +m(x)

pq1

×dn(y) dy

dm(x) dx

−kq

dxdydz.

(19)

Consider the weight coefficient w1(x, y) =

Z 0

1

m(x) +n(y) +r(z)

m(x) +n(y) r(z)

qk1 dr(z) dz dz.

(20)

(11)

JJ J I II

Go back

Full Screen

Close

Quit

Letv= r(z)

m(x) +n(y) in (20) then we obtain

w1(x, y) = π sin π

qk . (21)

Similarly,

w2(y, z) =

Z

0

1

m(x) +n(y) +r(z)

n(y) +r(z) m(x)

pk1

dx= π sin π

pk (22)

and

w3(z, x) =

Z

0

1

m(x) +n(y) +r(z)

r(z) +m(x) n(y)

pq1

dx= π sin π

pq . (23)

Combining (21), (22), (23) and (16) we get

I≤

 π sinqkπ

Z

0

Z

0

n(y) m(x) +n(y)

qk1

|f(x)|p2 |g(y)|p2

dn(y) dy

−pk dxdy

1 p

×

 π sinpkπ

Z

0

Z

0

r(z) n(y) +r(z)

pk1

|g(y)|q2 |h(z)|q2

dr(z) dz

−qp dxdy

1 q

×

 π sinpqπ

Z

0

Z

0

m(x) r(z) +m(x)

pq1

|f(x)|k2 |h(z)|k2

dm(x) dx

−kq dxdy

1 k

. (24)

(12)

JJ J I II

Go back

Full Screen

Close

Quit

Applying H¨older’s inequality with p1 > 1,p1

1 +q1

1 = 1 on the first integral on the right side in (24),we have

Z

0

Z

0

n(y) m(x) +n(y)

qk1

|f(x)|p2|g(y)|p2

dn(y) dy

−pk dxdy

=

Z

0

Z

0

|f(x)|p2 n(y)

m(x)

p 1

1q1qkp1

1 m(x)q11p11 (m(x) +n(y))p11qk

dn(y) dy

p1

1

dm(x) dx

−1q

1

×|g(y)|p2 (n(y))qk1+p11q11 (m(x) +n(y))q11qk

m(x) n(y)

p1q11qkq1

1 dn(y) dy

−pkp1

1 dm(x) dx

q11 dydx

Z

0

Z

0

|f(x)|pp21 (m(x) +n(y))qk1

n(y) m(x)

q11qk−1

(m(x))

p1

q1−1dm(x) dx

−pq11 dn(y) dy dydx

1 p1

×

Z

0

Z

0

|g(y)|pq21 (n(y))

q1 qk+qp1

1−1

(m(x) +n(y))qk1

m(x) n(y)

p1

1qk−1 dn(y)

dy

−q1(pk+p1

1)

dm(x) dx dydx

1 q1

. (25)

Let

w4(x) =

Z

0

1

1 + n(y) m(x)

qk1

n(y) m(x)

q11qk−1

dn(y) dy dy (26)

(13)

JJ J I II

Go back

Full Screen

Close

Quit

Puttingv1= n(y)

m(x) in (26) we have w4(x) =m(x)β

1 q1qk, 1

qk − 1 q1qk

=m(x)β 1

q1qk, 1 p1qk

. (27)

Similarly

w5(y) =

Z

0

1

1 +m(x) n(y)

qk1

m(x) n(y)

p11qk−1

dm(x) dx dx

=n(y)β 1

q1qk, 1 p1qk

. (28)

From (27), (28) and (25) we get

Z

0

Z

0

n(y) m(x) +y

qk1

|f(x)|p2 |g(y)|p2

dn(y) dy

−pk dxdy

≤β 1

q1qk, 1 p1qk

Z

0

(m(x)

p1 q1qk1

dm(x) dx

−pq1

1 |f(x)|pp21 dx

1 p1

×

Z

0

(n(y))

q1

p1(1+qk1)dn(y) dy

−q1(pk+p1

1)

|g(y)|pq21 dy

1 q1

. (29)

(14)

JJ J I II

Go back

Full Screen

Close

Quit

For the second and third integrals on the right side of (24), following the same steps used for obtaining (29), we obtain

Z

0

Z

0

r(z) n(y) +r(z)

pk1

|g(y)|q2 |h(z)|q2

dr(z) dz

−qp dydz

≤β 1

q1qk, 1 p1qk

Z

0

(n(y))

p1

q1pk1 dn(y) dy

−p1 q1

|g(y)|qp21 dy

1 p1

×

Z

0

(r(z))

q1

p1(1+pk1)dr(z) dz

−q1(kp+p1

1)

|h(z)|qq21 dz

1 q1

, (30)

and

Z

0

Z

0

m(x) r(z) +m(x)

pq1

|h(z)|k2 |f(x)|k2

dm(x) dx

−kq dzdx

≤β 1

q1pq, 1 p1pq

Z

0

(r(z))

p1 q1pk1

dr(z) dz

−pq1

1 |h(z)|kp21 dz

1 p1

×

Z

0

(m(x))

q1

p1(1+pq1)dm(x) dx

−q1(pk+p1

1)

|f(x)|kq21 dx

1 q1

. (31)

(15)

JJ J I II

Go back

Full Screen

Close

Quit

Let

γ1=β 1

q1qk, 1 p1qk

, γ2=β 1

q1qk, 1 p1qk

, γ3=β 1

q1pq, 1 p1pq

.

