• 検索結果がありません。

JJ II

N/A
N/A
Protected

Academic year: 2022

シェア "JJ II"

Copied!
22
0
0

読み込み中.... (全文を見る)

全文

(1)

volume 6, issue 4, article 92, 2005.

Received 07 April, 2005;

accepted 06 June, 2005.

Communicated by:B. Yang

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

ON HARDY-HILBERT INTEGRAL INEQUALITIES WITH SOME PARAMETERS

YONG HONG

Department of Mathematics Guangdong Business College Guangzhou 510320

People’s Republic of China EMail:hongyong59@sohu.com

2000c Victoria University ISSN (electronic): 1443-5756 109-05

(2)

On Hardy-Hilbert Integral Inequalities with Some

Parameters Yong Hong

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of22

J. Ineq. Pure and Appl. Math. 6(4) Art. 92, 2005

http://jipam.vu.edu.au

Abstract

In this paper, we give a new Hardy-Hilbert’s integral inequality with some pa- rameters and a best constant factor. It includes an overwhelming majority of results of many papers.

2000 Mathematics Subject Classification:26D15.

Key words: Hardy-Hilbert’s integral inequality, Weight, Parameter, Best constant fac- tor,β-function,Γ-function.

Contents

1 Introduction and Main Result . . . 3

2 Weight Function and Lemmas. . . 8

3 Proofs of the Theorems. . . 10

4 Some Corollaries. . . 16 References

(3)

On Hardy-Hilbert Integral Inequalities with Some

Parameters Yong Hong

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of22

J. Ineq. Pure and Appl. Math. 6(4) Art. 92, 2005

1. Introduction and Main Result

Let 1p + 1q = 1(p > 1), f ≥ 0, g ≥ 0, 0 < R

0 fp(x)dx < +∞, 0 <

R

0 gq(x)dx <+∞, then we have the well known Hardy-Hilbert inequality (1.1)

Z 0

Z 0

f(x)g(x) x+y dxdy

< π sin

π p

Z

0

fp(x)dx

1pZ 0

gq(x)dx 1q

;

and an equivalent form as:

(1.2)

Z 0

Z 0

f(x) x+ydx

p

dy <

 π sin

π p

p

Z 0

fp(x)dx.

In recent years, many results have been obtained in the research of these two inequalities (see [1] – [13]). Yang [1] and [2] gave:

(1.3) Z

0

Z 0

f(x)g(y) (x+y)λdxdy

< B

p+λ−2

p ,p+λ−2 q

× Z

0

x1−λfp(x)dx

1pZ 0

x1−λgq(x)dx 1q

,

(4)

On Hardy-Hilbert Integral Inequalities with Some

Parameters Yong Hong

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of22

J. Ineq. Pure and Appl. Math. 6(4) Art. 92, 2005

http://jipam.vu.edu.au

whereB(r, s)is theβ-function; and Kuang [3] gave:

(1.4) Z

0

Z 0

f(x)g(x) xλ+yλ dxdy

< π

λsin1p π

sin1q

π

Z

0

x1−λfp(x)dx

1pZ 0

x1−λgq(x)dx 1q

.

Recently, Hong [4] gave:

(1.5) Z

0

Z 0

f(x)g(x) px2+y2dxdy

≤ 1 2√

πΓ 1

2p

Γ 1

2q

Z 0

fp(x)dx

1pZ 0

gq(x)dx 1q

. And Yang [5] gave:

(1.6) Z

0

Z 0

f(x)g(x) xλ+yλ dxdy

< π λsin

π p

Z

0

x(p−1)(1−λ)fp(x)dx

1pZ 0

x(q−1)(1−λ)gq(x)dx 1q

;

(1.7) Z

0

yλ−1 Z

0

f(x) xλ+yλdx

p

dy

(5)

On Hardy-Hilbert Integral Inequalities with Some

Parameters Yong Hong

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of22

J. Ineq. Pure and Appl. Math. 6(4) Art. 92, 2005

<

 π λsin

π p

p

Z 0

x(p−1)(1−λ)fp(x)dx.

