• 検索結果がありません。

アクティブスクリーン高周波プラズマを用いた窒化処理法の開発

N/A
N/A
Protected

Academic year: 2021

シェア "アクティブスクリーン高周波プラズマを用いた窒化処理法の開発"

Copied!
5
0
0

読み込み中.... (全文を見る)

全文

(1)

࢔ࢡࢸ࢕ࣈࢫࢡ࣮ࣜࣥ㧗࿘Ἴࣉࣛࢬ࣐ࢆ⏝࠸ࡓ❅໬ฎ⌮ἲࡢ㛤Ⓨ

Development of Plasma Nitriding in RF Active Screen Plasma

ᐑᮏ₶♧*

Junji MIYAMOTO

Summary

Active screen plasma nitriding is a unique prospective method for treating various engineering materials to achieve higher surface hardness, while maintaining the material's core properties. However, active screen plasma nitriding method requires an electrode with conductive properties. In this study, the development of the RF plasma nitriding system was performed. Moreover, the characteristics of the apparatus was investigated owing to achieve the active screen plasma nitriding using RF power.

࣮࣮࢟࣡ࢻ㸸ࣉࣛࢬ࣐❅໬ฎ⌮㸪㧗࿘Ἴࣉࣛࢬ࣐㸪࢔ࢡࢸ࢕ࣈࢫࢡ࣮ࣜࣥࣉࣛࢬ࣐❅໬ฎ⌮㸪ᕤල㗰㸪 ┿✵

Keywords㸸Plasma Nitriding Treatment, Radio Frequency Plasma, Active Screen Plasma Nitriding Treatment, Tool Steel, Vacuum

