• 検索結果がありません。

AND8353/D NCP1607による堅牢かつ低コス トの力率補正

N/A
N/A
Protected

Academic year: 2022

シェア "AND8353/D NCP1607による堅牢かつ低コス トの力率補正"

Copied!
22
0
0

読み込み中.... (全文を見る)

全文

(1)

AND8353/D

NCP1607による堅牢かつ低コス トの力率補正

はじめに

NCP1607電 率補正(PFC)

高調波規適設計 !"#$

約300 W"最適性能%得&臨界'通

(CRM)()*"#$独自電方式

+検知,-./0用!1 率10達 成"#$2 電3蔵高精度誤456 正確御"#$7牢8設計9:;<性 関* =>機能0?装*"#$

@56ABCDEFNCP16070 G用* 9CRMH PFC (400 V

100 W)設計I?装J! 説明*"#$@

高 率時消費電 、高5 /KLHE時M率、=彩8N護機能0OP

!"#。

PFCの必要性

Q部R電S;TUVW-XY電源 Z[EHA-\整流UI]/E^_

0G用* AC電源`a&DC電0生成*

!"#$*a*@方法非正弦波電流引 込b%生c9:電 d給設O負担%重>8 +"#$"9政府規e電 f社a&要求 +電流g高調波成R0抑P8hi8

&8!@I=jk+"#$

@&高調波成Rl#要m0満9#方法I

* 、5/KLHnPFCo路%最普p* !"#$

Figure 1示#整流HA-\I]/E

^_I間PFC6Aqrsq0挿#構 成*"#$5/KLHn 率補正tH E("9昇)%最u般 的8o路構成#$適正御#iACa

& 電流波形0正弦波維持*9""uT 2 電0生成"#$

Figure 1. Active PFC Stage with the NCP1607 Rectifiers

AC Line + High

Frequency Bypass Capacitor

NCP1607

PFC Preconverter Converter

+ Bulk Load Storage Capacitor

CRMブースト・コンバータの基本動作

T格%300 W未満Iv電 t臨界'通

(CRM)%w"*!御方式#$臨界'通

Ix連続'通(DCM)I連続'通

(CCM)Iy界z置#'通@I#$

CRMHEZ/電流%{達*

9I[E|%開}"#$

~9:CRM/電流!CCM()特徴

I-XY時電流%{kDCM() 特徴0€OP !"#$CRM御方式 電I2 負荷応c ‚波数%ƒ(*

"#$PFCHE()I波形0 Figure 2示*"#$PFC56ABCDG用#

CRMHE()J! 詳*>

、AND8123 (www.onsemi.jp)0„照* >…!。

APPLICATION NOTE

www.onsemi.jp

(2)

Figure 2. Schematic and Waveforms of an Ideal CRM Boost Converter Diode Bridge

IN

+

L

Diode Bridge

IN

+

L

+

The power switch is ON The power switch is OFF

Critical Conduction Mode:

Next current cycle starts as soon as the core is reset.

Coil Current

+

With the power switch voltage being about zero, the input voltage is applied across the coil. The coil cur- rent linearly increases with a (VIN/L) slope.

The coil current flows through the diode. The coil voltage is (VOUT VIN) and the coil current linearly decays with a (VOUT − VIN)/L slope.

IL

VOUT

VIN Vdrain

(VOUT − VIN)/L IL(peak)

IL

VIN Vdrain

Vdrain

VIN/L

VOUT

VIN If next cycle does not start then Vdrain rings towards VIN +

NCP1607の特徴

NCP1607v電 CRMHPFC56AB

C D 理 想 的8 1J # $ NCP16070OP9C6]8CRMHE6A 0Figure 3示*"#$

Figure 3. CRM Boost PFC Stage Featuring the NCP1607 +

AC Line

EMI Filter

1

4 3 2

8

5 6 7 FB

Control Ct CS

GND ZCD DRV

+

CBULK

LOAD (Ballast, SMPS, etc.) NCP1607

VOUT

RS CIN

RZCD

ROUT1

ROUT2 CCOMP

VCC

CT

VCC

DBOOST LBOOST

1 (FB)ROUT1IROUT2構成抵抗R U0通c H2 電0検知*"#$@

%誤456† 誤4562

2 (Control)#$1I2接続抵抗

I^_I0組b‡ˆ@I+

‰Š幅0限#補‹,-./0形成*

!"#$ 率%高!t‰Š幅

u般20 Hz未満#$3 (Ct)接続9

^_特T御電l#[E|0

CS (4)1_/]ŒI過電流N護0行!"

#。@過電流N護-X電流IRSENSE生 成電I3部0.5 VAŽq0比較#

3蔵q行‡"#$

5 (ZCD)HEZ/%消磁9

aa0検知*"#$@電%2.1 V (標 準)0超P a&1.6 V (標準)+‘%I [E|%*"#${電流検2

(ZCD)’線直“接続9抵抗@流

(3)

電z6]Z•#iHE]%[

8– 電流E+

"#$

NCP1607強 82 (7)0OP !