These results generalize and improve (1.1) and (1.2) in a certain degree.

In this paper, by introducing a few parameters, we obtain a new Hardy- Hilbert integral inequality with a best constant factor, which is a more extended inequality, and includes all the results above and the overwhelming majority of results of many recent papers.

Our main result is as follows:

Theorem 1.1. If 1p + 1q = 1 (p > 1), α > 0, λ > 0, m, n ∈ R, such that 0<1−mp < αλ,0<1−nq < αλ, andf ≥0,g ≥0, satisfy

(1.8) 0<

Z 0

x(1−αλ)+p(n−m)

fp(x)dx <∞,

(1.9) 0<

Z 0

y(1−αλ)+q(m−n)

gq(y)dy <∞, then

(1.10) Z

0

Z 0

f(x)g(x) (xα+yα)λdxdy

< Hλ,α(m, n, p, q) Z

0

x(1−αλ)+p(n−m)

fp(x)dx 1p

× Z

0

y(1−αλ)+q(m−n)

gq(y)dy 1q

;

(6)

On Hardy-Hilbert Integral Inequalities with Some

Parameters Yong Hong

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of22

J. Ineq. Pure and Appl. Math. 6(4) Art. 92, 2005

http://jipam.vu.edu.au

and

(1.11) Z

0

y(1−αλ)+q(m−n) 1−q

Z 0

f(x) (xα+yα)λdx

p

dy

<Heλ,α(m, n, p, q) Z

0

x(1−αλ)+p(n−m)

fp(x)dx, where

Hλ,α(m, n, p, q) = 1 αB1p

1−mp

α , λ− 1−mp α

B1q

1−nq

α , λ− 1−nq α

and

Heλ,α(m, n, p, q) = 1 αpB

1−mp

α , λ−1−mp α

Bp−1

1−nq

α , λ− 1−nq α

. Theorem 1.2. If p > 1, 1p + 1q = 1, α > 0, λ > 0, m, n ∈ R, such that 0<1−mp < αλ,mp+nq= 2−αλ, andf(x)≥0,g(y)≥0, satisfy

(1.12) 0<

Z 0

xn(p+q)−1fp(x)dx <∞,

(1.13) 0<

Z 0

ym(p+q)−1gq(y)dy <∞,

(7)

On Hardy-Hilbert Integral Inequalities with Some

Parameters Yong Hong

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of22

J. Ineq. Pure and Appl. Math. 6(4) Art. 92, 2005

then

(1.14) Z

0

Z 0

f(x)g(x)

(xα+yα)λdxdy < 1 αB

1−mp

α , λ− 1−mp α

× Z

0

xn(p+q)−1fp(x)dx

1pZ 0

ym(p+q)−1gq(y)dy 1q

;

(1.15) Z

0

ym(p+q)−11−q Z

0

f(x) (xα+yα)λdx

p

dy

< 1 αpBp

1−mp

α , λ− 1−mp α

Z 0

xn(p+q)−1fp(x)dx, where the constant factors α1B 1−mpα , λ−1−mpα

in (1.14) and

1

αpBp 1−mpα , λ− 1−mpα

in (1.15) are the best possible.

(8)

On Hardy-Hilbert Integral Inequalities with Some

Parameters Yong Hong

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of22

J. Ineq. Pure and Appl. Math. 6(4) Art. 92, 2005

http://jipam.vu.edu.au

2. Weight Function and Lemmas

The weight function is defined as follows ωλ,α(m, n, y) =

Z 0

1

(xα+yα)λ · yn

xmdx, y∈(0,+∞).