㸬ㅖゝ 㔠ᆺࡸᕤල࡞࡝ࡢ⾲㠃◳໬ฎ⌮࡜ࡋ࡚⎔ቃ࡟ඃࡋࡃ㸪 ฎ⌮᫬㛫ࡀẚ㍑ⓗ▷࠸࢖࢜ࣥ❅໬ࡀᗈࡃ⾜ࢃࢀ࡚࠸ࡿ 1~4)㸬⌧ᅾ㸪࢖࢜ࣥ❅໬ࡢ୺ὶ࡞᪉ἲࡣ┤ὶࢢ࣮ࣟᨺ㟁 ࢆ⏝࠸ࡓ࢖࢜ࣥ❅໬࡛࠶ࡿࡀ㸪ࡇࡢ᪉ἲࡣࢫࣃࢵࢱࣜ ࣥࢢ࡟ࡼࡾ⾲㠃ࡀⲨࢀ㸪ࡉࡽ࡟ࡣ⿕ฎ⌮≀ࡢ࢚ࢵࢪ௜ ㏆ࡢࡳ❅໬ᒙࡀཌࡃᙧᡂࡉࢀࡿ࢚ࢵࢪຠᯝࡀⓎ⏕ࡋ㸪 ᆒ୍࡞❅໬ᒙࢆᙧᡂࡍࡿࡇ࡜ࡣᅔ㞴࡛࠶ࡿ㸬ࡇࢀࡽࡢ ၥ㢟ⅬࢆゎỴࡍࡿࡓࡵ࡟㸪㏆ᖺ࢔ࢡࢸ࢕ࣈࢫࢡ࣮ࣜࣥ ࣉࣛࢬ࣐❅໬ࡀ⾜ࢃࢀࡿࡼ࠺࡟࡞ࡗ࡚ࡁ࡚࠸ࡿ5)~6)㸬࢖ ࢜ࣥ❅໬ࡣ⿕ฎ⌮≀ࢆ㝜ᴟ㸪⅔ࢆ㝧ᴟ࡜ࡋ࡚❅໬ࢆ⾜ ࡗ࡚࠸ࡓࡀ㸪ࡇࡢ᪉ἲ࡛ࡣヨᩱࡢ࿘ᅖ࡟✰ࡀ✵࠸ࡓࢫ ࢡ࣮ࣜࣥࢆタ⨨ࡋ㸪ࡇࡢࢫࢡ࣮ࣜࣥࢆ㝜ᴟ࡜ࡋ࡚ࣉࣛ ࢬ࣐ࢆⓎ⏕ࡉࡏ㸪ࢫࢡ࣮ࣜࣥෆ㒊ࡢ⿕ฎ⌮≀ࢆ❅໬ࡍ ࡿ㸬ࡇࡢࡓࡵ㸪ࣉࣛࢬ࣐⏕ᡂᶵᵓ࠿ࡽ⊂❧ࡋ࡚⿕ฎ⌮ ≀ࡢ㟁఩ࢆไᚚࡍࡿࡇ࡜ࡀ࡛ࡁ㸪ไᚚᛶ࡟ඃࢀ㸪࢚ࢵ ࢪຠᯝࡶ࡯࡜ࢇ࡝Ⓨ⏕ࡏࡎᆒ୍࡟❅໬ᒙࢆᙧᡂࡍࡿࡇ ࡜ࡀฟ᮶ࡿ7)~8)㸬ࡉࡽ࡟ࡣ᪤Ꮡࡢ࢖࢜ࣥ❅໬ࡢ⿦⨨ࢆ฼ ⏝ࡋ࡚ฎ⌮ࢆࡍࡿࡇ࡜ࡀ࡛ࡁࡿࡓࡵ㸪タഛ㈝⏝ࡀ࡯࡜ ࢇ࡝ኚࢃࡽࡎ㸪௒ᚋᗈࡃᬑཬࡋ࡚࠸ࡃ࡜⪃࠼ࡽࢀࡿ㸬 ࡋ࠿ࡋ㸪ࡇࡢ᪉ἲ࡛ࡣࢫࢡ࣮ࣜࣥࡀ⤯⦕య࡛そࢃࢀࡿ ࡇ࡜࡛ᨺ㟁ࡀ㉳ࡇࡽࡎ㸪ࣉࣛࢬ࣐ࡀⓎ⏕ࡋ࡞࠸㸬ࡲࡓ㸪 ┤ὶࢆ⏝࠸࡚ᨺ㟁ࢆ㉳ࡇࡋ࡚࠾ࡾ㸪㧗┿✵ୗ࡛ࣉࣛࢬ ࣐ࢆⓎ⏕ࡉࡏࡿࡓࡵ࡟ࡣ㸪⅔࡜ࢫࢡ࣮ࣜࣥࡢ㊥㞳ࢆ㠀 ᖖ࡟኱ࡁࡃࡍࡿᚲせࡀ࠶ࡿࡓࡵ㸪㧗┿✵ୗ࡛ࡢฎ⌮࡟ ࡣྥ࠸࡚࠸࡞࠸㸬ࡇࡢࡇ࡜࠿ࡽ㸪❅໬ᚋࡢ⾲㠃࡟㧗⣧ ᗘࡢ◳㉁ⷧ⭷ࢥ࣮ࢸ࢕ࣥࢢࢆࡍࡿࡓࡵ࡟ࡣ㸪⅔࠿ࡽྲྀ ࡾฟࡋ㸪ࢥ࣮ࢸ࢕ࣥࢢ⿦⨨࡟⿦ሸࡋฎ⌮ࢆ⾜࠺ᚲせࡀ ࠶ࡾ㸪࣮ࣜࢻࢱ࢖࣒ࡀቑຍࡍࡿ࡞࡝ࡢၥ㢟ࡶ࠶ࡿ㸬ࡑ ࡇ ࡛ ᮏ ◊ ✲ ࡛ ࡣ ᪂ ࡋ ࠸ ᪉ ἲ ࡜ ࡋ ࡚ 㧗 ࿘ Ἴ 㸦 Radio Frequency; RF㸧㟁ຊࢆูࡢ㟁ᴟ࡟༳ຍࡍࡿࡇ࡜࡛࢔ࢡ ࢸ࢕ࣈࢫࢡ࣮ࣜࣥࣉࣛࢬ࣐❅໬ࢆ⾜࠺㸬ࡇࡢ᪉ἲ࡛ࡣ㸪 㟁ᴟࡀ⤯⦕య࡛そࢃࢀ࡚࠸࡚ࡶࣉࣛࢬ࣐ࡀᏳᐃࡋ࡚Ⓨ ⏕ࡍࡿࡇ࡜ࡸ㸪ᖹᆒ⮬⏤ᕤ⛬ࡀᑠࡉࡃ࡞ࡿᑠᆺࡢ┿✵ ⿦⨨ෆ࡛ࡶ㧗┿✵ୗ࡛ࣉࣛࢬ࣐ࢆⓎ⏕ࡉࡏࡿࡇ࡜ࡀ࡛ ࡁࡿ㸬ࡇࡢࡓࡵ㸪❅໬ฎ⌮ࢆࡋࡓᚋ࡟ࢥ࣮ࢸ࢕ࣥࢢࢆ ྠࡌ⿦⨨ෆ࡛㧗࿘Ἴࣉࣛࢬ࣐ CVD ἲࢆ⏝࠸࡚⾜࠺ࡇ࡜ ࡀ࡛ࡁ㸪ฎ⌮᫬㛫ࡢ▷⦰࡟ࡶࡘ࡞ࡀࡿ࡜⪃࠼ࡽࢀࡿ㸬  ᮏ◊✲࡛ࡣ㸪㧗࿘Ἴ㟁ຊࢆ༳ຍࡋࡓ㟁ᴟ࡜ࢫࢡ࣮ࣜ ࣥࢆ⏝࠸࡚ࣉࣛࢬ࣐ࢆⓎ⏕ࡉࡏ❅໬ࢆ⾜࠸㸪ࡇࡢ᪂ࡋ ࠸❅໬ἲࡀ❅໬ᒙࡢᙧᡂ࡟୚࠼ࡿᙳ㡪ࢆ᫂ࡽ࠿࡟ࡋࡓ㸬 㸨 ኱ྠ኱ᏛᕤᏛ㒊ᶵᲔᕤᏛ⛉ 大同大学紀要 第53 巻(2017)

(2)