"#$@QnMOSFET—0M 率>-XY#@I%˜能#$VCC%[

I2 %“H”""状態8&8

!5/KLHI-CH™方6]Z•o 路03蔵* !"#$

8 (VCC)電源端S#$VCC%E[

Eqš](VCC(on)標準11.8V)+!I^

消費電流< 40mA限"#$@起

(時間0短>#9:k+時電 損›0減&#9:#$1J方法I*

NCP12308œa&直接VCC

電 0d給#@I"#$@方法8&2段 構成SMPSCK|時電 性 能%&改"#$

オープン・フィードバック・ループに対する保護

NCP1607 過 電 N護(OVP) 電 N護

(UVP)KLY端SN護(FPP)I!3J

N護機能0OP V+L-/E]6 [6状態l* ž括的8N護0提d*"#$

L-/E]6%[68˜能性%

k条mŸ‘3J#$

1. UVPN護:抵抗ROUT1IFB接続%[

68–9I$@状態8IFB

%ROUT2– Y電z6]Z•

"#$#IUVPq

– UVP障 %検2H%^L`

H]"#$

2. OVPN護:抵抗ROUT2IFBI接続%[

68–9I$@状態8I FB%ROUT1– 2 電6]5- 6"#$#IESDZ[%FB電

010 V/6*ROUT1%FB流 込”電流0限*"#$VEAL%/6*

静的OVP障 0検2*H%^L`

H]"#$

3. FPPN護:FB%状態8–9I

$3蔵6]Z•抵抗RFB– FB電

%UVP*!¡電+!¡6]Z

•"#$#IUVPq UVP障 0検2*H0^L`H]

*"#$

UVPVWOVP~¢]/電‘a

&CK|0N護#機能VW()点急ƒa&

CK|0N護#機能#$u方FPPL -/E状態a&CK|0N護

#機能#$FPP機能%8!I製造£

– L-/E%状態8–

9tCK|3結I‚¤環y– L -/電%決"+"#$@結L -/電%規¡3(UVP*!¡+高>

Vref+!¡)¥"I過Q8電 %2 V~%k+"#$~+過電q 部¦%故障#"2 電%§昇#@I 8+"#$

NCP1607()J! 詳*>NCP1607/D0

„照* >…!$

設計手順

CRMHPFCo路設計J! [E

`¨Z/=>56ABCDEF (Table 10„照)解説 !"#$@56A BCDEFNCP1607特長0活a*

9(400 V100 W)設計手順J! 述

©"#$部¦¡0素早>求:9:設計§ª www.onsemi.jp手"#$

Table 1.

AND8123 Power Factor Correction Stages Operating in Critical Conduction Mode AND8016 Design of Power Factor Correction Circuits Using the MC33260 AND8154 NCP1230 90 W, Universal Input Adapter Power Supply with Active PFC

HBD853 Power Factor Correction Handbook

*Additional resources for the design and understanding of CRM Boost PFC circuits available at www.onsemi.com.

1

Minimum AC Line Voltage VacLL 85 Vac

Maximum AC Line Voltage VacHL 265 Vac

Line Frequency fline 47−63 Hz

Boost PFC Output Voltage VOUT 400 V

Maximum Output Voltage VOUT(OVP) 440 V

Boost Output Power POUT 100 W

Minimum Switching Frequency fSW(MIN) 50 kHz

Estimated Efficiency h 92 %

(4)

2

HEZ/(eq. 1)計算"#$

(eq. 1) Lv

Vac2@

ǒ

VOUTǸ2 *Vac

Ǔ

@h

VOUT@POUT@f(min)@Ǹ2

-XY‚波数必1最‚波数+高>8 hi8&8!HEZ/¡

電(?M¡)%最«¡tI最Q¡t

™方計算*"#$

L ≤ 465 mH for VacLL

L ≤ 408 mH for VacHL

¡400mH0選択*"#$<負荷時最‚波数 (eq. 2)計算*"#$

(eq. 2) fSW+ Vac2@h

2@L@POUT@

ǒ

1*VacVOUT@Ǹ2

Ǔ

fSW、85 VacI%58 kHz265 VacI%

51 kHz#$

3 Ct!"#

^_Ct電VW最Q電 時 [E|%最QI88¡8hi8 +"ˆ¬$最Q[E|次式­P&"

#$

(eq. 3) ton(MAX)+2@L@POUT

h@VacLL2 +12.0ms

9…*[E|%長#®I2 %過¯

8…h8>高!電"9軽負荷時 御範¤%狭"+"#$^_Ct¡

(eq. 4)計算¡+‡1aQ>#%

最良#$

(eq. 4) CtuICHARGE@ton(MAX)

VCTMAX +2@POUT@L@ICHARGE h@Vac2@VCTMAX

ICHARGEVWVCTMAX¡NCP1607^C 記載 !"#$[E|%最Q¡

8 Ct計 算 ICHARGE最Q ¡ I VCTMAX最«¡0G用* >…!$NCP1607

^Ci°¡Ÿ‘IV+#$

VCTMAX = 2.9 V (min)

ICHARGE = 297mA (max)

Ct1.2 nF#。標準的81.5 nF (±10%)±R#$

4 ZCD$%!$&'#

{電流検2(ZCD)²³HEZ/

´-6AY* !’線(ZCD’線)a&得"

#$-X%[IZCD電(eq. 5)計 算"#$

(eq. 5) VZCD(on)+ *Vin

NB: NZCD

VINAC電瞬時¡#$

-X%[IZCD電(eq.6)計算

"#$

(eq. 6) VZCD(off)+VOUT*Vin

NB: NZCD

NCP1607{電流検2q(Figure 50

„照)0()ˆ#© ()条m最 VZCDH(標準2.1 V)%ZCDµ¶8

’数比*8hi8+"ˆ¬$’数比(eq. 7) 計算"#$

(eq. 7) NB: NZCDvVOUT*VacHL@Ǹ2

VZCDH +11

Figure 4. Voltage Waveforms for Zero Current Detection

Winding

ZCD Drain VOUT

VZCD(on) VZCD(off)

DRV

VZCDH VZCDL VCL(NEG)

(5)