Lemma 2.1. Ifα >0,λ >0,m∈R,0<1−m < αλ, then (2.1) ωλ,α(m, n, y) = 1

αy(1−αλ)+(n−m)

B

1−m

α , λ−1−m α

. Proof. Settingt = xyαα, then

ωλ,α(m, n, y) = 1 α

Z 0

1

(1 +t)λy(1−αλ)+(n−m)

t1−mα −1dt

= 1

αy(1−αλ)+(n−m)

Z 0

1

(1 +t)λt1−mα −1dt

= 1

αy(1−αλ)+(n−m)

B

1−m

α , λ−1−m α

. Hence (2.1) is valid. The lemma is proved.

Lemma 2.2. Ifα >0, λ >0, β <1, a∈R, then (2.2)

Z 1

1 x1+ε

Z 1

0

1

(1 +t)λt1−βα −1−aεdtdx=O(1), (ε→0+).

(9)

On Hardy-Hilbert Integral Inequalities with Some

Parameters Yong Hong

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of22

J. Ineq. Pure and Appl. Math. 6(4) Art. 92, 2005

Proof. Since(1−β)/α >0,forεsmall enough, such that 1−βα −aε >0,then Z

1

1 x1+ε

Z 1

0

1

(1 +t)λt1−βα −1−aεdtdx <

Z 1

1 x

Z 1

0

t(1−βα −aε)−1dtdx

= 1

1−β−aεα Z

1

xβ+aεα−2dx

= 1

(1−β−aεα)2. Hence (2.2) is valid.

(10)

On Hardy-Hilbert Integral Inequalities with Some

Parameters Yong Hong

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of22

J. Ineq. Pure and Appl. Math. 6(4) Art. 92, 2005

http://jipam.vu.edu.au

3. Proofs of the Theorems

Proof of Theorem1.1. By Hölder’s inequality and Lemma2.1, we have

G= Z

0

Z 0

f(x)g(y) (xα+yα)λdxdy

= Z

0

Z 0

f(x) (xα+yα)λ/p

xn ym

g(y) (xα+yα)λ/q

ym xn

dxdy

≤ Z

0

Z 0

fp(x) (xα+yα)λ

xnp ymp

1pZ 0

Z 0

gq(x) (xα+yα)λ

ymq xnqdxdy

1q , (3.1)

according to the condition of taking equality in Hölder’s inequality, if (3.1) takes equality, then there exists a constantC, such that

fp(x) (xα+yα)λ

xnp ymp

gq(y) (xα+yα)λ

ymq xnq

≡C,a.e. (x, y)∈(0,+∞)×(0,+∞) it follows that

fp(x)xn(p+q)≡Cgq(y)ym(p+q)≡C1(constant), a.e. (x, y)∈(0,+∞)×(0,+∞) hence

Z 0

x(1−αλ)+p(n−m)

fp(x)dx

= Z

0

x(1−αλ)+n(p+q)−nq−mp

fp(x)dx

=C1 Z

0

x(1−αλ)−np−mq

dx

(11)

On Hardy-Hilbert Integral Inequalities with Some

Parameters Yong Hong

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of22

J. Ineq. Pure and Appl. Math. 6(4) Art. 92, 2005

=C1 Z 1

0

x(1−αλ)−np−mq

dx+C1 Z

1

x(1−αλ)−np−mq

dx= +∞, which contradicts (1.8) and (1.9). Hence, by (3.1), we have

G <

Z 0

Z 0

1 (xα+yα)λ

xnp ympdy

fp(x)dx 1p

× Z

0

Z 0

1 (xα+yα)λ

ymq xnqdy

gq(y)dy 1q

= 1

α Z

0

x(1−αλ)+p(n−m)

B

1−mp

α , λ− 1−mp α

fp(x)dx 1p

× 1

α Z

0

y(1−αλ)+q(m−n)

B

1−nq

α , λ−1−nq α

gq(y)dy 1q

=Hλ,α(m, n, p, q) Z

0

x(1−αλ)+p(n−m)

fp(x)dx 1p

× Z

0

y(1−αλ)+q(m−n)

gq(y)dy 1q

. Hence (1.10) is vaild.

Letβ = [(1−αλ) +q(m−n)]/(1−q),and

eg(y) =yβ Z

0

f(x) (xα+yα)λdx

pq .