㸬ᮏ◊✲࡛⏝࠸ࡓヨᩱ࠾ࡼࡧᐇ㦂⿦⨨  ᮏ◊✲࡛⏝࠸ࡓヨᩱ ᮏ◊✲࡛ࡣ㸪⇕㛫㔠ᆺ⏝ྜ㔠ᕤල㗰࡛࠶ࡿ SKD61 ࢆ ⏝࠸ࡓ㸬໬Ꮫᡂศࢆ Table 1 ࡟♧ࡍ㸬ྜ㔠ඖ⣲ࡢ Cr ࠾ ࡼࡧ Mo ࡞࡝ࡀከࡃྵࡲࢀ㸪❅໬ࢆࡋࡓ㝿࡟◳໬ࡋࡸࡍ ࡍࡃ㸪ホ౯ࡋࡸࡍ࠸ࡇ࡜࠿ࡽᮏ◊✲࡛⏝࠸ࡓ㸬ヨᩱࡢ ᑍἲ㸪ᙧ≧ࡣȭ15™t2 ࡢ෇┙≧࡜ࡋࡓ㸬ࡇࡢヨᩱࡢ⇕ ฎ⌮᮲௳ࡣ 1020Υ࡛ಖᣢ᫬㛫 80min㸪✵෭ࡢ┿✵↝ධ ࢀࢆࡋ㸪ࡑࡢᚋ 550Υ࡛ಖᣢ᫬㛫 240min ࡢ㧗 ↝ᡠࡋ ࢆ 3 ᅇ࡜ࡋࡓ㸬❅໬๓ࡢヨᩱࡢ◳ࡉࡣ 580HV ࡛࠶ࡗࡓ㸬 ❅໬ฎ⌮๓ࡢヨᩱࡢ⾲㠃ࡣ㸪#2000 ࡲ࡛ࡢ‵ᘧ◊☻ࢆ⾜ ࡗࡓᚋ㸪⢏ᚄ 1Pm ࡢ࢔࣑ࣝࢼ࡛ࣂࣇ◊☻ࢆ⾜ࡗࡓ㸬ヨ ᩱ⾲㠃ࡢ⟬⾡ᖹᆒ⢒ࡉ Raࡣ⣙ 20nm ࡛࠶ࡗࡓ㸬  ᮏ◊✲࡛⏝࠸ࡓᐇ㦂⿦⨨ ᮏ◊✲࡛⏝࠸ࡓᐇ㦂⿦⨨ࡢᴫ␎ᅗࢆ Fig.1㸪ࢳࣕࣥࣂ ࣮ࡢእほ෗┿ࢆ Fig.2 ࡟♧ࡍ㸬ᚑ᮶ࡢ࢔ࢡࢸ࢕ࣈࢫࢡࣜ ࣮ࣥࣉࣛࢬ࣐❅໬ἲ࡛ࡣ㸪ヨᩱࡢ࿘ᅖ࡟ࢫࢡ࣮ࣜࣥࢆ 㓄⨨ࡋ㸪ࡇࡢࢫࢡ࣮ࣜࣥࢆ㝜ᴟ㸪ࢳࣕࣥࣂ࣮ࢆ㝧ᴟ࡜ ࡋ࡚ࣉࣛࢬ࣐ࢆⓎ⏕ࡉࡏ❅໬ࢆ⾜࠺㸬ࡋ࠿ࡋ㸪ࡇࡢ᪉ ἲ࡛ࡣ๓㏙ࡋࡓࡼ࠺࡟㸪┤ὶࡢࡓࡵࢫࢡ࣮ࣜࣥࡀ⤯⦕ య࡛そࢃࢀࡿࡇ࡜࡛ᨺ㟁ࡀ㉳ࡇࡽࡎ㸪ࣉࣛࢬ࣐ࡀⓎ⏕ ࡋ࡞࠸㸬ࡲࡓ㸪㧗┿✵ୗ࡛ࡢฎ⌮࡟ࡣྥ࠸࡚࠸࡞࠸㸬 ࡑࡇ࡛㸪ᮏ◊✲࡛ࡣ 5) ࣉࣛࢬ࣐࡜࢔ࢡࢸ࢕ࣈࢫࢡ࣮ࣜ ࣥࣉࣛࢬ࣐ࢆᛂ⏝ࡋ࡚㸪ヨᩱࡢ࿘ᅖ࡟タ⨨ࡋࡓ㟁ᴟ࡟ 