To prove the constant factorsγ1, γ2 andγ3 are best possible. Assume that the constant factor γ1 is not the best possible, then there exists a positive constantλ1 with λ1 < γ1, such that (29) is still valid if we replaceγ1 byλ1. Without loss of generality, we assume thatm(1) =n(1) = 1.

For 0< ε <1,settingfεandgε asfε(x) =gε(x) = 0,forx∈(0,1), and forx∈[1,∞)

|fε(x)|= (m(x))

2 pp1

pq1

1+qk1−ε−1 dm(x)

dx pp2

1

p

q11+1

|gε(x)|= (n(x))pq21

qp1

1(1+qk1)−ε−1dn(x) dx

pq21

q1p

k+p1

1

+1

,

then we obtain λ1

Z

0

(m(x))

p1

q1qk1 dm(x) dx

−pq1

1 |f(x)|pp21dxp11

×

Z

0

(n(y))

q1

p1(1+qk1) dn(y)

dy

−q1(pk+p1

1)

|g(y)|pq21 dyq11

1

Z

1

(m(x))−ε−1dm(x) dx dx

1 p1

Z

1

(n(y))−ε−1dn(y) dy dy

1 q1

= λ1

ε .

(16)

JJ J I II

Go back

Full Screen

Close

Quit

But we have

Z

0

Z

0

n(y) m(x) +y

qk1

|f(x)|p2 |g(y)|p2

dn(y) dy

−pk dxdy

=

Z

1

Z

1

n(y) m(x) +y

qk1

(m(x))p11qkpε1−1(n(y))p11qkqε1−1 dm(x)

dx

dn(y) dy

dxdy=J1

≥1

ε(γ1+o(1))−O(1).

Hence we find

1

ε(γ1+o(1))−O(1)< λ1

(32) ε or

γ1+o(1)−εO(1)< λ1. (33)

Forε→0+, it follows that γ1≤λ1. This contradicts the fact thatλ1< γ1. Hence the constant factorγ1 in (29) is the best possible. Similarlyγ2 andγ3are the best possible. Substituting from

(29), (30), (31) in (24), the result of the theorem follows.

(17)

JJ J I II

Go back

Full Screen

Close

Quit

Remark 1. Puttingp=q=k=13 in (14), we get a new inequality in the form

Z

0

Z

0

Z

0

|f(x)g(y)h(z)|

m(x) +n(y) +r(z)dxdydz

≤ π

sinπ9β 1

9q1, 1 9p1

Z

0

(m(x))

p1

q119dm(x) dx

−p1 q1

|f(x)|3p21dx

1 3p1

×

Z

0

(n(y))

10q1 9p1

dn(y) dy

−q1(1+p1

1)

|g(y)|3q21 dy

1 3q1

×

Z

0

(n(y))

p1

q119dn(y) dy

−p1 q1

|g(y)|3p21 dy

1 3p1

×

Z

0

(r(z))10q9p11

dr(z) dz

−q1(1+p1

1)

|h(z)|

3q1 2 dz

1 3q1

×

Z

0

(r(z))

p1 q119

dr(z) dz

−pq1

1|h(z)|kp21 dz

1 3p1

×

Z

0

(m(x))

10q1 9p1

dm(x) dx

−q1(1+p1

1)

|f(x)|3q21 dx

1 3q1

. (34)

(18)

JJ J I II

Go back

Full Screen

Close

Quit

Remark 2. Puttingp1=q1= 2 in (14) we obtain

Z

0

Z

0

Z

0

|f(x)g(y)h(z)|

m(x) +n(y) +r(z)dxdydz

≤ π

sinqkπ β 1

2qk, 1 2qk

!p1

Z

0

(m(x))1−qk1

dm(x) dx

−1

|f(x)|qdx

1 2p

×

Z

0

(n(y))(1+qk1)

dn(y) dy

−2(pk+12)

|g(y)|pdy

1 2p

× π

sinpkπ β 1

2pk, 1 2pk

!1q

Z

0

(n(y))1−pk1

dn(y) dy

−pq1

1 |g(y)|pdy

1 2q

×

Z

0

(r(z))(1+pk1)

dr(z) dz

−2(pk+12)

|h(z)|qdz

1 2q

(35)

× π

sinpqπ β 1

2pq, 1 2pq

!k1

Z

0

(r(z))1−pk1

dr(z) dz

−1

|h(z)|kdz

1 2k

×

Z

0

(m(x))(1+pq1)

dm(x) dx

−2(pk+12)

|f(x)|kdx

1 2k

,

(19)

JJ J I II

Go back

Full Screen

Close

Quit

which is a new inequality.