Figure 5. ZCD Winding and Internal Logic Arrangement ZCD

+

+

+

+

VCL(POS) Clamp

Shutdown

Demag

VCL(NEG) Active Clamp

+

+

Reset Dominant

Latch R

Q S DRIVE

RS

RZCD

VDD VIN

NZCD

Q NB

VSDL

VZCDL VZCDH

@設計’数比010I*"#$RZCD%ZCD’ 線I5I間追¶ !"#%@

52+#電流0限#9:#$@電 流ZCDC·-Z•機能%A¸8!程 度>*8hi8+"ˆ¬$RZCD(eq.8)計 算"#$

(eq. 8) RZCDw VacHL@Ǹ2

ICL(NEG)@(NB: NZCD)+15.0 kW

NCP1607^CiICL(NEG) = 2.5 mA

#$

!JZCD’線²³%検2 次HE

]%#aRZCD¡IZCD

¹生* !«8静電º量– 決"+"

#。-XY損›%最«89:q 電%谷kIRZCD%H0E[

#%理想的#$RZCD¡%Q!Iq 電-XY%«>8@I%?験Ra

– !"#$*a*Q#®IZCDš 検2著*!遅延%生c"#$@t x連続'通(DCM)()* 率%

‘*"#$RZCD%«#®IZCD電%高!I 次[E|%#9 :-XYM率%‘*"#$

5(FB)OVP)UVP!*+,- PFC段‰Š幅%狭!9:負荷急ƒ時"9 起(時[Cs%生c"#$NCP1607 [Csa&N護手段I* 調整˜能 8過電N護(OVP)o路03蔵* !"#$OVP 発(qš]ROUT1設T"#$NCP1607^ Ca&(eq. 9)%'a"#$

(eq. 9) VOUT(OVP)+VOUT(OVP))ROUT1@IOVP

IOVP = 10mA#$

ROUT1(eq. 10)計算"#$

(eq. 10) ROUT1+VOUT(OVP)*VOUT

IOVP ROUT14.0 MW#$

ROUT2¡Vout%目標qš]kIFB

02.5 V維持Q*"#$FPP機能%

k9:2 電誤4%生c"#$

RFB起» # 誤4 0 ¼ ” 2 電(VOUT) (eq. 11)計算"#$

(eq. 11) VOUT+VOUT)ROUT1@VREF

RFB

VOUT+400)4 M@ 2.5

4.7 M+402 V

RFB起»#誤4ROUT20調整* 補‹*"

#$RFBIROUT2½“接続形成等¾抵抗 REQ(eq. 12)計算"#$

(eq. 12) REQ+ROUT1@ VREF

VOUT*VREF

REQ+4 M@ 2.5

400*2.5+25.16 kW REQ0G用* ROUT20計算*"#$

(eq. 13) ROUT2+ REQ@RFB

RFB*REQ

ROUT2+ 25.16 k@4.7 M

4.7 M*25.16 k+25.29 kW

@設計25.5 kW抵抗0ROUT2G用*"

#$補‹後2 電(eq. 14)計算"#$

(eq. 14) VOUT+VREF@ROUT1)ROUT2

ROUT2 )ROUT1@VREF RFB

(6)

VOUT+2.5@4 M)25.5 k

25.5 k )4 M@ 2.5

4.7 M+397 V 最Q2 電qš]0決T#I2

^_¿有‚波数A-6]À 8

!注意#必要%k+"#$A-6]PFC段 平ÁÂ)用– 生c"#$]/E^

_0Ã電#電流正弦波k+ IÄ z相#%負荷電流~k+"ˆ¬$結果I

* 生cA-6]電(eq. 15)計算"#$

(eq. 15) Vripple(pk*pk)+ POUT

CBULK@2@p@fline@VOUT

@@fline = 47 Hz (A-6].EB)

#$

]/E^_¡%68mF8A-6]

電12.5 V(/Å/¡)I8+"#$@

¡/2 電406.25 Vl応#¡

/2 過電qš]440 V+>8+"#$

NCP1607電N護(UVP)機能3蔵* !"

#$通常状態IH2 ^_%AC

/¡"Ã電"#$最電"

Ã電8!tNCP1607電N護機能%Æ

"#$UVP障 %発生#2 電(eq. 16)計 算"#$

(eq. 16) VOUT(UVP)+ROUT1)ROUT2

ROUT2 @VUVP+48 V

VOUT(UVP)+4 M)25.5 k

25.5 k @300 mV+48 V

@機能L-/E%[6E]

6状態8–9IN護提d*"#$Ç&a È情1%状態8I(ÉZÊh x良%=!)VFB‘0検2*

最Q電 02 * lË*"#$#I2 電%

§昇* 部¦過度8q%aa+"#$

NCP1607FB状態a&56ABCD

0N護#9:2J機能03蔵* !"#$1J 3蔵6]Z•抵抗RFBFB%

状態8–9t“L”qš]6]Z•"

#$1J3蔵Ì起(v最Í HE]Î180ms遅延0追¶*"#$

通常3蔵誤456%FB0VREF6]5-6#

9:@遅延時間v誤456%^L`H ]"#(Figure 6)$VFB%UVP(標準300 mV)+

!""tI誤456%^L`

H]9""#$起(vL-/E ]6%[68– RFBIE Ì組b‡ˆ+N護"#$

FB

FB

Control UVP Wait

UVP Wait VUVP

VEAH VEAL VOUT

VOUT VCC(off) VCC(on) VCC

UVP Fault is “Removed”

Figure 6. Timing Diagram Showing UVP and Recovery from UVP

UVP VREF

()vFB%*9tVFB%Vref

a&‘*}:"#$‘率RFBIFB

¹生º量– ÏÐ"#$VFB%‘#

I[E|御端S電VFB < VUVP"