㧗࿘Ἴ㟁ᅽࢆ༳ຍࡍࡿࡇ࡜࡛ࣉࣛࢬ࣐ࢆⓎ⏕ࡉࡏ❅໬                                                 ࢆ⾜ࡗࡓ㸬ࢫࢡ࣮ࣜࣥࡢ㟁఩ࢆ⊂❧ࡋ࡚ไᚚࡍࡿࡇ࡜ ࡀ࡛ࡁࡿࡼ࠺࡟ࢫࢡ࣮ࣜࣥࡢୗ㒊࡟⤯⦕యࢆタ⨨ࡋࡓ㸬 ࡞࠾㸪ᮏ◊✲࡛ࡣᕤᴗ⏝ࡢ࿘Ἴᩘ࡛࠶ࡿ 13.56MHz ࡢ㧗 ࿘Ἴ㟁※㸦᭱኱ 600㹕㸧ࢆ⏝࠸ࡓ㸬ᅗ 3 ࡟ࢫࢡ࣮ࣜࣥ࿘ ㎶ࡢ෗┿ࢆ♧ࡍ㸬࡞࠾㸪㸦a㸧ࡣഃ㠃࠿ࡽࡢ෗┿㸪(b)ࡣ ୖ㠃࠿ࡽࡢ෗┿࡛࠶ࡿ㸬❅໬୰ࡣຍ⇕ࢆࡍࡿᚲせࡀ࠶ ࡿ㸬ࡇࡢࡇ࡜࠿ࡽᅗ 1ࠊᅗ 3㸦a㸧ࡢࡼ࠺࡟ヨᩱࡢୗ㒊࡟ ࣄ࣮ࢱ࣮ࢆタ⨨ࡋ㸪❅໬୰࡟ຍ⇕ࢆ⾜ࡗࡓ㸬ࢫࢡ࣮ࣜ ࣥࡢ㛤ཱྀࣃࢱ࣮ࣥࢆᅗ 4 ࡟♧ࡍ㸬ᮏ◊✲࡛ࡣࢫࢡ࣮ࣜ ࣥࡢ㛤ཱྀ✰ࢆ┤ᚄ 2.5mm㸪ࣆࢵࢳࢆ 3.5mm㸪✰ゅᗘࢆ 60rࡢࢳࢻࣜ࡜ࡋࡓ㸬㛤ཱྀ⋡ࡣ 20㹼30%⛬ᗘࡀ᭱㐺࡜ ࡍࡿ◊✲ሗ࿌ࡀ࠶ࡿ9)㸬ࡇࢀࡣᚑ᮶ࡢ࢔ࢡࢸ࢕ࣈࢫࢡࣜ ࣮ࣥ❅໬ࡢ࣓࢝ࢽࢬ࣒ࡀࢫࢡ࣮ࣜࣥࢆࢫࣃࢵࢱࡍࡿࡇ ࡜࡟ࡼࡗ࡚Ⓨ⏕ࡋࡓ㕲ཎᏊ࡜άᛶ໬ࡋࡓ❅⣲ཎᏊࡀ໬ ྜࡋ㸪❅໬㕲࡜࡞ࡗ࡚⾲㠃࡟྾╔㸪㕲ࢆゐ፹࡜ࡋ࡚❅ ⣲ࡀᣑᩓࡍࡿ࡜࠸࠺࣓࢝ࢽࢬ࣒࡟㉳ᅉࡍࡿ㸬ࡋ࠿ࡋᮏ ◊✲࡛ࡣ㸪ࢫࢡ࣮ࣜࣥࡢ㟁఩ࢆ㧗ࡃࡋࡓࡓࡵ㸪ࢫࢡࣜ ࣮ࣥࡢࢫࣃࢵࢱࡣ࡯࡜ࢇ࡝㉳ࡁ࡞࠸㸬ࡼࡗ࡚ᚑ᮶ࡢࢫ ࢡ࣮ࣜࣥࡢࢫࣃࢵࢱ࡟ࡼࡿ㕲ࡢゐ፹཯ᛂࡣ㉳ࡁࡎ㸪ά Screen RF power Screen Heater Sample Insulator 㝧ᴟ⏝ 䝫䞊䝖 䝠䞊䝍䞊 ⏝䝫䞊䝖

