Hilbert-Pachpatte’s Inequalities Wengui Yang vol. 10, iss. 1, art. 26, 2009
Title Page
Contents
JJ II
J I
Page1of 28 Go Back Full Screen
Close
SOME NEW HILBERT-PACHPATTE’S INEQUALITIES
WENGUI YANG
School of Mathematics and Computational Science Xiangtan University, Xiangtan, 411105
Hunan, P.R. China
EMail:yangwg8088@163.com
Received: 05 September, 2008
Accepted: 2 January, 2009
Communicated by: W.S. Cheung 2000 AMS Sub. Class.: 26D15.
Key words: Hilbert-Pachpatte’s inequality; Hölder’s inequality; Jensen’s inequality; Nonneg- ative sequences.
Abstract: Some new Hilbert-Pachpatte discrete inequalities and their integral analogues are established in this paper. Other inequalities are also given in remarks.
Hilbert-Pachpatte’s Inequalities Wengui Yang vol. 10, iss. 1, art. 26, 2009
Title Page Contents
JJ II
J I
Page2of 28 Go Back Full Screen
Close
Contents
1 Introduction 3
2 Main Results 6
3 Integral Analogues 17
Hilbert-Pachpatte’s Inequalities Wengui Yang vol. 10, iss. 1, art. 26, 2009
Title Page Contents
JJ II
J I
Page3of 28 Go Back Full Screen
Close
1. Introduction
Letp≥1, q≥1and{am}and{bn}be two nonnegative sequences of real numbers defined form = 1,2, . . . , kandn = 1,2, . . . , r, wherek andr are natural numbers and defineAm =Pm
s=1asandBn=Pn
t=1bt. Then (1.1)
k
X
m=1 r
X
n=1
ApmBnq
m+n ≤C(p, q, k, r) ( k
X
m=1
(k−m+ 1)(Ap−1m am)2 )12
× ( r
X
n=1
(r−n+ 1)(Bnq−1bn)2 )12
, unless{am}or{bn}is null, whereC(p, q, k, r) = 12pq√
kr.
An integral analogue of (1.1) is given in the following result.
Letp ≥1, q ≥ 1andf(σ) ≥ 0, g(τ)≥ 0forσ ∈(0, x), τ ∈ (0, y),wherex, y are positive real numbers and defineF(s) = Rs
0 f(σ)dσ andG(t) =Rt
0 g(τ)dτ,for s∈(0, x), t∈(0, y). Then
(1.2) Z x
0
Z y 0
Fp(s)Gq(t)dsdt
s+t ≤D(p, q, x, y) Z x
0
(x−s)(Fp−1(s)f(s))2ds 12
× Z y
0
(y−t)(Gq−1(t)g(t))2dt 12
, unlessf(σ)≡0org(τ)≡0, whereD(p, q, x, y) = 12pq√
xy.
Inequalities (1.1) and (1.2) are the well known Hilbert-Pachpatte inequalities [1], which gave new estimates on Hilbert type inequalities [2]. It is well known that the Hilbert-Pachpatte inequalities play a dominant role in analysis, so the literature on such inequalities and their applications is vast [3] – [8].
Hilbert-Pachpatte’s Inequalities Wengui Yang vol. 10, iss. 1, art. 26, 2009
Title Page Contents
JJ II
J I
Page4of 28 Go Back Full Screen
Close
Young-Ho Kim [9] gave new inequalities similar to the Hilbert-Pachpatte inequal- ities as follows.
Letp ≥ 1, q ≥ 1, α > 0, and{am} and{bn}be two nonnegative sequences of real numbers defined for m = 1,2, . . . , k and n = 1,2, . . . , r, where k and r are natural numbers and defineAm =Pm
s=1asandBn=Pn
t=1bt. Then (1.3)
k
X
m=1 r
X
n=1
ApmBnq
(mα+nα)α1 ≤C(p, q, k, r;α) ( k
X
m=1
(k−m+ 1)(Ap−1m am)2 )12
× ( r
X
n=1
(r−n+ 1)(Bnq−1bn)2 )12
,
unless{am}or{bn}is null, whereC(p, q, k, r;α) = 121α pq√
kr.
An integral analogue of (1.3) is given in the following result.
Letp≥1, q ≥1, α >0andf(σ)≥0, g(τ)≥0forσ∈(0, x), τ ∈(0, y),where x, y are positive real numbers and defineF(s) =Rs
0 f(σ)dσ andG(t) =Rt
0 g(τ)dτ, fors∈(0, x), t∈(0, y). Then
(1.4) Z x
0
Z y 0
Fp(s)Gq(t)dsdt (sα+tα)α1
≤D(p, q, x, y;α) Z x
0
(x−s)(Fp−1(s)f(s))2ds 12
× Z y
0
(y−t)(Gq−1(t)g(t))2dt 12
,
unlessf(σ)≡0org(τ)≡0, whereD(p, q, x, y;α) = 121α pq√
xy.