§昇*"#$FB電%UVP*!¡Ÿ‘‘

#I電障 %発生*"#$Figure 7|E X·0示*"#$

Figure 7. UVP Operation if Loop is Opened After Startup

VCC(off) VCC(on)

VOUT

Loop is Opened

VUVP VEAH VEAL

UVP Control

FB VOUT VCC

VREF

(7)

6 ./01!"#

電 部¦¡µ¶電流I電‡ˆ

適Ñ決T*"#$最Q8q%aa 負荷%最Q電%!I#$

1.HEZ/L

(eq. 17) IL(peak)+2@Ǹ @2 POUT

h@VacLL +3.62 A

(eq. 18) IL(RMS)+ 2@POUT

Ǹ @3 VacLL@h+1.48 A

2.HEZ[DBOOST

ID(RMS)+4

3@ 2@Ǹ2

Ǹ

p @ POUT

h@

Ǹ

VacLL@VOUT+0.75 A (eq. 19)

3. MOSFET Q1 IM(RMS)+ 2

Ǹ @3 POUT h@VacLL

(eq. 20)

1*

ǒ

83@@Ǹ @p2@VVacOUTLL

Ǔ

Ǹ

+1.27 A

MOSFETaa最Q電VOUT過電qš]

(@設計Ò440 V)IÄc¡#$MOSFET

BVDSS適用#^LqKLY080%I#

i耐550 VFET±RÓ裕%k+"#$

4.`抵抗RS

(eq. 21) RS+VCS(limit)

Ipeak +0.14W

PRS+IM(RMS)2@RS+0.22 W

(eq. 22)

VCS(limit) = 0.5 V (typ)

5.]/E^_CBULK

32@Ǹ @2 POUT2

9@p@VacLL@VOUT@h2*(ILOAD(rms))2

Ǹ

IC(RMS)+ +0.70 A(eq. 23)

]/E^_¡手順5計算2 過電N護機能%発(*8!程度A-6]電 0抑P9:¡#$@¡電流?M¡0

^_T格¥:9:Ôe8hi8

&8!@I%k+"#$

CBULK電T格VOUT最Qqš]+高

>*"#$@設計2 過電qš]%440 V8

耐450 V^_0選択*"#$

7 .2.3VCC

u般AC I8間接続9抵抗

– ^_CVCC%VCC(on)qš]"Ã電

"#$@INCP1607消費電 非常«

!9:電流QÕ直接^_CVCC0Ã電#

費e"#$~9:起(時間短縮 時消費電 減Ö*"#$起(時 間概算¡次式計算"#$

(eq. 24) tSTART+ CVCC@VCC(on)

Vac@Ǹ2

RSTART*ICC(startup)

@@ICC(startup) = 40mA(最Q¡)#$

VCC電%VCC(on)qš](標準12 V)0超PI

NCP16073部AŽqI\-/o路%[

8+"#$NCP1607VCC%約9.5 V+>8

"()状態0維持#電-/5•

(UVLO)機能0OP !"#$@ªKAC

+œ電源引継!VCC必要8電 0d給

#…h±R8時間%許º"#$œ電源最 適8ZCD’線#$9…*ZCD’線発生#

電必要8VCCqš]+±R!t%k +"#。*9%– VCC0d給#«8X

·\EØ6o路0構築*8hi8+"ˆ¬$

~8o路0Figure 8示*"#$

Figure 8. The ZCD Winding can Supply VCC through a Charge Pump Circuit +

1

4 3 2

8

5 6 7

FB

Control Ct Cs

GND ZCD DRV NCP1607

CIN

VCC RSTART

D1 D2

IAUX C1

R1 RZCD

CVCC

+

LBOOST

C1X·\EØ6用£,]r0蓄P"#$

R1電ƒÂ率0減#@I– 電流0 限*"#$D1´ÙÚ%負IC1電流 0d給*正IVCCµ¶最Q電 0限*"#$ZCD’線%-XY* ! IC1™端電1‚期VhƒÂ次式 計算"#$

(eq. 25) DVC1+VOUT*VCC

NB: NZCD

*9%– ^_CVCCÃ電Û用˜能8電 流次IV+#$

(eq. 26) IAUX+C1@fSW@DVC1+C1@fSW@VOUT*VCC

NB: NZCD

PFC0必要I#[EAC−DC電源t u般2段方式%G用"#$1段目CRMH PFC#$@a&2段目(u般的

-/"9Ü.方式絶縁n)電

(8)

0d給*"#$@方法8&Ý9性 能0?現"#$*a*軽負荷時 電流%

Ö8!9:PFC段x要#$È?PFC%[

""…ICK|M率%‘#…h#$

NCP1230eNCP13818高度8

軽負荷状態0検2* PFCC·-Z•0指示

*"#(Figure 9)$NCP1607@8o路構成

#@I%"#%d給VCC%最Ía&

NCP1607VCC(on)qš]+高!@I%条m

#。

Figure 9. Using the SMPS Controller to Supply Power to the NCP1607 1

7 6 5 2

3 4

NCP1607

+ +

+

+ 1

7 6 5 2

3 4

NCP1230

8 8

VCC

+ CBULK

DBOOST

PFC_VCC

8 45.678

AC電源0PFC急接続#I突 電流%流通常¡数Þß振電[Cs

%発生*"#$@à題lË電 部¦¡0見直* ! %aa+#®"

#$&NCP1607@à題0防止#手段

%"–9>k+"ˆ¬$HE-X0[

#Ià題%&悪Â*"#$@à題á 本的8解決法次2J#$

1.起(時整流U:

