• 検索結果がありません。

Heat Transfer and Pressure Loss Characteristics of a Channel Flow with Fibrous Metal

N/A
N/A
Protected

Academic year: 2021

シェア "Heat Transfer and Pressure Loss Characteristics of a Channel Flow with Fibrous Metal "

Copied!
6
0
0

読み込み中.... (全文を見る)

全文

(1)

Heat Transfer and Pressure Loss Characteristics of a Channel Flow with Fibrous Metal

Kenji TANI*, Keisuke OKAZAKI*, Mamoru SENDA* and Kyoji INAOKA*

(Received on April 11, 2012)

Heat transfer experiment and pressure loss measurement have been done for the channel flow with the insertion of fibrous metal materials in order to investigate their effectiveness as an insertion device to improve the heat exchanger’s performance. Fibrous metals focused in this paper are composed of aluminum fibers of 100 micron meters diameter, once laminated as a non-woven fabric, and then hardened by diffusion bonding as a bulk insertion body. Perfect heat conduction from the wall to the fibrous metal should be one of the factors for better heat transfer enhancement, therefore, the diffusion bonding was also applied for the connection of the wall and the insertion body. It was found that the fibrous metal is effective to enhance the wall heat transfer, that is, heat transfer of eight times as large as that of the non insertion case is obtained.

Since the diffusion bonding revealed relatively large heat transfer enhancement keeping low pressure loss penalty, fibrous metal is a promising device to improve the heat exchanger’s performance.

.H\ZRUGV㸸Heat transfer, Heat exchangers, Heat transfer enhancement, Fibrous metal, Pressure loss