Fig.2 Photograph of the chamber

(a) Side view (b) Top view Fig.3 Photographs of the screen in chamber

C Si Mn P S Cr Mo V 0.36 0.92 0.43 0.008 <0.001 5.05 1.21 0.83 Material SKD61 Fe Bal. Table1 Chemical composition of the sample

Fig.1 Schematic diagram of the RF active screen plasma nitriding system

Insulator Sample Heater Power Vacuum pump Plasma Chamber Ar/ Electrode

(3)

         ᛶ໬ࡉࢀࡓ❅⣲࢖࢜ࣥࡸ❅⣲ཎᏊࡀ⇕ᣑᩓ࡟ࡼࡗ࡚ヨ ᩱ୰࡟ᣑᩓ㸪ࡑࡢ⃰ᗘ࡟㉳ᅉࡋ࡚J’┦(Fe4N)㸪H┦(Fe3N) ࡀ⏕ᡂࡍࡿ࡜⪃࠼ࡽࢀࡿ㸬ࡇࡢ❅໬࣓࢝ࢽࢬ࣒ࡀᚑ᮶ ࡜኱ࡁࡃ␗࡞ࡿⅬ࡛࠶ࡿ㸬ࡇࡢⅬࡼࡾ㸪ᮏ◊✲࡛ࡣ㛤 ཱྀ⋡ࢆ 46%࡜ẚ㍑ⓗ኱ࡁ࡞್࡜ࡋࡓ㸬  ᮏ◊✲ࡢᐇ㦂᮲௳ ᮏ◊✲ࡢᐇ㦂᮲௳ࢆ Table 2 ࡟♧ࡍ㸬RF 㟁ຊࢆ 100W ࡢ୍ᐃ㸪$U ࢞ࢫࢆ 0sccm㸪2sccm㸪10sccm ࡜ࡋ㸪N2࢞ ࢫࡢὶ㔞ࢆ 30%㹼100%ࡲ࡛ኚ໬ࡉࡏࡓ㸬ᅽຊࡣࢤ࣮ࢺ ࣂࣝࣈࢆ⏝࠸࡚ 0.6Pa ࡢ୍ᐃ࡜ࡋࡓ㸬❅໬๓࡟ࡣ $U ࣉ ࣛࢬ࣐࡟ࡼࡿࢳࣕࣥࣂ࣮ෆࡢὙίࢆ  ศ⾜ࡗࡓ㸬ヨᩱ ࡢ ᗘࡣࣄ࣮ࢱ࣮ࢆ⏝࠸࡚ 500Υࡢ୍ᐃ࡜ࡋ㸪ຍ⇕ࡉࢀ ࡓᚋ࡟ฎ⌮᫬㛫 6h ࡛❅໬ࢆ⾜ࡗࡓ㸬ࢫࢡ࣮ࣜࣥࡣᾋ㐟 㟁఩࡜ࡋࡓ㸬ᮏᐇ㦂࡛ࡣ㸪ヨᩱࡢ㟁఩ࡣᾋ㐟㟁఩࡜ࡋ ࡚ᐇ㦂ࢆ⾜ࡗ࡚࠸ࡓࡀ㸪㟁ᴟ࠿ࡽࡢࢫࣃࢵࢱࣜࣥࢢ࡟ ࡼࡾ㸪❅໬ᚋࡢ⾲㠃ࡀởᰁࡉࢀࡓ㸬ࡇࡢࡇ࡜࠿ࡽヨᩱ ࡢ㟁఩ࢆ⊂❧ࡋ࡚ไᚚࡍࡿࡇ࡜࡜ࡋ㸪-500V ࡢࣂ࢖࢔ࢫ 㟁ᅽࢆヨᩱ࡟༳ຍࡋࡓ㸬ࡲࡓ㸪ヨᩱࡢタ⨨఩⨨ࡀ❅໬ ᒙࡢᙧᡂ࡟୚࠼ࡿᙳ㡪ࢆㄪ࡭ࡿࡓࡵ࡟㸪タ⨨఩⨨ࢆࣄ ࣮ࢱ࣮ࡢୖ࠾ࡼࡧ㸪ࢫࢡ࣮ࣜࣥࡢୖ࡟タ⨨ࡋࡓ㸬ࢫࢡ ࣮ࣜࣥࡢୖ࡟タ⨨ࡋࡓᐇ㦂᮲௳ࡢሙྜࡣࣉࣛࢬ࣐࡟ࡼ ࡿຍ⇕ࡢࡳ࡛❅໬ࢆ⾜ࡗࡓ㸬                 㸬ᐇ㦂⤖ᯝ࠾ࡼࡧ⪃ᐹ 㟁ᴟ㠃✚ࢆኚ໬ࡉࡏࡓ࡜ࡁࡢヨᩱࡢ⮬ᕫࣂ࢖࢔ࢫ㟁 ᅽ࠾ࡼࡧࣆ࣮ࢡ㛫㟁ᅽࡢኚ໬ࢆ Fig.5 ࡟♧ࡍ㸬ࢫࢡ࣮ࣜ ࣥࡣ౑⏝ࡏࡎ㸪ヨᩱࡣࣄ࣮ࢱ࣮ࡢୖ࡟タ⨨ࡋࡓ㸬㟁ᴟ ࡢ㠃✚ࡀቑຍࡍࡿ࡟ࡘࢀ࡚㸪㈇ࡢ⮬ᕫࣂ࢖࢔ࢫ㟁ᅽࡣ ῶᑡࡋ㸪ṇࡢࣆ࣮ࢡ㛫㟁ᅽࡣቑຍࡍࡿഴྥࡀぢࡽࢀࡓ㸬 ࡇࡢࡇ࡜࠿ࡽ㸪㟁ᴟࡢ㠃✚ࢆኚ໬ࡉࡏࡿࡇ࡜࡛ヨᩱࡢ ⮬ᕫࣂ࢖࢔ࢫ㟁ᅽࢆไᚚ࡛ࡁࡿࡇ࡜ࡀ᫂ࡽ࠿࡜࡞ࡗࡓ㸬 ᮏ ◊ ✲ ࡛ ࡣ 㸪 ࣉ ࣛ ࢬ ࣐ ࡢ Ᏻ ᐃ ᛶ ࠿ ࡽ 㟁 ᴟ ࡢ 㠃 ✚ ࡣ 120cm3⛬ᗘ࡜ࡋࡓ㸬 ᮍฎ⌮࠾ࡼࡧ❅໬ᚋࡢヨᩱ⾲㠃ࡢ෗┿ࢆ Fig.6 ࡟♧ࡍ㸬 ヨᩱࡣࣄ࣮ࢱ࣮ࡢୖ࡟タ⨨ࡋ㸪ࢫࢡ࣮ࣜࣥࡣ౑⏝ࡏࡎ㸪 ヨᩱࡢ㟁఩ࡣᾋ㐟㟁఩࡜ࡋࡓ㸬ᮍฎ⌮ࡢヨᩱ⾲㠃ࡀ௒ ᪥㙾㠃≧ែ࡛࠶ࡿࡢ࡟ᑐࡋ࡚㸪❅໬ᚋࡢヨᩱ⾲㠃ࡣࡍ ࡭࡚㸪㯮ࡃኚⰍࡋ࡚࠸ࡓ㸬N2㔞 80%ࡢ࡜ࡁ㸪ヨᩱ⾲㠃 3.5mm I2.5mm 60㼻 Aperture Ratio = 46%