Hilbert-Pachpatte’s Inequalities Wengui Yang vol. 10, iss. 1, art. 26, 2009
Title Page Contents
JJ II
J I
Page5of 28 Go Back Full Screen
Close
The purpose of the present paper is to derive some new generalized inequalities (1.1) and (1.2) that are similar to (1.3) and (1.4). By applying an elementary inequal- ity, we also obtain some new inequalities similar to some results in [1,9].
Hilbert-Pachpatte’s Inequalities Wengui Yang vol. 10, iss. 1, art. 26, 2009
Title Page Contents
JJ II
J I
Page6of 28 Go Back Full Screen
Close
2. Main Results
Now we give our results as follows in this paper.
Theorem 2.1. Let p ≥ 1, q ≥ 1, α > 1, γ > 1 and{am}and {bn}be two non- negative sequences of real numbers defined form= 1,2, . . . , k andn= 1,2, . . . , r, wherek andr are natural numbers and defineAm = Pm
s=1as andBn = Pn t=1bt. Then
(2.1)
k
X
m=1 r
X
n=1
ApmBnq γm
(α−1)(α+γ)
αγ +αn
(γ−1)(α+γ) αγ
≤C(p, q, k, r;α, γ)
× ( k
X
m=1
(k−m+ 1)(Ap−1m am)α
)α1 ( r X
n=1
(r−n+ 1)(Bnq−1bn)γ )1γ
,
unless{am}or{bn}is null, whereC(p, q, k, r;α, γ) = α+γpq kα−1α rγ−1γ .
Proof. The idea for the proof Theorem2.1comes from Theorem 1 of [1] and The- orem 2.1 of [9]. From the hypotheses of Theorem 2.1 and using the following in- equality (see [10,11]),
(2.2)
( n X
m=1
zm )β
≤β
n
X
m=1
zm ( m
X
k=1
zk )β−1
,
whereβ ≥1is a constant andzm ≥0,(m= 1,2, . . . , n), it is easy to observe that Apm ≤p
m
X
s=1
Ap−1s as, m= 1,2, . . . , k, (2.3)
Bnq ≤q
n
X
t=1
Btq−1bt, n = 1,2, . . . , r.
Hilbert-Pachpatte’s Inequalities Wengui Yang vol. 10, iss. 1, art. 26, 2009
Title Page Contents
JJ II
J I
Page7of 28 Go Back Full Screen
Close
From (2.3) and Hölder’s inequality, we have (2.4)
m
X
s=1
Ap−1s as ≤mα−1α ( m
X
s=1
(Ap−1s as)α )α1
, m= 1,2, . . . , k,
and (2.5)
n
X
t=1
Btq−1bt≤nγ−1γ ( n
X
t=1
(Btq−1bt)γ )1γ
, n = 1,2, . . . , r.
Using the inequality of means [12]
(2.6)
( n Y
i=1
sωii )Ωn1
≤ ( 1
Ωn
n
X
i=1
ωisri )r1
forr >0, ωi >0,Pn
i=1ωi = Ωn,we observe that (2.7) (sω11sω22)r/(ω1+ω2) ≤ 1
ω1+ω2 (ω1sr1+ω2sr2).