電I2 電I間整流U(DBYPASS) 0挿#方法#(Figure 10)$@整流U Z/†起(電流0迂oˆ 直 接、]/E^_流#Æ0*"#。

@方法8&ß振[Cs過度 8Z/電流8>AC電

/¡"]/E^_%Ã電"

#。起(後DBYPASS逆5%aa

9:HE0À #@

Ik+"ˆ¬$

2.âÊh突電流限抵抗:

NTC(負温度ã数)_¨0HE Z/I直“接続* 突電流0限

#方法#(Figure 11)$NTC_¨

抵抗¡I2R電 損›– ¶熱 9:数[|a&数¨A[|‘*"

#$HEZ[I直“接続#

方法k+"#$@方法8& 電流 8>2 電流…h%抵抗流9:

()時M率%改"#$*a*NTC 抵抗電‘VWo復時8

AC電源瞬断時発生#突電流a&

Z/I]/E^_0±RN護 8!V~%k+"#$

Figure 10. Use a Second Diode to Route the Inrush Current Away from the Inductor

NCP1607

+ Vac

VIN

VOUT DBYPASS

Figure 11. Use an NTC to Limit the Inrush Current Through the Inductor

NCP1607

+ Vac

VIN

VOUT NTC

(9)

9 9:;<=>?

Î述IV+自然2 電A-6]9:

PFCL-/E]6‰Š幅u般20 Hz

Ÿ‘""#$C6]861補‹,-.

/FBIControl間䷏C01

å…h配置*"#$L-/E,-./

Û得G(s)次式­P&"#$

(eq. 27)

G(s)+ 1

s@ROUT1@CCOMP

*9%– ]/電A-6]0減衰ˆ

必要8º量次式­P&"#$

(eq. 28) CCOMP+ 10Gń20

4@p@fline@ROUT1

GdBæz表*9減衰qš](u般60 dB)#$

flineAC‚波数最«¡(47 Hz)#$ Figure 12. Gain and Phase for a Type 1 Feedback Network

100 10

1

Gain (dB) Phase Shift (°)

150 120

90

60

30 0 f (Hz)

Gain (10 dB/div) Phase Shift (deg)

Figure 12示#IV+61補‹,-./z相H0行– ;T性0改#機能k

+"ˆ¬$抵抗性負荷t@±R*ç(Figure 13)$*a*SMPSo路8T電 負荷t z相Ó裕%«>8+"#(Figure 14)$

Phase Gain

Phase Gain Phase

Margin = 30°

100 W, 115 Vac CCOMP = 1.1 mF 40

32 24 16 8 0

−40

−32

−24

−16

−8

90 80 70 60 50 40 30 20 10 0

−10 100 10

1

Mag [B/A] (dB) Phase [B/A] (deg)

100 W, 115 Vac CCOMP = 1.1 mF 40

32 24 16 8 0

−40

−32

−24

−16

−8

90 80 70 60 50 40 30 20 10 0

−10 100 10

1

Mag [B/A] (dB) Phase [B/A] (deg)

Figure 13. Boost Demo Board with a Resistive Load (Phase margin = 30°)

Figure 14. Boost Demo Board with a Constant Power Load (Phase margin is reduced to 17°)

Phase Margin = 17°

f(Hz) f(Hz)

CK|;T性0§è必要%kt62補‹,-./0?装*"#。@構成 抵抗I^_0CCOMPI½“接続*"#(Figure 15)$

FB

Control

+

E/A +

VCONTROL ROUT2

ROUT1

CCOMP VOUT

CCOMP1

RCOMP1

Figure 15. Type 2 Compensation Network Vref

RFB

(10)

62誤456é達関数次IV+#$

G(s)+ 1)s@RCOMP1@CCOMP1

s@ROUT1@(CCOMP)CCOMP1)@

ǒ

1)s@RCOMP1@

ǒ

CCCOMPCOMP)@CCCOMP1

COMP1

Ǔ Ǔ

(eq. 29)

@@Ia&1J極%0 Hz零点%fZ(eq. 30)1J極%fP(eq. 31)k@I%Ra+"#$

fZ+ 1

2@p@RCOMP1@CCOMP1 (eq. 30) fP+fZ@

ǒ

CCOMPCCOMP)CCOMP1

Ǔ

(eq. 31)

Phase Gain

Figure 16. Representative Gain and Phase for a Type 2 Feedback Network (Note the Phase Boost)

10 100 1

Gain (dB)

Phase Shift (°)

150 120

90

60

30 0 f (Hz)

Gain (10 dB/div) Phase Shift (deg)

100 W, 265 Vac CCOMP = 0.01 mF CCOMP1 = 0.39 mF RCOMP2 = 54.9 kW ROUT1 = 4.0 MW

Figure 17. Improved Stability with a Type 2 Compensation Network (Phase Margin = 50 deg)

f (Hz)

−50 0 50 100 150 200

−30

−20

−10 0 10 20 30 40 50

1 10 100

MAGNITUDE (dB) Phase Shift (deg)

Figure 140見I61補‹,-./;

T性%Ra+"#%(補‹^_<º量

Äc)62#iFigure 17"改

"#$

z相Ó裕VW/[‚波数電 応c ƒÂ*"#$*9%– 8設計

k&ê()条m‘Û得−z相特性0測T#

@I%重要#$@測TFigure 18示#C 6]8検証用o路I,-./E5ëì 行!"#$

(11)

Figure 18. Gain-Phase Measurement Setup for Boost PFC Pre-Converters +

AC Line

EMI Filter

1

4 3 2

8

5 6 7 FB

Control Ct Cs

GND ZCD DRV

+

CBULK

LOAD

VOUT

RS CIN

RZCD

ROUT1

ROUT2

VCC

Ct

VCC Isolator Network Analyzer Ch A

Isolation Probe

Ch B Isolation Probe

1 kW LBOOST

THDをさらに低減するための簡単な改善策

NCP1607[E|%¿T V+°設

計最適Â0í際自由度a8+高>8– !"