Fig.4 Schematic diagram of the hole with screen

-1500 -1200 -900 -600 -300 0 300 600 900 0 100 200 300 400 500 V oltage (V ) Electrode Area (cm2) Vdc Vpp

Fig.5 Relationship between voltage and electrode area

5mm 5mm

5mm

5mm 5mm

Untreated N2 30%

N280% N2 100% Fig.6 Surface photographs Table 2 Experimental conditions

RF Power [W] 100

Ar gas mass flow [sccm] 0 2 10

N2 gas mass flow [%] 30 80 100

Treatment pressure [Pa] 0.6

Heater temperature [Υ] 500

Treatment time [h] 6

Screen voltage [V] Floating

potential

Sample voltage [V] Floating

(4)

ࡢ㯮࠸⭷ࡢᐦ╔ຊࡣపࡃ㸪๤㞳ࡋࡓࡓࡵ㸪㙾㠃ᛶࢆ୍ 㒊ྲྀࡾᡠࡋ࡚࠸ࡓ㸬ᮏ◊✲࡛⾜ࡗࡓ㟁ᴟࡢ⮬ᕫࣂ࢖࢔ ࢫ㟁ᅽࡣ-800V ⛬ᗘ࡜㧗࠸ࡇ࡜࠿ࡽ㸪ヨᩱ⾲㠃࡟ᙧᡂࡋ ࡓ㯮࠸ⷧ⭷ࡣ㟁ᴟࡀࢫࣃࢵࢱࡋࡓࡇ࡜࡟㉳ᅉࡍࡿ࡜⪃ ࠼ࡽࢀࡿ㸬 ᮍฎ⌮࠾ࡼࡧ❅໬ᚋࡢヨᩱ⾲㠃ࡢ⾲㠃⢒ࡉࢆ Fig.7 ࡟ ♧ࡍ㸬ࢫࢡ࣮ࣜࣥࡣ౑⏝ࡏࡎ㸪ヨᩱࡢ㟁఩ࡣᾋ㐟㟁఩ ࡜ࡋࡓ㸬ᮍฎ⌮ࡢヨᩱ⾲㠃ࡢ⟬⾡ᖹᆒ⢒ࡉࡀ 24nm ࡟ᑐ ࡋ࡚㸪❅໬ᚋࡢヨᩱࡢ⾲㠃⢒ࡉࡣ኱ࡁࡃኚࢃࡽ࡞࠿ࡗ ࡓ㸬N2 㔞 80%ࡢ࡜ࡁ㸪⾲㠃⢒ࡉࡢቑຍࡀぢࡽࢀࡓࡀ㸪 ࡇࢀࡣヨᩱ⾲㠃ࡢ⭷ࡀ๤㞳ࡋࡓࡇ࡜࡟ࡼࡿ࡜⪃࠼ࡽࢀ ࡿ㸬 ❅໬ᚋࡢヨᩱ⾲㠃ࡢ◳ࡉࢆ Fig.8 ࡟♧ࡍ㸬ࢫࢡ࣮ࣜࣥ ࡣ౑⏝ࡏࡎ㸪ヨᩱࡢ㟁఩ࡣࡍ࡭࡚ᾋ㐟㟁఩࡜ࡋࡓ㸬ᮍ ฎ⌮ࡢ◳ࡉࡀ 580HV ⛬ᗘ࡛࠶ࡗࡓࡢ࡟ᑐࡋ㸪❅໬ᚋࡢ ヨᩱ⾲㠃ࡢ◳ࡉࡣ N2 㔞 80%ࡢ࡜ࡁ᭱኱࡛ 1.7 ಸࡢ 980HV ࡛࠶ࡗࡓ㸬SKD61 ࡢ❅໬ᚋࡢᣑᩓᒙࡢ◳ࡉࡀ࠾ ࠾ࡼࡑ 1200HV ⛬ᗘ࡛࠶ࡿࡇ࡜࠿ࡽ㸪ᮏ◊✲࡛ᙧᡂࡋࡓ ❅໬ᒙࡣ❅⣲⃰ᗘࡀపࡃ㸪◳㉁࡞❅໬≀ࢆᙧᡂࡋ࡚࠸ ࡞࠸࡜⪃࠼ࡽࢀࡿ㸬ࡇࢀࡣ㸪ヨᩱ⾲㠃࡟ⷧ⭷ࡀᙧᡂࡋ ࡓࡓࡵ㸪❅⣲ࡢᅛ⁐ࡀ㜼ᐖࡉࢀࡓࡓࡵ࡜⪃࠼ࡽࢀࡿ㸬 