Remark 3. Letm(x) =x,n(y) =y andr(z) =z in (34) and (35) we get respectively

Z

0

Z

0

Z

0

|f(x)g(y)h(z)|

x+y+z dxdydz

≤ π

sinπ9β 1

9q1, 1 9p1

Z

0

x

p1 q119

|f(x)|3p21 dx

Z

0

y

p1 q119

|g(y)|3p21 dy

×

Z

0

zpq1119|h(z)|

3p1 2 dz

1 3p1

×

Z

0

x

10q1

9p1 |f(x)|3q21 dx

Z

0

y

10q1

9p1 |g(y)|3q21 dy

×

Z

0

z

10q1

9p1 |h(z)|3q21 dz

1 3q1

.

(20)

JJ J I II

Go back

Full Screen

Close

Quit

and

Z

0

Z

0

Z

0

|f(x)g(y)h(z)|

x+y+z dxdydz

≤ π

sinqkπ β 1

2qk, 1 2qk

!1p

Z

0

x1−qk1 |f(x)|pdx

Z

0

y(1+qk1)|g(y)|pdy

1 2p

× π

sinpkπ β 1

2pk, 1 2pk

!1q

Z

0

y1−pk1 |g(y)|qdy

Z

0

z1+pk1 |h(z)|qdz

1 2q

× π

sinpqπ β 1

2pq, 1 2pq

!1k

Z

0

z1−pk1 |h(z)|kdz

Z

0

x1+pq1 |f(x)|kdx

1 2k

.

1. Yang B.,On Hardy-Hilbert’s integral inequality, J. Math. Anal. Appl.,261(2001), 295–306.

2. ,On the extended Hilbert’s integral inequality, JIPAM,5(4) (2004), Article 96.

3. Bicheng Yang, Bnaeti´c I., Krnic M. and Peˇcari´c J., Generalization of Hilbert and Hardy- -Hilbert integral inequalities, Math. Inequal. Appl.,8(2) (2005), 259–272.

4. Gao Mingzhe and Gao Xuemel,On the generalized Hardy-Hilbert inequality and its applications, Math. Inequal.

Appl.,7(1) (2004), 19–26.

5. Hardy G.,Note on a theorem of Hilbert concerning series of positive terms, Proc. London Math. Soc., Records of Proc. XLV–XLIV,23(2) (1925).

6. Hardy G., Littlewood J. E. and P´olya G.,Inequalities, Cambridge University Press, Cambridge, 1952.

(21)

JJ J I II

Go back

Full Screen

Close

Quit

7. Kuang Jichang,On new extensions of Hilbert’s integral inequality, J. Math. Anal. Appl.,235(2) (1999), 608–

614.

8. Larry C. Andrews,Special Functions for Engineers and Applied Mathematicians,Macmillan Publishing Com- pany, New York, 1985.

9. Krnic M., Gao Mingzhe, Peˇcari´c J. E and Gao Xuemel, On the best constant in Hilbert’s inequality, Math.

Inequal. Appl.8(2) (2005), 317–329.

10. Mitrinovi´c D. S., Peˇcari´c J. E., and Fink A. M., Inequalities Involving Functions and Their Integral and Derivatives,Boston, Kluwer Academic, 1991.

11. , Classical and New Inequalities in Analysis, Mathematics and Its Applications (Eastern European Series), Kluwer Academic Publishers, Dordrecht, Boston and London, 1993.

12. Peˇcari´c J. E.,Generalization of inequalities of Hardy-Hilbert type, Math. Inequal. Appl.7(2) (2004), 217–225.

13. Yang B. and Debnath L., On the extended Hardy-Hilbert’sinequality, J. Math. Anal. Appl., 272(1) (2002), 187–199.

14. Zitian Xie and Yang B.,A New Hilbert-type integral inequality with some parameters and its reverse, Kyung- pook Math. J.48(2008), 93–100.

H. A. Agwo, Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt,e-mail:

Hassanagwa@yahoo.com

参照

関連したドキュメント

This paper deals with some extensions of Hardy-Hilbert’s inequality with the best constant factors by introducing two parameters λ and α and using the Beta functionJ. The

By applying the method of 10, 11 and using the way of real and complex analysis, the main objective of this paper is to give a new Hilbert-type integral inequality in the whole

VUKVI ´ C, Hilbert-Pachpatte type inequalities from Bonsall’s form of Hilbert’s inequality, J. Pure

Key words: Hardy-Hilbert’s integral inequality, Weight, Parameter, Best constant fac- tor, β-function,

As with M¨ obius groups, we define the limit set L(G) of the convergence group G to be the set of all limit points of those sequences { f n } converging in the sense of (ii)..

In this paper, we introduce a new combinatorial formula for this Hilbert series when µ is a hook shape which can be calculated by summing terms over only the standard Young tableaux

The main aim of this article is prove a Harnack inequality and a regularity estimate for harmonic functions with respect to some Dirichlet forms with non-local part.. This holds

We mention that the first boundary value problem, second boundary value prob- lem and third boundary value problem; i.e., regular oblique derivative problem are the special cases