Lets1 =mα−1, s2 =nγ−1, ω1 = α1, ω2 = 1γ andr=ω1+ω2,from (2.3) – (2.5) and (2.7), we have
ApmBnq ≤pqmα−1α nγ−1γ ( m
X
s=1
(Ap−1s as)α
)α1 ( n X
t=1
(Btq−1bt)γ )1γ (2.8)
≤ pqαγ α+γ
(m
(α−1)(α+γ) αγ
α + n
(γ−1)(α+γ) αγ
γ )
Hilbert-Pachpatte’s Inequalities Wengui Yang vol. 10, iss. 1, art. 26, 2009
Title Page Contents
JJ II
J I
Page8of 28 Go Back Full Screen
Close
× ( m
X
s=1
(Ap−1s as)α
)α1 ( n X
t=1
(Btq−1bt)γ )1γ
,
form= 1,2, . . . , k, n= 1,2, . . . , r.From (2.8), we observe that (2.9) ApmBnq
γm
(α−1)(α+γ)
αγ +αn
(γ−1)(α+γ) αγ
≤ pq α+γ
( m X
s=1
(Ap−1s as)α
)α1 ( n X
t=1
(Btq−1bt)γ )1γ
, for m = 1,2, . . . , k, n = 1,2, . . . , r. Taking the sum on both sides of (2.9) first overnfrom1torand then overmfrom1tokof the resulting inequality and using Hölder’s inequality with indicesα, α/(α−1)andγ, γ/(γ −1)and interchanging the order of summations, we observe that
k
X
m=1 r
X
n=1
ApmBnq γm
(α−1)(α+γ)
αγ +αn
(γ−1)(α+γ) αγ
≤ pq α+γ
k
X
m=1
( m X
s=1
(Ap−1s as)α )1α
r
X
n=1
( n X
t=1
(Btq−1bt)γ )1γ
≤ pq α+γkα−1α
( k X
m=1 m
X
s=1
(Ap−1s as)α )α1
r
γ−1 γ
( r X
n=1 n
X
t=1
(Btq−1bt)γ )γ1
Hilbert-Pachpatte’s Inequalities Wengui Yang vol. 10, iss. 1, art. 26, 2009
Title Page Contents
JJ II
J I
Page9of 28 Go Back Full Screen
Close
= pq
α+γkα−1α rγ−1γ ( k
X
m=1
(k−m+ 1)(Ap−1m am)α )1α
× ( r
X
n=1
(r−n+ 1)(Bnq−1bn)γ )γ1
.
Remark 1. In Theorem 2.1, setting α = γ = 2, we have (1.1). In Theorem 2.1, setting α1 +γ1 = 1, we have
k
X
m=1 r
X
n=1
ApmBnq
γmα−1+αnγ−1 ≤C(p, q, k, r;α, γ)
× ( k
X
m=1
(k−m+ 1)(Ap−1m am)α
)α1 ( r X
n=1
(r−n+ 1)(Bnq−1bn)γ )1γ
,
unless{am}or{bn}is null, whereC(p, q, k, r;α, γ) = α+γpq kα−1α rγ−1γ . Remark 2. In Theorem2.1, settingp=q= 1, we have
(2.10)
k
X
m=1 r
X
n=1
AmBn
γm(α−1)(α+γ)αγ +αn(γ−1)(α+γ)αγ
≤C(1,1, k, r;α, γ) ( k
X
m=1
(k−m+ 1)aαm
)α1 ( r X
n=1
(r−n+ 1)bγn )1γ
,
unless{am}or{bn}is null, whereC(1,1, k, r;α, γ) = α+γ1 kα−1α r
γ−1 γ .
Hilbert-Pachpatte’s Inequalities Wengui Yang vol. 10, iss. 1, art. 26, 2009
Title Page Contents
JJ II
J I
Page10of 28 Go Back Full Screen
Close
In the following theorem we give a further generalization of the inequality (2.10) obtained in Remark2. Before we give our result, we point out that{pm}and {qn} should be two positive sequences form= 1,2, . . . , kandn= 1,2, . . . , rin Theorem 2.3 of [9].
Theorem 2.2. Letα >1, γ >1and{am}and{bn}be two nonnegative sequences of real numbers and{pm}and{qn}be positive sequences defined form = 1,2, . . . , k andn = 1,2, . . . , r, wherek andr are natural numbers and defineAm =Pm
s=1as, Bn =Pn
t=1bt,Pm =Pm
s=1psandQn =Pn
t=1qt. LetΦandΨbe two real-valued, nonnegative, convex, and submultiplicative functions defined onR+ = [0,∞).Then
(2.11)
k
X
m=1 r
X
n=1
Φ(Am)Ψ(Bn) γm
(α−1)(α+γ)
αγ +αn
(γ−1)(α+γ) αγ
≤M(k, r;α, γ) ( k
X
m=1
(k−m+ 1)
pmΦ am
pm
α)α1
× ( r
X
n=1
(r−n+ 1)
qnΨ bn
qn
γ)1γ , where
M(k, r;α, γ) = 1 α+γ
( k X
m=1
Φ(Pm) Pm
α−1α )α−1α ( r X
n=1
Ψ(Qn) Qn
γ−1γ )γ−1γ . Proof. From the hypotheses ofΦandΨand by using Jensen’s inequality and Hölder’s
Hilbert-Pachpatte’s Inequalities Wengui Yang vol. 10, iss. 1, art. 26, 2009
Title Page Contents
JJ II
J I
Page11of 28 Go Back Full Screen
Close
inequality, it is easy to observe that Φ(Am) = Φ
PmPm
s=1psas/ps
Pm s=1ps
(2.12)
≤Φ(Pm)Φ Pm
s=1psas/ps Pm
s=1ps
≤ Φ(Pm) Pm
m
X
s=1
psΦ as
ps
≤ Φ(Pm) Pm mα−1α
( m X
s=1
psΦ
as ps
α)α1 ,
and similarly,
(2.13) Ψ(Bn)≤ Ψ(Qn) Qn nγ−1γ
( n X
t=1
qtΨ
bt qt
γ)1γ .