(12)

On Hardy-Hilbert Integral Inequalities with Some

Parameters Yong Hong

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of22

J. Ineq. Pure and Appl. Math. 6(4) Art. 92, 2005

http://jipam.vu.edu.au

By (1.10), we have Z

0

y(1−αλ)+q(m−n)

egq(y)dy

= Z

0

yβ(1−q)egq(y)dy

= Z

0

yβ Z

0

f(x) (xα+yα)λdx

p

dy

= Z

0

yβ Z

0

f(x) (xα+yα)λdx

pq Z 0

f(x) (xα+yα)λdx

dy

= Z

0

Z 0

f(x)eg(y) (xα+yα)λdxdy

< Hλ,α(m, n, p, q) Z

0

x(1−αλ)+p(n−m)

fp(x)dx 1p

× Z

0

y(1−αλ)+q(m−n)

egq(y)dy|

1q , It follows that

Z 0

y(1−αλ)+q(m−n) 1−q

Z 0

f(x) (xα+yα)λdx

p

dy

<Heλ,α(m, n, p, q) Z

0

x(1−αλ)+p(n−m)

fp(x)dx.

Hence, (1.11) is valid.

(13)

On Hardy-Hilbert Integral Inequalities with Some

Parameters Yong Hong

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of22

J. Ineq. Pure and Appl. Math. 6(4) Art. 92, 2005

Proof of Theorem1.2. Since0<1−mp < αλ, mp+nq = 2−αλ,then 0<1−nq < αλ,

(1−αλ) +p(n−m) =n(p+q)−1, (1−αλ) +q(m−n) = m(p+q)−1,

1−mp

α =λ− 1−nq α . By Theorem1.1, (1.14) and (1.15) are valid.

Forε >0,setting f0(x) =

( x[−n(p+q)−ε]/p, x≥1;

0, 0≤x <1,

and

g0(y) =

( y[−m(p+q)−ε]/q, y ≥1;

0, 0≤y <1.

We have

(3.2) 0<

Z 0

xn(p+q)−1f0p(x)dx= Z

1

x−1−εdx= 1 ε <∞,

(3.3) 0<

Z 0

ym(p+q)−1gq0(y)dy= Z

1

y−1−εdy = 1 ε <∞.

(14)

On Hardy-Hilbert Integral Inequalities with Some

Parameters Yong Hong

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of22

J. Ineq. Pure and Appl. Math. 6(4) Art. 92, 2005

http://jipam.vu.edu.au

Z 0

Z 0

f0(x)g0(y) (xα+yα)λdxdy

= Z

1

Z 1

1

(xα+yα)λxn(p+q)+εp ym(p+q)+εq dxdy

= Z

1

xn(p+q)+εp Z

1

1

(xα+yα)λym(p+q)+εq dydx

= 1 α

Z 1

1 x1+ε

Z

1

1

(1 +t)λt1−mpα −1−ε dtdx

= 1 α

Z 1

1 x1+ε

Z 0

1

(1 +t)λt1−mtα −1−ε dtdx

− Z

1

1 x1+ε

Z 1

0

1

(1 +t)λt1−mtα −1−ε dtdx

# . By Lemma2.2, whenε→0,we have

Z 1

1 x1+ε

Z 1

0

1

(1 +t)λt1−mpα −1−ε dtdx=O(1).

Since Z

0

1

(1 +t)λt1−mpα −1−ε dt=B

1−mp

α , λ− 1−mp α

+o(1),

(15)

On Hardy-Hilbert Integral Inequalities with Some

Parameters Yong Hong

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of22

J. Ineq. Pure and Appl. Math. 6(4) Art. 92, 2005

we have Z

0

Z 0

f0(x)g0(y)

(xα+yα)λdxdy = 1 α

1 ε

B

1−mp

α , λ− 1−mp α

+o(1)

−O(1)

= 1 ε

1 αB

1−mp

α , λ− 1−mp α

−o(1)

= 1 εαB

1−mp

α , λ− 1−mp α

(1−o(1)).