#$& 率性能0§è必要%kt

Ÿ‘設計¸0検討*>…!$

1@(ABBC!DEFGHIJK LMNOC!THDKPFPQ

CRM御1Jà題AC%{E/

#I電%x±R¿T[E|期 間v…hHEZ/±R£,]

r%蓄P&8!@I#$£,]r%îI¬

Ë理1“{E/[歪b”(Figure 19)

%発生*"#$

Figure 19. Zero Crossover Distortion

VIN (50 V/div)

IIN (500 mA/div)

~結果THD%Ô¶*6APF%

‘%– *"!"#$NCP1607電流歪b0±R抑 P@I%9:IEC1000要m0満9#、

u般@@Ià題k+"ˆ¬$THD"9 PF0&改#必要%kt@{E /[歪b0減"#$~鍵 電

%!I[E|0長>延i#@I

#$@+Z/£,]r0蓄P 9:時間0延長9:歪b%}"電q

š]%‘%+"#$

幸!@方法NCP1607簡æ?装"

#$3 (Ct)I 電間抵抗0接続#I

瞬時電比Ò*9電流%Ct注"#

(Figure 20)$@電流電/時

(12)

高>8+"#% 電%!IÇ)用 k+"ˆ¬$

Figure 20. Add RCTUP to Modify the On Time and Reduce the Zero Crossing Distortion +

AC Line

CIN RCTUP VIN

Ct I+ VIN

RCTUP

VDD

DRV ICHARGE

+

- ton

PWM

VEAL VCONTROL

Ct

LBOOST

^_Ctº量0Q>#î、{E/

Ê近[E|%長>8+"#(Figure 21)。 AC‚期‚波数ƒ(減Ö*"#$@方法 欠点RCTUP– 無負荷時電 損›%Ô

Q#@I#$THDVWPF求:&性能 I無負荷時電 損›l#要m2J 0í必要%k+"#$

Figure 21. On Time and Switching Frequency with and without RCTUP Vac(t)

ton

fSW

with RCTUP no RCTUP

with RCTUP no RCTUP

time

@抵抗%THDI 率Ipï#影響0Figure 22示*"#$

THD (%)

Rctup = 1.5 MW Rctup = open

0 5 10 15 20 25

85 115 145 175 205 235 265

(13)

2@(RNOCSTUV.3C!THDKPFPQ 軽負荷時"9高電時必要8[E

|%最«[E|+短!I過度8電

%2 "#$@+御電%最«qš

](VEAL)"‘*"#$次2 電%高>

8+#®8!H(静的OVP)0^L`

H]*"#$!–9¬2 %‘*9後御電

%§昇*@_/]%繰+返"#$@現 象%起I 電流歪bI2 電A-6 ]%Ô¶*"#$軽負荷時"9高電時 THDVWPF0改#方法次2J#$

1.^_Ct0最適8º量#@I$

Î述IV+^_Ctº量<負

荷時VW電時必要8[E

|%得&程度Q>8hi8+

"ˆ¬$*a*k"+Q#®I軽負荷 時"9高電時御qš]範¤

%狭"+"#$

2.é播遅延0補‹#:

^_Ctº量0最適Â* 必要8 性能%達成8!tPWMé播遅延 0補‹#必要%k*ç$Ct電%

VCONTROL設T¡0超PIPWM

q%[E|0終ðˆ

²³02 *"#(Figure 23)$

Figure 23. Block Diagram of the Propagation Delay Components Ct

VDD

DRV ICHARGE

+ - PWM

VEAL VCONTROL Control

VCT(off)

DRIVER

RS DRV

RDRV VGATE

ISWITCH

Ct RCT

*a*MOSFET%ñ<E[#"

遅延%k+"#$@遅延PWMq é播遅延IMOSFET—電%{8"

時間– 生c"#(Figure 24)$

Figure 24. Driver Turn Off Propagation Delay VGATE

ISWITCH CT CT(off)

tPWM

tGATE tDELAY

<ò遅延時間tDELAY(eq. 32)VV~計算

"#$

tDELAY+tPWM)tGATE (eq. 32)

@遅延– ?際[E|%óW"#。

抵抗(RCT)0^_Ct直“挿*9t

<ò[E|次式計算¡…h 短>8+"#$

Dt+Ct@DVRCT

DIRCT+Ct@RCT

* 9 % – é播 遅 延0補‹ # 9 : (eq. 33)RCT0計算*"#$

RCT+tDELAY Ct

(eq. 33)

NCP1607^CitPWM標準¡

100 ns#$遅延時間tGATEMOSFET—電 荷I抵抗RDRV応c ƒÂ*"#$@56AB CDEF示#^Eô—遅延時

間約150 ns測T"#$é播遅延0補‹#

RCT= 300W±R#$@軽負荷時V

W高電時PFITHD%改"#

(Figure 25)$

(14)

Figure 25. Effect of RCT on Light Load THD at 265 Vac/50 Hz ( RCTUP = Open) POUT (W)