Lets1 =mα−1, s2 =nγ−1, ω1 = α1, ω2 = 1γ andr=ω1+ω2,from (2.7), (2.12) and (2.13), we have
Φ(Am)Ψ(Bn)≤mα−1α n
γ−1 γ
Φ(Pm) Pm
( m X
s=1
psΦ
as ps
α)α1 (2.14)
×
Ψ(Qn) Qn
( n X
t=1
qtΨ
bt qt
γ)1γ
≤ αγ α+γ
(m
(α−1)(α+γ) αγ
α + n
(γ−1)(α+γ) αγ
γ )
Hilbert-Pachpatte’s Inequalities Wengui Yang vol. 10, iss. 1, art. 26, 2009
Title Page Contents
JJ II
J I
Page12of 28 Go Back Full Screen
Close
×
Φ(Pm) Pm
( m X
s=1
psΦ
as
ps
α)α1
Ψ(Qn) Qn
( n X
t=1
qtΨ
bt
qt
γ)1γ
form = 1,2, . . . , k, n= 1,2, . . . , r.From (2.14), we observe that (2.15) Φ(Am)Ψ(Bn)
γm(α−1)(α+γ)αγ +αn(γ−1)(α+γ)αγ
≤ 1 α+γ
Φ(Pm) Pm
( m X
s=1
psΦ
as ps
α)α1
×
Ψ(Qn) Qn
( n X
t=1
qtΨ
bt qt
γ)1γ
for m = 1,2, . . . , k, n = 1,2, . . . , r. Taking the sum on both sides of (2.15) first overnfrom1torand then overmfrom1tokof the resulting inequality and using Hölder’s inequality with indicesα, α/(α−1)andγ, γ/(γ −1)and interchanging the order of summations, we observe that
k
X
m=1 r
X
n=1
Φ(Am)Ψ(Bn) γm
(α−1)(α+γ)
αγ +αn
(γ−1)(α+γ) αγ
≤ 1 α+γ
k
X
m=1
Φ(Pm) Pm
( m X
s=1
psΦ
as ps
α)α1
r
X
n=1
Ψ(Qn) Qn
( n X
t=1
qtΨ
bt qt
γ)γ1
≤ 1 α+γ
( k X
m=1
Φ(Pm) Pm
α−1α )α−1α ( k X
m=1 m
X
s=1
psΦ
as
ps
α)α1
Hilbert-Pachpatte’s Inequalities Wengui Yang vol. 10, iss. 1, art. 26, 2009
Title Page Contents
JJ II
J I
Page13of 28 Go Back Full Screen
Close
× ( r
X
n=1
Ψ(Qn) Qn
γ−1γ )γ−1γ ( r X
n=1 n
X
t=1
qtΨ
bt qt
γ)1γ
= 1
α+γ ( k
X
m=1
Φ(Pm) Pm
α−1α )α−1α ( r X
n=1
Ψ(Qn) Qn
γ−1γ )γ−1γ
× ( k
X
m=1
(k−m+ 1)
psΦ as
ps
α)1α( r X
n=1
(r−n+ 1)
qtΨ bt
qt
γ)1γ .
Remark 3. From the inequality (2.7), we obtain (2.16) sω11sω22 ≤ 1
ω1+ω2
ω1sω11+ω2 +ω2sω21+ω2
forω1 >0, ω2 >0. If we apply the elementary inequality (2.16) on the right-hand sides of (2.1) in Theorem2.1and (2.11) in Theorem2.2, then we get the following inequalities
k
X
m=1 r
X
n=1
ApmBnq γm
(α−1)(α+γ)
αγ +αn
(γ−1)(α+γ) αγ
≤ αγC(p, q, k, r;α, γ) α+γ
1 α
( k X
m=1
(k−m+ 1)(Ap−1m am)α )α+γαγ
+1 γ
( r X
n=1
(r−n+ 1)(Bnq−1bn)γ
)α+γαγ
,
Hilbert-Pachpatte’s Inequalities Wengui Yang vol. 10, iss. 1, art. 26, 2009
Title Page Contents
JJ II
J I
Page14of 28 Go Back Full Screen
Close
whereC(p, q, k, r;α, γ) = α+γpq kα−1α rγ−1γ .Also,
k
X
m=1 r
X
n=1
Φ(Am)Ψ(Bn) γm(α−1)(α+γ)αγ +αn(γ−1)(α+γ)αγ
≤ αγM(k, r;α, γ) α+γ
1 α
( k X
m=1
(k−m+ 1)
pmΦ am
pm
α)α+γαγ
+ 1 γ
( r X
n=1
(r−n+ 1)
qnΨ bn
qn
γ)α+γαγ
,
where
M(k, r;α, γ) = 1 α+γ
( k X
m=1
Φ(Pm) Pm
α−1α )α−1α ( r X
n=1
Ψ(Qn) Qn
γ−1γ )γ−1γ . The following theorems deal with slight variants of the inequality (2.11) given in Theorem2.2.