ୖグࡢ⤖ᯝ࠿ࡽヨᩱ⾲㠃࡟ࡣⷧ⭷ࡀᡂ⭷ࡉࢀ㸪ࡇࡢ ࡇ࡜࡟ࡼࡾ㸪❅໬ࡉࢀ࡟ࡃࡃ࡞ࡗ࡚࠸ࡿ࡜⪃࠼ࡽࢀࡿ㸬 ࡼࡗ࡚㸪ヨᩱࡢ㟁఩ࢆ-500V ࡜ࡋ࡚㸪⾲㠃࡟ᙧᡂࡉࢀࡿ ⷧ⭷ࢆࢫࣃࢵࢱࣜࣥࢢ࡛㝖ཤࡋ࡞ࡀࡽ❅໬ࢆ⾜ࡗࡓ㸬 ࡲࡓ㸪ࢫࢡ࣮ࣜࣥࢆタ⨨ࡋ㸪ࡑࡢᙳ㡪ࢆㄪ࡭ࡓ㸬 ヨᩱ࡟-500V ࡢࣂ࢖࢔ࢫ㟁ᅽࢆ༳ຍࡋ❅໬ࢆ⾜ࡗࡓ㸬 ❅໬ᚋࡢヨᩱ⾲㠃ࡢ෗┿ࢆ Fig.9 ࡟♧ࡍ㸬࡞࠾㸪(a)ࡣࢫ ࢡ࣮ࣜࣥᮍ౑⏝㸪(b)ࡣࢫࢡ࣮ࣜࣥࢆ౑⏝ࡋ㸪ෆ㒊࡟ヨ ᩱࢆ⿦ሸࡋࡓ࡜ࡁ࡜ࢫࢡ࣮ࣜࣥࡢእഃ㸦ୖ㒊࡟タ⨨㸧 ࡟タ⨨ࡋࡓ࡜ࡁࡢ෗┿࡛࠶ࡿ㸬ࡍ࡭࡚ࡢ᮲௳࡟࠾࠸࡚ ヨᩱ⾲㠃ࡣᮍฎ⌮ࡢヨᩱ࡜ྠᵝ࡟㔠ᒓගἑࡀぢࡽࢀ㸪 㙾㠃ᛶࡀಖࡓࢀ࡚࠸ࡓ㸬ࡇࢀࡣ㸪ヨᩱ⾲㠃࡬ࡢࢫࣃࢵ ࢱࣜࣥࢢ࡟ࡼࡿᙳ㡪࡛࠶ࡿ࡜⪃࠼ࡽࢀࡿ㸬 ࣂ࢖࢔ࢫ㟁ᅽࢆ༳ຍࡋ㸪❅໬ࢆ⾜ࡗࡓヨᩱ⾲㠃ࡢ◳ ࡉࢆ Table 3 ࡟♧ࡍ㸬ᮍฎ⌮ࡢ⾲㠃◳ࡉࡀ 580HV ⛬ᗘ࡛ ࠶ࡗࡓࡢ࡟ᑐࡋ࡚㸪ࡍ࡭࡚ࡢ᮲௳࡛ 700㹼800HV ⛬ᗘ࡛ ࠶ࡾ㸪ᮍฎ⌮ࡢ◳ࡉࡢ 1.5 ಸ࡟‶ࡓ࡞࠿ࡗࡓ㸬SKD61 ࡢ❅໬ᚋࡢᣑᩓᒙࡢ୍⯡ⓗ࡞◳ࡉࡀ 1200HV ⛬ᗘ࡛࠶ ࡿࡇ࡜ࢆ⪃࠼ࡿ࡜㸪ᮏ◊✲࡛⾜ࡗࡓ❅໬ᒙࡢ◳ࡉࡣప ࠸ࡶࡢ࡛࠶ࡗࡓ㸬ࡇࢀࡣ㧗࿘Ἴࡢゎ㞳ᗘࡀ 1kW ࡛ 1% ௨ୗ࡜ప࠸ࡶࡢ࡟㉳ᅉࡍࡿ࡜⪃࠼ࡽࢀࡿ 10)㸬ࡲࡓ㸪ࢫ ࢡ࣮ࣜࣥࡢෆ㒊࡟タ⨨ࡋࡓヨᩱࡢ❅໬ᚋࡢ◳ࡉࡣእ㒊 ࡟タ⨨ࡋࡓヨᩱ࡜ẚ࡭ࡿ࡜㸪ప࠿ࡗࡓ㸬ࡇࢀࡣࢫࢡࣜ ࣮ࣥࡢෆ㒊ࡣእ㒊࡟ẚ࡭ࡿ࡜ࣉࣛࢬ࣐ᐦᗘࡀప࠸ࡓࡵ ࡛࠶ࡿ㸬ࡇࡢࡇ࡜࠿ࡽ㸪▷᫬㛫࡛❅໬ᒙࢆᙧᡂࡍࡿࡓ ࡵ࡟ࡣ㧗࿘Ἴࡢฟຊࢆቑຍࡉࡏࡿ➼࡟ࡼࡾゎ㞳ᗘࢆቑ ຍࡉࡏࡿᚲせࡀ࠶ࡿ࡜⪃࠼ࡽࢀࡿ㸬     Fig.7 Surface roughness

UntreatedRa=24nm Rz=194nm N230% Ra=25nm Rz =195nm N280% Ra=54nm Rz =411nm N2100% Ra=25nm Rz=254nm 0 200 400 600 800 1000 1200 0 20 40 60 80 100 Su rfa ce hardne ss 䠄 H V 0. 01 )

N2gas mas flow (%) Plasma nitriding

Untreated

Fig.8 Surface hardness

(a) Without screen

Inside Outside

Fig.9 Surface photographs (b) With screen

(5)