(3.4)

If the constant α1B 1−mpα , λ− 1−mpα

in (1.14) is not the best possible, then there exists a K < α1B 1−mpα , λ− 1−mpα

,such that (1.14) still is valid when we replace α1B 1−mpα , λ− 1−mpα

byK. By (3.2), (3.3) and (3.4), we find 1

εαB

1−mp

α , λ− 1−mp α

(1−o(1))

< K Z

0

xn(p+q)−1f0p(x)dx

1pZ 0

ym(p+q)−1gq0(y)dy 1q

=K1 ε. For ε → 0+, we have α1B 1−mpα , λ− 1−mpα

≤ K, which contradicts the fact thatK < α1B 1−mpα , λ− 1−mpα

. It follows thatα1B 1−mpα , λ− 1−mpα

in (1.14) is the best possible.

Since (1.14) is equivalent to (1.15), then the constant α1pBp 1−mpα , λ− 1−mpα in (1.15) is the best possible. The theorem is proved.

(16)

On Hardy-Hilbert Integral Inequalities with Some

Parameters Yong Hong

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of22

J. Ineq. Pure and Appl. Math. 6(4) Art. 92, 2005

http://jipam.vu.edu.au

4. Some Corollaries

When we take the appropriate parameters, many new inequalities can be ob- tained as follows:

Corollary 4.1. If 1p + 1q = 1 (p > 1), α > 0, λ > 0, f ≥ 0, g ≥ 0, and x(1−αλ)(p−1)/pf(x)∈Lp(0,+∞),x(1−αλ)(q−1)/qg(x)∈Lq(0,+∞), then

(4.1) Z

0

Z 0

f(x)g(y) (xα+yα)λdxdy

<

Γ

λ p

Γ

λ q

αΓ(λ)

Z 0

x(1−αλ)(p−1)

fp(x)dx 1p

× Z

0

x(1−αλ)(q−1)

gq(x)dx 1q

;

(4.2) Z

0

yα−1 Z

0

f(x) (xα+yα)λdx

p

dy

<

 Γ

λ p

Γ

λ q

αΓ(λ)

p

Z 0

x(1−αλ)(p−1)

fp(x)dx,

where the constantsΓ

λ p

Γ

λ q

.

(αΓ(λ))in (4.1) andh Γ

λ p

Γ

λ q

.

(αΓ(λ))ip

in (4.2) are the best possible.

(17)

On Hardy-Hilbert Integral Inequalities with Some

Parameters Yong Hong

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of22

J. Ineq. Pure and Appl. Math. 6(4) Art. 92, 2005

Proof. If we takem= 1pαλp2, n= 1qαλq2 in Theorem1.2, (4.1) and (4.2) can be obtained.

Corollary 4.2. If1p+1q = 1 (p >1), λ >0, f ≥0, g≥0andx(1−λ)(p−1)/pf(x)∈ Lp(0,+∞), x(1−λ)(q−1)/qg(x)∈Lq(0,+∞), then

(4.3) Z

0

Z 0

f(x)g(y) (x+y)λdxdy

<

Γ

λ p

Γ

λ q

Γ(λ)

Z 0

x(1−λ)(p−1)fp(x)dx

1pZ 0

x(1−λ)(q−1)gq(x)dx 1q

,

(4.4)

Z 0

Z 0

f(x) (x+y)λdx

p

dy

<

 Γ

λ p

Γ

λ q

Γ(λ)

p

Z 0

x(1−λ)(p−1)fp(x)dx,

where Γ

λ p

Γ

λ q

.

Γ(λ) in (4.3) and h

Γ

λ p

Γ

λ q

.

Γ(λ)ip

in (4.4) are the best possible.

Proof. If we takeα= 1in Corollary4.1, (4.3) and (4.4) can be obtained.