Theorem 2.3. Letα > 1, γ >1and{am}and{bn}be two nonnegative sequences of real numbers defined form = 1,2, . . . , k andn = 1,2, . . . , r, wherekandrare natural numbers and defineAm = m1 Pm
s=1asandBn = n1 Pn
t=1bt. LetΦandΨbe two real-valued, nonnegative, convex functions defined onR+ = [0,∞).Then
k
X
m=1 r
X
n=1
mnΦ(Am)Ψ(Bn) γm
(α−1)(α+γ)
αγ +αn
(γ−1)(α+γ) αγ
≤C(1,1, k, r;α, γ)
Hilbert-Pachpatte’s Inequalities Wengui Yang vol. 10, iss. 1, art. 26, 2009
Title Page Contents
JJ II
J I
Page15of 28 Go Back Full Screen
Close
× ( k
X
m=1
(k−m+ 1)Φα(am)
)α1 ( r X
n=1
(r−n+ 1)Ψγ(bn) )1γ
,
whereC(1,1, k, r;α, γ) = α+γ1 kα−1α rγ−1γ .
Proof. From the hypotheses and by using Jensen’s inequality and Hölder’s inequal- ity, it is easy to observe that
Φ(Am) = Φ 1 m
m
X
s=1
as
!
≤ 1 m
m
X
s=1
Φ(as)≤ 1 mmα−1α
( m X
s=1
Φα(as) )α−1α
,
Ψ(Bn) = Ψ 1 n
n
X
t=1
bt
!
≤ 1 n
n
X
t=1
Ψ(bt)≤ 1 nnγ−1γ
( n X
t=1
Ψγ(bt) )γ−1γ
. The rest of the proof can be completed by following the same steps as in the proofs of Theorems2.1and2.2with suitable changes and hence we omit the details.
Theorem 2.4. Letα >1, γ >1and{am}and{bn}be two nonnegative sequences of real numbers and{pm}and{qn}be positive sequences defined form = 1,2, . . . , k andn = 1,2, . . . , r, wherek andr are natural numbers and definePm = Pm
s=1ps, Qn=Pn
t=1qt, Am = P1
m
Pm
s=1pmasandBn = Q1
n
Pn
t=1qnbt. LetΦandΨbe two real-valued, nonnegative, convex functions defined onR+= [0,∞).Then
k
X
m=1 r
X
n=1
PmQnΦ(Am)Ψ(Bn) γm
(α−1)(α+γ)
αγ +αn
(γ−1)(α+γ) αγ
Hilbert-Pachpatte’s Inequalities Wengui Yang vol. 10, iss. 1, art. 26, 2009
Title Page Contents
JJ II
J I
Page16of 28 Go Back Full Screen
Close
≤C(1,1, k, r;α, γ) ( k
X
m=1
(k−m+ 1) [pmΦ (am)]α )α1
× ( r
X
n=1
(r−n+ 1) [qnΨ (bn)]γ )1γ
,
whereC(1,1, k, r;α, γ) = α+γ1 kα−1α rγ−1γ .
Proof. From the hypotheses and by using Jensen’s inequality and Hölder’s inequal- ity, it is easy to observe that
Φ(Am) = Φ 1 Pm
m
X
s=1
psas
!
≤ 1 Pm
m
X
s=1
psΦ(as)≤ 1 Pmmα−1α
( m X
s=1
[psΦ(as)]α )α−1α
,
Ψ(Bn) = Ψ 1 Qn
n
X
t=1
qtbt
!
≤ 1 Qn
n
X
t=1
qtΨ(bt)≤ 1 Qn
nγ−1γ ( n
X
t=1
[qtΨ(bt)]γ )γ−1γ
.
The rest of the proof can be completed by following the same steps as in the proofs of Theorems2.1and2.2with suitable changes and hence we omit the details.
Hilbert-Pachpatte’s Inequalities Wengui Yang vol. 10, iss. 1, art. 26, 2009
Title Page Contents
JJ II
J I
Page17of 28 Go Back Full Screen
Close
3. Integral Analogues
Now we give the integral analogues of the inequalities in Theorems2.1–2.4.