࣮࣮࢟࣡ࢻ㸸⇕ఏ㐩㸪⇕஺᥮ჾ㸪ఏ⇕ಁ㐍㸪⧄⥔≧㔠ᒓ㸪ᅽຊᦆኻ

⧄⥔≧㔠ᒓࢆタ⨨ࡋࡓὶ㊰ࡢ⇕ఏ㐩࡜ᅽຊᦆኻ≉ᛶ

㇂ ㈼἞㸪ᒸᓮ ᆂభ㸪༓⏣ ⾫㸪✄ᒸ ᜤ஧

ࡣࡌࡵ࡟

࢚ࢿࣝࢠ࣮ࢆ᭷ຠ࡟฼⏝ࡍࡿ࡟ࡣ㸪┠ⓗ࡟ᛂࡌࡓ

ྛ⇕ὶయᶵჾࡢ฼⏝ຠ⋡ࢆୖࡆࡿ࡜ྠ᫬࡟㸪ࡇࢀࡲ

࡛ぢ㏨ࡋ࡚࠸ࡓ᤼⇕࢚ࢿࣝࢠ࣮ࢆᅇ཰ࡋ㸪฼⏝ࢆᅗ

ࡿᚲせࡀ࠶ࡿ㸬ࡇࡢᅇ཰ຠ⋡ࢆୖࡆࡿ࡟ࡣ㸪᤼⇕ᅇ

཰⇕஺᥮ჾࡢ㧗ຠ⋡໬ࡀᚲ㡲࡛࠶ࡿ㸬୍⯡࡟㸪⇕஺

᥮㔞ࢆቑ኱ࡉࡏࡿࡓࡵ࡟ࡣ㸪⇕※ࡢ࡛ࡁࡿࡔࡅ㏆ࡃ

࡟࠾࠸࡚㸪ࡑࡋ࡚࡛ࡁࡿࡔࡅከࡃࡢ㠃✚࡛⇕ࢆఏ࠼

ࡿࡇ࡜ࡀᮃࡲࡋ࠸㸬ࡇࡢほⅬ࠿ࡽ㸪⇕஺᥮ჾ࡟࠾࠸

࡚ࡣ㸪ᵝࠎ࡞ᙧ≧ࡢᣑ኱ఏ⇕㠃㸦ࣇ࢕ࣥ㸧ࡢせ⣲㛤

Ⓨࡀ㐍ࡵࡽࢀ࡚ࡁࡓ㸬ࣇ࢕ࣥࡢከࡃࡣຍᕤᛶࡢ㧗࠸

㔠ᒓ࡛〇సࡉࢀ㸪⇕ࡣࡑࡢᣑ኱ఏ⇕㠃ࢆ⇕ఏᑟ࡛⛣

ືࡋ㸪᭱⤊ⓗ࡟ὶయ࡟⇕ఏ㐩࡛ఏࢃࡿ㸬

ⴭ⪅ࡽࡣ㸪ᣑ኱ఏ⇕㠃ࡢ✲ᴟࡢᙧ࡜ࡋ࡚㸪㔠ᒓ⧄

⥔ࡢࣇ࢕ࣥ࡟ὀ┠ࡋ࡚࠸ࡿ㸬ᮏㄽᩥ࡛ᢅ࠺⧄⥔≧㔠 ᒓࡣ㸪㔠ᒓࢆ⣽⥺≧࡟ຍᕤࡋࡓࡶࡢࢆ㞟ࡵ㸪ຍᅽࡋ

࡚ᙧ≧ࢆᩚ࠼ࡓࡶࡢ࡛࠶ࡾ㸪࣐ࢡࣟⓗ࡟ぢࢀࡤ࠸ࢃ

ࡺࡿከᏍ㉁ᛶࢆᣢࡘ㸬ࡇࢀࢆ⇕஺᥮ὶ㊰࡟ᩜࡁワࡵ

ࢀࡤ㸪ὶయࡢࡼࡾ㏆ࡃ࡛ཷ⇕࡜ᨺ⇕ࡀྍ⬟࡛࠶ࡿ㸬 ࡍ࡞ࢃࡕ㸪ఏ⇕㠃ࡢ⇕ࡣ㧗࠸⇕ఏᑟᛶࢆࡶࡘ㔠ᒓ⧄

*Department of Mechanical Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 Telephone: +81-774-65-6463, Fax: +81-774-65-6802, E-mail: kinaoka@mail.doshisha.ac.jp

(2)