      㸬⤖ゝ ᮏ◊✲࡛ࡣ㸪㧗࿘Ἴ㟁ຊࢆ༳ຍࡋࡓ㟁ᴟ࡜ࢫࢡ࣮ࣜ ࣥࢆ⏝࠸࡚ࣉࣛࢬ࣐ࢆⓎ⏕ࡉࡏ❅໬ࢆ⾜࠸㸪ࡇࡢ᪂ࡋ ࠸❅໬ἲࡀ❅໬ᒙࡢᙧᡂ࡟୚࠼ࡿᙳ㡪ࢆㄪ࡭ࡓ㸬௨ୗ ࡟⤖ゝࢆ♧ࡍ㸬 㸯㸧㟁ᴟ㠃✚࡟౫Ꮡࡋ࡚ࢭࣝࣇࣂ࢖࢔ࢫ㟁ᅽࡀኚ໬ࡍ ࡿࡇ࡜ࡀ᫂ࡽ࠿࡜࡞ࡗࡓ㸬 㸰㸧ࢭࣝࣇࣂ࢖࢔ࢫ㟁ᅽࢆ༳ຍࡋ㸪❅໬ࢆ⾜ࡗࡓヨᩱ ⾲㠃࡟ග㍤ᛶࡣぢࡽࢀ࡞࠿ࡗࡓ㸬 㸱㸧-500V ࡢࣂ࢖࢔ࢫ㟁ᅽࢆヨᩱ࡟༳ຍࡋࡓ࡜ࡁ㸪ࢫࢡ ࣮ࣜࣥෆ㒊࠾ࡼࡧእ㒊࡟タ⨨ࡋࡓヨᩱඹ࡟ග㍤ᛶࡀぢ ࡽࢀࡓ㸬 㸲㸧ᮏ◊✲࡛ࡣᮍฎ⌮ࡢ❅⣲㔞 80%ࡢ࡜ࡁ㸪᭱኱◳ࡉ ࡀᚓࡽࢀ㸪ᮍฎ⌮ࡢ 1.7 ಸ࡛࠶ࡗࡓ㸬 ཧ⪃ᩥ⊩

1㸧Y. Li㸪L. Wang㸪J. Xu㸪D. Zhang㸪Surf. Coat. Technol.㸪 206 (2012) 2430

2) Dong-Cherng Wen㸪Surf. Coat. Technol.㸪204 (2009) 511 3) T. Czerwiec㸪H. Michel㸪E. Bergmann㸪Surf. Coat.

Technol.㸪108-109 (1998) 182

4) Mehmet Baki Karamis㸪Kemal Yildizli㸪Gamze Carkit Aydin㸪Tribol. Inter.㸪51 (2012) 18

5㸧C. Zhao㸪C. X. Li㸪H. Dong㸪T. Bell㸪Surf. Coat. Technol.㸪 201 (2006) 2320

6) Sh. Ahangarani㸪A. R. Sabour㸪F. Mahboubi㸪Appl. Surf. Sci.㸪254 (2007) 1427

7) K. J. B. Ribeiro㸪R. R. M. de Sousa㸪F. O. de Araujo㸪 R. A. de Brito㸪J. C. P. Barbosa㸪C. Alves Jr.㸪Mater. Sci. Eng. A㸪479 (2008) 142

8) R. R. M. de Sousa㸪F. O. de Araujo㸪K. J.B. Ribeiro㸪M. W. D. Mendes㸪J. A. P. da Costa㸪C. Alves Jr.㸪Mater. Sci. Eng. A㸪465 (2007) 223

9) A. Nishimoto㸪T. Matsukawa㸪H, Nii㸪ISIJ Inter.㸪54 (2014) 916

10) Kazunari TANIGUCHI㸪Masaya SUGIMOTO㸪Shingo MASUKO㸪Toshihiro KOBAYASHI㸪Manabu

HAMAGAKI㸪Petros ABRAHA㸪Tamio HARA㸪Jpn. J. Appl. Phys.㸪39 (2000) L999 Untreated Without screen With screen Inside Outside 580HV 760HV 730HV 850HV

Table 3 Surface hardness

参照

関連したドキュメント

Morgan, “Acoustic echo cancellation for stereophonic teleconferencing,” pre- sented at the 1991 IEEE ASSP Workshop Appls. Singal Processing Audio Acoustics, News Paltz,

可視化や, MUSIC 法などを用いた有限距離での高周 波波源位置推定も試みられている [5] 〜 [9] .一方,

The potential energy level of water, which is lowered at the evaporating surface of a porous material when energy is provided for evaporation, causes water to

3) Sato T, Kase Y, Watanabe R, Niita K, et al: Biological Dose Estimation for Charged-Particle Therapy Using an Improved PHITS Code Coupled with a Microdosimetric Kinetic

3He の超流動は非 s 波 (P 波ー 3 重項)である。この非等方ペアリングを理解する

また,文献 [7] ではGDPの70%を占めるサービス業に おけるIT化を重点的に支援することについて提言して

M…剛曰劉Ⅱ 、=3 2)TBAF 1)Bu3SnH ,鍼:苧 ace トトト 123 mm、 一一一一一一 111 ?99 bdf ●●●●。● nnn コ聿罰

算処理の効率化のliM点において従来よりも優れたモデリング手法について提案した.lMil9f