An integral analogue of Theorem2.1is given in the following theorem.
Theorem 3.1. Letp ≥ 0, q ≥ 0, α > 1, γ > 1and f(σ) ≥ 0, g(τ) ≥ 0forσ ∈ (0, x), τ ∈ (0, y), wherex, yare positive real numbers, defineF(s) = Rs
0 f(σ)dσ, G(t) =Rt
0 g(τ)dτ fors∈(0, x), t∈(0, y). Then (3.1)
Z x 0
Z y 0
Fp(s)Gq(t) γs(α−1)(α+γ)αγ +αt(γ−1)(α+γ)αγ
dsdt
≤D(p, q, x, y;α, γ) Z x
0
(x−s)(Fp−1(s)f(s))αds α1
× Z y
0
(y−t)(Gq−1(t)g(t))γdt 1γ
,
unlessf(σ)≡0org(τ)≡0, whereD(p, q, x, y;α, γ) = α+γpq xα−1α yγ−1γ . Proof. From the hypotheses ofF(s)andG(t), it is easy to observe that
Fp(s) = p Z s
0
Fp−1(σ)f(σ)dσ, s∈(0, x), (3.2)
Gq(t) = q Z t
0
Gq−1(τ)g(τ)dτ, t ∈(0, y).
From (3.2) and Hölder’s inequality, we have (3.3)
Z x 0
Fp−1(σ)f(σ)dσ≤sα−1α Z s
0
(Fp−1(σ)f(σ))αdσ α1
, s∈(0, s),
Hilbert-Pachpatte’s Inequalities Wengui Yang vol. 10, iss. 1, art. 26, 2009
Title Page Contents
JJ II
J I
Page18of 28 Go Back Full Screen
Close
and (3.4)
Z y 0
Gq−1(t)g(t)dt≤tγ−1γ Z t
0
(Gq−1(τ)g(τ))γdτ γ1
, t∈(0, t).
Lets1 =sα−1, s2 =tγ−1, ω1 = α1, ω1 = γ1, r =ω1+ω2,from (3.2) – (3.4) and (2.7), we observe that
Fp(s)Gq(t) (3.5)
≤pqsα−1α tγ−1γ Z s
0
(Fp−1(σ)f(σ))αdσ
α1 Z t 0
(Gq−1(τ)g(τ))γdτ γ1
≤ pqαγ α+γ
(m(α−1)(α+γ)αγ
α + n(γ−1)(α+γ)αγ γ
)
× Z s
0
(Fp−1(σ)f(σ))αdσ
α1 Z t 0
(Gq−1(τ)g(τ))γdτ 1γ
fors∈(0, x), t∈(0, y).From (3.5), we observe that (3.6) Fp(s)Gq(t)
γs
(α−1)(α+γ)
αγ +αt
(γ−1)(α+γ) αγ
≤ pq α+γ
Z s 0
(Fp−1(σ)f(σ))αdσ
α1 Z t 0
(Gq−1(τ)g(τ))γdτ 1γ
fors ∈(0, x), t ∈ (0, y).Taking the integral on both sides of (3.6) first overtfrom 0 to y and then over s from 0 to x of the resulting inequality and using Hölder’s inequality with indicesα,α/(α−1)andγ,γ/(γ−1)and interchanging the order
Hilbert-Pachpatte’s Inequalities Wengui Yang vol. 10, iss. 1, art. 26, 2009
Title Page Contents
JJ II
J I
Page19of 28 Go Back Full Screen
Close
of integrals, we observe that Z x
0
Z y 0
Fp(s)Gq(t) γs(α−1)(α+γ)αγ +αt(γ−1)(α+γ)αγ
dsdt
≤ pq α+γ
"
Z x 0
Z s 0
(Fp−1(σ)f(σ))αdσ α1
ds
# "
Z y 0
Z t 0
(Gq−1(τ)g(τ))γdτ 1γ
dt
#
≤ pq α+γxα−1α
Z x 0
Z s 0
(Fp−1(σ)f(σ))αdσds α1
yγ−1γ Z y
0
Z t 0
(Gq−1(τ)g(τ))γdτ dt 1γ
= pq
α+γxα−1α yγ−1γ Z x
0
(x−s)(Fp−1(s)f(s))αds
1αZ t 0
(y−t)(Gq−1(t)g(t))γdt 1γ
.