Corollary 4.3. If 1p + 1q = 1 (p > 1), λ > 0, p+λ−2 > 0, q+λ−2 > 0,

(18)

On Hardy-Hilbert Integral Inequalities with Some

Parameters Yong Hong

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of22

J. Ineq. Pure and Appl. Math. 6(4) Art. 92, 2005

http://jipam.vu.edu.au

f ≥0, g ≥0, andx(1−λ)/pf(x)∈Lp(0,+∞), x(1−λ)/qg(x)∈Lq(0,+∞), then (4.5)

Z 0

Z 0

f(x)g(y) (x+y)λdxdy

< B

p+λ−2

p ,q+λ−2 q

Z 0

x1−λfp(x)

1pZ 0

x1−λgq(x)dx 1q

,

(4.6) Z

0

y1−λ1−q Z

0

f(x) (x+y)λdx

p

dy

< Bp

p+λ−2

p ,q+λ−2 q

Z 0

x1−λfp(x)dx, where Bp+λ−2

p ,q+λ−2q

in (4.5) andBpp+λ−2

p ,q+λ−2q

in (4.6) are the best possible.

Proof. If we takeα = 1, m =n = 2−λpq in Theorem1.2, (4.5) and (4.6) can be obtained.

Corollary 4.4. If 1p +1q = 1 (p >1), α >0, f ≥0, g ≥0, andx(1−α)/pf(x)∈ Lp(0,+∞), x(1−α)/qg(x)∈Lq(0,+∞), then

(4.7) Z

0

Z 0

f(x)g(x) xα+yα dxdy

< π

αsin1p

π

sin1q

π

Z

0

x1−αfp(x)dx

pZ 0

x1−αgq(x)dx q

,

(19)

On Hardy-Hilbert Integral Inequalities with Some

Parameters Yong Hong

Title Page Contents

JJ II

J I

Go Back Close

Quit Page19of22

J. Ineq. Pure and Appl. Math. 6(4) Art. 92, 2005

(4.8) Z

0

y1−α1−q Z

0

f(x) xα+yαdx

p

dy

<

π αsin1p

π

sin1q

π

p

Z 0

x1−αfp(x)dx.

Proof. If we takeλ = 1, m = n = pq1, in Theorem1.1, (4.7) and (4.8) can be obtained.

Corollary 4.5. If 1p + 1q = 1 (p > 1), α > 0, f ≥ 0, g ≥ 0, and f(x) ∈ Lp(0,+∞), g(x)∈Lq(0,+∞), then

(4.9) Z

0

Z 0

f(x)g(x) (xα+yα)α1 dxdy

<

Γ 1

Γ

1

αΓ α1

Z 0

fp(x)dx

1pZ 0

gq(x)dx 1q

,

(4.10)

Z 0

Z 0

f(x) (xα+yα)α1 dx

!p

dy

<

 Γ

1

Γ

1

αΓ α1

p

Z 0

fp(x)dx,

where Γ

1

Γ

1

.

αΓ α1

in (4.9) andh Γ

1

Γ

1

.

αΓ α1ip

in (4.10) are the best possible.

(20)

On Hardy-Hilbert Integral Inequalities with Some

Parameters Yong Hong

Title Page Contents

JJ II

J I

Go Back Close

Quit Page20of22

J. Ineq. Pure and Appl. Math. 6(4) Art. 92, 2005

http://jipam.vu.edu.au

Proof. If we takeλ = α1, m =n = pq1 in Theorem1.2, (4.9) and (4.10) can be obtained.

Remark 1. (4.1) and (4.2) are respectively generalizations of (1.6) and (1.7).

Forα= 1in (4.1) and (4.2), (1.6) and (1.7) can be obtained.

Remark 2. (4.3) and (4.4) are respectively generalizations of (1.1) and (1.2) . Remark 3. (4.5) is the result of [1] and [2]. (4.6) is a new inequality.

Remark 4. (4.7) is the result of [3]. (1.7) is a new inequality.

Remark 5. (4.9) is a generalization of (1.5). (4.10) is a new inequality.