THD (%) Rct = 300 W

Rct = 0 W

0 10 20 30 40 50 60 70

25 30 35 40 45 50

設計結果

NCP16070G用* ñ成*9^Eôo路

í0Figure 26示*"#$

Figure 26. 100 W PFC Pre-Converter Using the NCP1607

C3 D1

+ +

U1 NCP1607

ZCD5

3 Ct GND6

4 CS

VCC8 DRV7

1 FB

2 Control

J3

J1 L2

F1

C2

Q1 BRIDGE

t NTC

J2

L1

R1

C1

RSTART1 RSTART2

LBOOST DBOOST

CVCC

DAUX DVCC

RZCD

CVCC2DDRV

RDRV

CZCD RCTUP2

RCTUP1

RO1A

RO1B

CBULK

ROUT2B ROUT2A CIN

CCOMP1RCOMP2 CCOMP

CT1

CT2 CCS

RCS

RS3 RS2 RS1 RCT

部¦表(BOM)V W q 5 • í ~ ¢

Appendix 1Appendix 2示*"#$õo設計*96 ATHD (Figure 27, 28)PF (Figure 29) M率(Figure 30)Ý9性能%得&"*9$

(15)

Figure 27. THD vs. Input Voltage at Full Load and 50% Load

Figure 28. Individual Harmonic Current at 115 Vac and 230 Vac

Vac (VRMS) Nth HARMONIC

THD (%)PF

POUT = 100 W POUT = 50 W

Vac (VRMS)

EFFICIENCY (%)

0 2 4 6 8 10 12 14 16 18 20

85 115 145 175 205 235 265

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 115 Vac 230 Vac 115 Vac Limit 230 Vac Limit

Figure 29. PF vs. Input Voltage at Full Load and 50% Load

Vac (VRMS)

HARMONIC CURRENT (A)

Figure 30. Efficiency vs. Input Voltage at Full Load and 50% Load

0.9 0.92 0.94 0.96 0.98 1

85 115 145 175 205 235 265

Pout = 100 W

Pout = 50 W

90 91 92 93 94 95 96

85 115 145 175 205 235 26

Pout = 100 W

Pout = 50 W

電流I発生*92 電A-6]0Figure 31 示*"#$2 軽負荷0接続*9状態6A 0起(ˆ@I+過電N護機能

0確認"#(Figure 32)$約440 V過電N護機 能%発(*約410 Vö起(*"#$

Figure 31. Full Load Input Current at 115 Vac/60 Hz Figure 32. Startup Transient Showing OVP Activation and Recovery

VIN (100 V/div)

Vout Ripple (10 V/div) IIN (1 A/div)

OVP Activated at 440 V

OVP Recovers at 410 V NCP1607 Starts Up Here

VIN (100 V/div) Vout (100 V/div) VCC (5 V/div)

(16)

FPPジャンパ

@^EôNCP1607FPP機能0?

証#手段I* NCP16071IL- /E,-./間\·0装着"#$

電 0µ¶#Î\·0÷+â*9t

、H^L`H]"#(Figure 3334)$

()v\·0÷+â*9t1 msŸ3 H%^L`H]"#(Figure 3536)$

@\·FPP機能0確認#9:…h 設h !最終製¦x要#$

Figure 33. Startup with Jumper Removed at 265 Vac/50 Hz, IOUT = 0 mA, VCC = 13 V, and TJ = −405C

Figure 34. Startup with Jumper Removed at 265 Vac/50 Hz, IOUT = 250 mA, VCC = 20 V, and TJ = −405C

Figure 35. Removing Jumper During Operation at 265 Vac/50 Hz, IOUT = 250 mA, VCC = 20 V, and TJ = −405C

Figure 36. Removing Jumper During Operation at 265 Vac/50 Hz, IOUT = 0 mA, VCC = 13 V, and TJ = −405C VOUT (100 V/div)

VCC (10 V/div)

DRV (10 V/div)

IOUT (200 mA/div)

IOUT (200 mA/div) DRV (10 V/div) VCC (10 V/div) VOUT (100 V/div)

IOUT (200 mA/div) DRV (10 V/div) VCC (10 V/div)

VOUT (100 V/div) VOUT (100 V/div)

VCC (10 V/div)

DRV (10 V/div) IOUT (200 mA/div)

@^Eô様j8方法構成* 性能0最適Â"#。構成Ò!>Ja0Table 2示*"#。

Table 2. SUMMARY OF KEY PARAMETERS FOR DIFFERENT VARIATIONS OF THE DEMO BOARD

RCTUP Ct

Shutdown (VZCD = 0 V) Pdiss @ 265 Vac

Efficiency @ 100 W THD @ 100 W

115 Vac 60 Hz

230 Vac 50 Hz

115 Vac 60 Hz

230 Vac 50 Hz

Open 1.5 nF 225 mW 92.5% 94.6% 9.5% 16.7%

1.5 MEG 1.8 nF 295 mW 92.5% 94.4% 4.9% 8.9%

(17)

安全性の問題

FPP機能FB%状態8–9I o路0N護#@Ib0目的I* !"#

\·0÷+â#I注意%必要#$ジャン パを取り外した状態では、ジャンパ・ピンにどのワ イヤも取り付けないでください。.ø0÷+Êh IFBFù%g9:FPP%正*>()