Remark 4. In Theorem 3.1, setting α = γ = 2, we have (1.2). In Theorem 3.1, setting α1 +γ1 = 1, we have
Z x 0
Z y 0
Fp(s)Gq(t) γsα−1+αtγ−1dsdt
≤D(p, q, x, y;α, γ) Z x
0
(x−s)(Fp−1(s)f(s))αds α1
× Z y
0
(y−t)(Gq−1(t)g(t))γdt 1γ
,
unlessf(σ)≡0org(τ)≡0, whereD(p, q, x, y;α, γ) = α+γpq xα−1α yγ−1γ .
Hilbert-Pachpatte’s Inequalities Wengui Yang vol. 10, iss. 1, art. 26, 2009
Title Page Contents
JJ II
J I
Page20of 28 Go Back Full Screen
Close
Remark 5. In Theorem3.1, settingp=q= 1, we have (3.7)
Z x 0
Z y 0
F(s)G(t) γs
(α−1)(α+γ)
αγ +αt
(γ−1)(α+γ) αγ
dsdt
≤D(1,1, x, y;α, γ) Z x
0
(x−s)fα(s)ds
α1 Z y 0
(y−t)gγ(t)dt 1γ
, unlessf(σ)≡0org(τ)≡0, whereD(1,1, x, y;α, γ) = α+γ1 xα−1α yγ−1γ .
In the following theorem we give a further generalization of the inequality (3.7) obtained in Remark5.
Theorem 3.2. Letα > 1, γ > 1andf(σ) ≥ 0, g(τ) ≥0, p(σ) > 0andq(τ) > 0 for σ ∈ (0, x), τ ∈ (0, y), where x, y are positive real numbers. Define F(s) = Rs
0 f(σ)dσ and G(t) = Rt
0 g(τ)dτ, P(s) = Rs
0 p(σ)dσ and Q(t) = Rt
0 q(τ)dτ for s ∈ (0, x), t ∈ (0, y). LetΦ andΨ be two real-valued, nonnegative, convex, and submultiplicative functions defined onR+= [0,∞).Then
(3.8) Z x
0
Z y 0
Φ(F(s))Ψ(G(t)) γs
(α−1)(α+γ)
αγ +αt
(γ−1)(α+γ) αγ
dsdt
≤L(x, y;α, γ) Z x
0
(x−s)
p(s)Φ f(s)
p(s) α
ds α1
× Z y
0
(y−t)
q(t)Ψ g(t)
q(t) γ
dt 1γ
, where
L(x, y;α, γ) = 1 α+γ
(Z x 0
Φ(P(s)) P(s)
α−1α ds
)α−1α ( Z y
0
Ψ(Q(t)) Q(t)
γ−1γ dt
)γ−1γ .
Hilbert-Pachpatte’s Inequalities Wengui Yang vol. 10, iss. 1, art. 26, 2009
Title Page Contents
JJ II
J I
Page21of 28 Go Back Full Screen
Close
Proof. From the hypotheses ofΦandΨand by using Jensen’s inequality and Hölder’s inequality, it is easy to see that
Φ(F(s))) = Φ
P(s)Rs
0 p(σ)
f(σ) p(σ)
dσ Rs
0 p(σ)dσ
(3.9)
≤Φ(P(s))Φ
Rs
0 p(σ)
f(σ) p(σ)
dσ Rs
0 p(σ)dσ
≤ Φ(P(s)) P(s)
Z s 0
p(σ)Φ
f(σ) p(σ)
dσ
≤ Φ(P(s)) P(s) sα−1α
Z s 0
p(σ)Φ
f(σ) p(σ)
α
dσ α1
,
and similarly,
(3.10) Ψ(G(t))≤ Ψ(Q(t)) Q(t) tγ−1γ
Z t 0
q(τ)Ψ
g(τ) q(τ)
γ
dτ 1γ
.