For other appropriate values of parameters taken in Theorems 1.1 and 1.2, many new inequalities and the inequalities of [6] – [13] can yet be obtained.

(21)

On Hardy-Hilbert Integral Inequalities with Some

Parameters Yong Hong

Title Page Contents

JJ II

J I

Go Back Close

Quit Page21of22

J. Ineq. Pure and Appl. Math. 6(4) Art. 92, 2005

References

[1] BICHENG YANG, A generalized Hardy-Hilbert’s inequality with a best constant factor, Chin. Ann. of Math. (China), 21A(2000), 401–408.

[2] BICHENG YANG, On Hardy-Hilbert’s intrgral inequality, J. Math. Anal.

Appl., 261 (2001), 295–306.

[3] JICHANG KUANG, On new extensions of Hilbert’s integtal inequality, Math. Anal. Appl., 235 (1999), 608–614.

[4] YONG HONG, All-sided Generalization about Hardy-Hilbert’s integral inequalities, Acta Math. Sinica (China), 44 (2001), 619–626.

[5] BICHENG YANG, On a generalization of Hardy-Hilbert’s inequality, Ann. of Math. (China), 23 (2002), 247–254.

[6] BICHENG YANG, On a generalization of Hardy-Hilbert’s integral in- eguality, Acta Math. Sinica (China), 41(4) (1998), 839–844.

[7] KE HU, On Hilbert’s inequality, Ann. of Math. (China), 13B (1992), 35–

39

[8] KE HU, On Hilbert’s inequality and it’s application, Adv. in Math.

(China), 22 (1993), 160–163.

[9] BICHENG YANG AND MINGZHE GAO, On a best value of Hardy- Hilbert’s inequality, Adv. in Math. (China), 26 (1999), 159–164.

(22)

On Hardy-Hilbert Integral Inequalities with Some

Parameters Yong Hong

Title Page Contents

JJ II

J I

Go Back Close

Quit Page22of22

J. Ineq. Pure and Appl. Math. 6(4) Art. 92, 2005

http://jipam.vu.edu.au

[10] MINGZHE GAO, An improvement of Hardy-Riesz’s extension of the Hilbert inequality, J. Mathematical Research and Exposition, (China) 14 (1994), 255–359.

[11] MINGZHE GAO AND BICHENG YANG, On the extended Hilbert’s in- equality, Proc. Amer. Math. Soc., 126 (1998), 751–759.

[12] BICHENG YANG AND L. DEBNATH, On a new strengtheaed Hardy- Hilbert’s intequality, Internat. J. Math. & Math. Sci., 21 (1998): 403–

408.

[13] B.G. PACHPATTE, On some new inequalities similar to Hilbert’s inequal- ity, J. Math. Anal. & Appl., 226 (1998), 166–179.

参照

関連したドキュメント

This paper deals with some extensions of Hardy-Hilbert’s inequality with the best constant factors by introducing two parameters λ and α and using the Beta functionJ. The

Key words: Analytic function; Multivalent function; Linear operator; Convex univalent func- tion; Hadamard product (or convolution); Subordination; Integral operator.... Analytic

By applying the method of 10, 11 and using the way of real and complex analysis, the main objective of this paper is to give a new Hilbert-type integral inequality in the whole

Next we integrate out all original domain wall indices α, β, γ, · · · and we get the effective weight function of M at each coarse grained (renormalized) dual link, where M is

The purpose of the present work is to obtain a weighted norm Hardy-type inequality involving mixed norms which contains the above result as a special case and also provides

The aim of this paper is to establish a new extension of Hilbert’s inequality and Hardy- Hilbert’s inequality for multifunctions with best constant factors.. Also, we present

Lang, The generalized Hardy operators with kernel and variable integral limits in Banach function spaces, J.. Sinnamon, Mapping properties of integral averaging operators,

Key words: Random variable, Expectation, Variance, Dispersion, Grüss Inequality, Chebychev’s Inequality, Lupa¸s