*8>8+2 最Q電 %送&"#$@

+CBULK%u気放電#@I%k+"#$

ジャンパを取り外すときは必ず、適切な安全メガネ を装着してください。

\·!>Ja高部¦隣配置

!()v素手e非絶縁金úûü÷

+â8!>…!$

レイアウトに関する検討事項

=>-XY電源IÄ様q5•時 重要部¦配置0慎重検討*8hi8+"ˆ

¬$ý電源-X高!/電流%引起

@#FùNCP1607感度高! º易

結"#$@Fù0減#9:Ÿ‘

¸従– >…!$

1.重要8部¦Ÿ‘Ýþ順z˜能8限

+物理的NCP1607近ÿh 配置#@I。

a. ^_Ct

b. ^´-6AYE^_VCC c. ~他補‹用部¦

2.²³q#© 最短#@I$

3. RSQ1ÙE隣接#@I$

4. CINBRIDGERSCBULK°Y接続

˜能8限+近ÿh 配置#@I$

5.必要8&ZCDICS^´-6A YE^_0追¶#@I$

a.@^_0追¶*9t 適Ñ8¨Y0確N#9:RZCDV WRCS調整%必要8@I%k+"#。

b.@^EôCZCDVWCCSx

要#%á板§%設h k9 :必要8t追¶"#$

(18)

APPENDIX 1: BILL OF MATERIALS (BOM)

Designator Qty Description Value Tolerance

Foot−

Print Manufacturer

Manufacturer Part Number

Substitution

Allowed Pb−Free

U1 1 NCP1607 NCP1607 SOIC−8 ON Semiconductor NCP1607BDR2G No Yes

D1 1 Diode,

General Purpose

100 V SOD123 ON Semiconductor MMSD4148T1G No Yes

DAUX 1 Diode,

Zener

18 V SOD123 ON Semiconductor MMSZ4705T1G No Yes

DBOOST 1 Diode,

Ultrafast

4 A, 600 V Axial ON Semiconductor MUR460RLG No Yes

BRIDGE 1 Diode,

Bridge Rectifier

4A, 600 V KBL Vishay KBL06−E4/51 Yes Yes

DVCC, DDRV

2 Diode,

General Purpose

open SOD123

F1 1 Fuse, SMD 2 A, 600 V SMD Littelfuse 0461002.ER Yes Yes

LBOOST 1 Inductor,

Boost, Nboost:Nzc

d = 10:1

400 mH, 10:1

Custom Coilcraft FA2890−CL No Yes

L1 1 Inductor,

Radial

180 uH 10% Through

Hole

Coilcraft PCV−2−184−05L No Yes

L2 1 Inductor,

Common−M ode Choke

4.7 mH, 2.7 A

Through

Hole

Panasonic ELF−20N027A Yes Yes

Q1 1 MOSFET,

N−Channel

11.6 A, 560 V

TO−220 Infineon SPP12N50C3 Yes Yes

NTC 1 Thermistor,

Inrush Current Limiter

4.7 W 20% Radial EPCOS B57238S479M Yes Yes

RCOMP1 1 Resistor,

SMD

54.9 kW 1% 1206 Yageo RC1206FR−0754K9L Yes Yes

R1 1 Resistor,

SMD

100 W 1% 1206 Yageo RC1206FR−07100RL Yes Yes

RCT 1 Resistor,

SMD

0 W 1% 1206 Yageo RC1206FR−070RL Yes Yes

RDRV 1 Resistor,

SMD

10.0 W 1% 1206 Yageo RC1206FR−0710RL Yes Yes

ROUT2A 1 Resistor,

SMD

25.5 kW 1% 1206 Yageo RC1206FR−0725K5L Yes Yes

RO1A,RO1B 2 Resistor, SMD

2.00 MW 1% 1206 Yageo RC1206FR−072ML Yes Yes

RS1 1 Resistor,

SMD

0.100 W, 1 W

1% 2512 KOA SR733ATTER100F Yes Yes

RS2,RS3 2 Resistor,

SMD

open 2512

ROUT2B 1 Resistor,

SMD

open 1206

RCS 1 Resistor, 1/4

W Axial

510 W 5% Axial Yageo CFR−25JB−510R Yes Yes

RCTUP1, RCTUP2

2 Resistor, 1/4 W Axial

750 kW 5% Axial Yageo CFR−25JB−750K Yes Yes

RZCD 1 Resistor, 1/4

W Axial

51 kW 5% Axial Yageo CFR−25JB−51K Yes Yes

RSTART1, RSTART2

2 Resistor, 1/4 W Axial

330 kW 5% Axial Yageo CFR−25JB−330K Yes Yes

C1,C2 2 X Capacitor 0.47u 20% Radial EPCOS B32923C3474M Yes Yes

CIN 1 X Capacitor 0.1u 20% Radial EPCOS B32921A2104M Yes Yes

CVCC 1 Capacitor, 47 uF, 20% Radial Panasonic EEU−FC1E470 Yes Yes

参照

関連したドキュメント

A dedicated comparator monitors the bulk voltage and disables the controller if a line overvoltage fault is detected.. The Fast Overvoltage (Fast−OVP) and Bulk Undervoltage

To limit the power lost in generating the drive voltage for the Power Switch, the switching frequency is reduced by a factor of 2 when the input voltage exceeds the V IN

LED lighting solutions enabling our customers to meet and exceed worldwide power management regulations (efficiency, standby power, low quiescent current, PFC…) at cost parity

The instantaneous inductor current is summed with the AC error amplifier voltage and the ramp compensation signal to create a complex waveform that is compared to the 4.0 volt

• Primary Side Constant Current Control: thanks to a proprietary circuit, the controller is able to take into account the effect of the leakage inductance of the transformer and

Also included are protective features consisting of an overvoltage comparator to eliminate runaway output voltage due to load removal, input undervoltage lockout with

The ac line current is the averaged inductor current as the result of the EMI filter “polishing” action. Current Cycle Within a Branch Eq.. V REGUL is the signal derived from

• In case of a condition preventing the circuit from operating properly, i.e., during the V CC charge by the high voltage startup current source, in a Brown−out case or when one of