Lets1 =sα−1, s2 =tγ−1, ω1 = α1, ω1 = γ1, r=ω1 +ω2,from (3.9), (3.10) and (2.7), we observe that
Φ(F(s))Ψ(G(t))≤sα−1α tγ−1γ
"
Φ(P(s)) P(s)
Z s 0
p(σ)Φ
f(σ) p(σ)
α
dσ α1# (3.11)
×
"
Ψ(Q(t)) Q(t)
Z t 0
q(τ)Ψ
g(τ) q(τ)
γ
dτ 1γ#
Hilbert-Pachpatte’s Inequalities Wengui Yang vol. 10, iss. 1, art. 26, 2009
Title Page Contents
JJ II
J I
Page22of 28 Go Back Full Screen
Close
≤ αγ α+γ
(m
(α−1)(α+γ) αγ
α + n
(γ−1)(α+γ) αγ
γ )
×
"
Φ(P(s)) P(s)
Z s 0
p(σ)Φ
f(σ) p(σ)
α
dσ α1#
×
"
Ψ(Q(t)) Q(t)
Z t 0
q(τ)Ψ
g(τ) q(τ)
γ
dτ 1γ#
fors∈(0, x), t∈(0, y).From (3.11), we observe that (3.12) Φ(F(s))Ψ(G(t))
γs(α−1)(α+γ)αγ +αt(γ−1)(α+γ)αγ
≤ 1 α+γ
"
Φ(P(s)) P(s)
Z s 0
p(σ)Φ
f(σ) p(σ)
α
dσ 1α#
×
"
Ψ(Q(t)) Q(t)
Z t 0
q(τ)Ψ
g(τ) q(τ)
γ
dτ γ1#
fors∈(0, x), t∈(0, y).Taking the integral on both sides of (3.12) first overtfrom 0 to y and then over s from 0 to x of the resulting inequality and using Hölder’s inequality with indicesα,α/(α−1)andγ,γ/(γ−1)and interchanging the order of integrals, we observe that
Z x 0
Z y 0
Φ(F(s))Ψ(G(t)) γs
(α−1)(α+γ)
αγ +αt
(γ−1)(α+γ) αγ
dsdt
Hilbert-Pachpatte’s Inequalities Wengui Yang vol. 10, iss. 1, art. 26, 2009
Title Page Contents
JJ II
J I
Page23of 28 Go Back Full Screen
Close
≤ 1 α+γ
"
Z x 0
Φ(P(s)) P(s)
Z s 0
p(σ)Φ
f(σ) p(σ)
α
dσ 1α
ds
#
×
"
Z y 0
Ψ(Q(t)) Q(t)
Z t 0
q(τ)Ψ
g(τ) q(τ)
γ
dτ 1γ
dt
#
≤ 1 α+γ
(Z x 0
Φ(P(s)) P(s)
α−1α ds
)α−1α Z x
0
Z s 0
p(σ)Φ
f(σ) p(σ)
α
dσds α1
× (Z y
0
Ψ(Q(t)) Q(t)
γ−1γ dt
)γ−1γ Z y
0
Z t 0
q(τ)Ψ
g(τ) q(τ)
γ
dτ dt 1γ
= 1
α+γ (Z x
0
Φ(P(s)) P(s)
α−1α ds
)α−1α ( Z y
0
Ψ(Q(t)) Q(t)
γ−1γ dt
)γ−1γ
× Z x
0
(x−s)
p(s)Φ f(s)
p(s) α
ds
α1 Z y 0
(y−t)
q(t)Ψ g(t)
q(t) γ
dt γ1
.
Remark 6. From the inequality (2.7), we obtain (3.13) sω11sω22 ≤ 1
ω1+ω2 ω1sω11+ω2 +ω2sω21+ω2
forω1 >0, ω2 >0. If we apply the elementary inequality (3.13) on the right-hand sides of (3.1) in Theorem 3.1 and (3.8) in Theorem 3.2, then we get the following
Hilbert-Pachpatte’s Inequalities Wengui Yang vol. 10, iss. 1, art. 26, 2009
Title Page Contents
JJ II
J I
Page24of 28 Go Back Full Screen
Close
inequalities (3.14)
Z x 0
Z y 0
Fp(s)Gq(t) γs
(α−1)(α+γ)
αγ +αt
(γ−1)(α+γ) αγ
dsdt
≤ αγD(p, q, x, y;α, γ) α+γ
"
1 α
Z x 0
(x−s)(Fp−1(s)f(s))αds α+γαγ
+ 1 γ
Z y 0
(y−t)(Gq−1(t)g(t))γdt α+γαγ #
,
whereD(p, q, x, y;α, γ) = α+γpq xα−1α yγ−1γ . Also, Z x
0
Z y 0
Φ(F(s))Ψ(G(t)) γs(α−1)(α+γ)αγ +αt(γ−1)(α+γ)αγ
dsdt
≤ αγL(x, y;α, γ) α+γ
"
1 α
Z x 0
(x−s)
p(s)Φ f(s)
p(s) α
ds α+γαγ
+ 1 γ
Z y 0
(y−t)
q(t)Ψ g(t)
q(t) γ
dt α+γαγ #
,
where
L(x, y;α, γ) = 1 α+γ
x
Z
0
Φ(P(s)) P(s)
α−1α ds
α−1
α (
Z y 0
Ψ(Q(t)) Q(t)
γ−1γ dt
)γ−1γ . The following theorems deal with slight variants of (3.8) given in Theorem3.2.
Before we state our next theorem, we point out that “F(s) = Rs
0 f(σ)dσandG(t) =