⥔ࢆ㏻ࡋ࡚ὶ㊰ࡢྛᡤ࡟⛣ືࡋ㸪ὶయ࡟ࡼࡾከࡃࡢ

⇕ࢆఏ࠼ࡿࡇ࡜ࡀᮇᚅ࡛ࡁࡿ㸬ከᏍ㉁㔠ᒓࢆ⇕஺᥮

࡟฼⏝ࡍࡿሗ࿌ࡣከࡃ࡞ࡉࢀ࡚࠸ࡿ1, 2)ࡀ㸪࡯࡜ࢇ࡝

ࡀⓎἻ㸪ࡶࡋࡃࡣ↝⤖࡟ࡼࡾ〇సࡉࢀࡓࡶࡢ࡛㸪⧄

⥔≧㔠ᒓࡢሗ࿌౛ࡣࡇࢀࡲ୍࡛౛ 3)ࢆ㝖࠸࡚ぢ࠶ࡓ

ࡽ࡞࠸㸬⧄⥔≧㔠ᒓࡣ㸪ᙎຊᛶ࡟ᐩࡳ㸪᪤Ꮡࡢఏ⇕

⟶࡟タ⨨࡛ࡁࡿ࣓ࣜࢵࢺࢆ᭷ࡍࡿⅬ࡛㸪ࡑࡢ㐺⏝ᛶ

ࢆㄪ࡭ࡿࡇ࡜ࡣᕤᏛୖ᭷ព⩏࡛࠶ࡿ㸬ࡑࡇ࡛ᮏㄽᩥ

࡛ࡣ㸪⧄⥔≧㔠ᒓࢆタ⨨ࡋࡓὶ㊰ࡢᒁᡤ⇕ఏ㐩≉ᛶ

ࢆᐇ㦂ⓗ࡟ㄪᰝࡋࡓ㸬ࡇࡢ✀ࡢ≀యࢆఏ⇕㡿ᇦ࡟タ

⨨ࡍࡿ㝿࡟ࡣ㸪ࡑࡢఏ⇕㠃࡬ࡢタ⨨᪉ἲ࡟ࡼࡾ⇕஺

᥮ᛶ⬟ࡀኚ໬ࡍࡿ࡜ࡢሗ࿌ࡀ࠶ࡿ 4)㸬ࡑࢀࡣ୺࡜ࡋ

࡚ఏ⇕㠃࡜≀య࡜ࡢ᥋ゐ⇕᢬ᢠࡢ኱ᑠ࡟㉳ᅉࡍࡿࡶ

ࡢ࡜⪃࠼ࡽࢀࡿ㸬ᕤᴗ〇ရࡢከࡃࡣࣟ࢘௜ࡅ࡟ࡼࡿ

⁐╔ࡀ⾜ࢃࢀ࡚࠸ࡿࡀ㸪ࡇࢀࡲ࡛ࡢ◊✲౛࡛ࡣ↓᥋

ྜࡢࡶࡢࡸ᫂グࡋ࡚࠸࡞࠸ࡶࡢࡶከᩘ࠶ࡾ㸪࠸ࡎࢀ

࡟ࡋ࡚ࡶ᥋ྜ᪉ἲ࡟ᑐࡍࡿ⤫୍ⓗ࡞ࢹ࣮ࢱࡣぢ࠶ࡓ

ࡽ࡞࠸㸬ᮏ◊✲࡛ࡣఏ⇕㠃࡟ᑐࡋ࡚㸪⧄⥔≧㔠ᒓࢆ

ศᏊⓗ࡟ᣑᩓ᥋ྜ 5)ࡍࡿሙྜ࡟ὀ┠ࡋ㸪௦⾲ⓗ࡞ࣟ

࢘௜ࡅ࡟ࡼࡿ᪉ἲ࡜㸪ࡑࢀࡽࢆ⏝࠸࡞࠸タ⨨᪉ἲ࡟

ࡘ࠸࡚ࡶᐇ㦂ࢆ⾜࠸㸪ఏ⇕㠃ࡢ⇕ఏ㐩࡜ὶ㊰ࡢᅽຊ ᦆኻ࡟ཬࡰࡍᙳ㡪ࢆ᳨ウࡋࡓ㸬⇕ఏᑟ≀యࢆタ⨨ࡋ

ࡓሙྜࡢఏ⇕ಁ㐍ᛶ⬟ࡢホ౯࡟࠾࠸࡚ࡣ㸪⁥㠃ὶ㊰

࡟ᑐࡍࡿẚࢆᇶ࡟⪃ᐹࡋࡓ㸬ࡲࡓ㸪ྠࡌఏ⇕ಁ㐍ࡢ

┠ⓗ࡛౑ࢃࢀ㸪ᮏᐇ㦂࡟౪ࡋࡓᑍἲ࡜ẚ㍑ⓗ㏆࠸

Haack ࡽ 6)ࡀ⏝࠸ࡓⓎἻ㔠ᒓࡢ⤖ᯝ࡜ẚ㍑ࡋ㸪⧄⥔

≧㔠ᒓࡢఏ⇕ಁ㐍࡟ᑐࡍࡿ᭷ຠᛶ࡟ࡘ࠸࡚ㄪ࡭ࡓ㸬 ᐇ㦂᪉ἲ

ᐇ㦂⿦⨨࠾ࡼࡧࢸࢫࢺࣔࢪ࣮ࣗࣝ

ᐇ㦂ࡣ㸪✵Ẽࢆసືὶయ࡜ࡍࡿ྿ࡁฟࡋᘧὶ㊰ࢆ

⏝࠸࡚⾜ࡗࡓ㸬ఏ⇕ᐇ㦂࡟౪ࡍࡿຍ⇕⏝ࢸࢫࢺ㒊ࡢ ὶ㊰ࡣ㧗ࡉ10mm㸪ᖜ150mmࡢ▴ᙧ᩿㠃࡛࠶ࡾ㸪ὶ

ࢀ᪉ྥ㛗ࡉࡣ 150mm ࡛࠶ࡿ㸬ࡇࡢࢸࢫࢺ㒊࡟ࡣⓎ

㐩ࡋࡓὶࢀࡀὶධࡍࡿ㸬ࣆࢺ࣮⟶ࢆ⏝࠸ࡓணഛᐇ㦂

࡟ࡼࡾ㸪⧄⥔≧㔠ᒓࢆタ⨨ࡋ࡞࠸ሙྜ࡟࠾࠸࡚㸪᥋

㏆ὶࡢ㸰ḟඖᛶࡀὶ㊰ࡢ୰ኸഃ85%࡟࠾࠸࡚ಖࡓࢀ㸪 ᥋㏆ὶ㏿ᗘࡢ㧗ࡉ᪉ྥࡢศᕸࡀ༑ศ࡟Ⓨ㐩ࡋ࡚࠸ࡿ

ࡇ࡜ࢆ☜ㄆࡋࡓ㸬

Fig. 1 ࡟♧ࡍࡼ࠺࡟㸪ὶ㊰ୗቨࢆఏ⇕㠃࡜ࡋ㸪ཌ

ࡉ20ȣmࡢࢫࢸࣥࣞࢫ⟩ࢆ㈞ࡾ㸪㏻㟁࡟ࡼࡾ➼⇕ὶ ᮰ຍ⇕ࡍࡿ㸬ࢸࢫࢺ㒊࡟タ⨨ࡍࡿ㔠ᒓ⧄⥔ࡢࢸࢫࢺ

ࣔࢪ࣮ࣗࣝࡣ㸪ቨ㠃࡜ᣑᩓ᥋ྜࡍࡿሙྜ࡟ࡣ୍య࡜

࡞ࡗ࡚࠸ࡿ㸬ࣔࢪ࣮ࣗࣝ࡜ࢫࢸࣥࣞࢫ⟩ࡢ㛫࡟ఏ⇕

Al 86.5 + A Al 86.5 + B Al 86.5 㸫 Al 86.5 Al 81.5 + Cu 86.5 +

Material Aluminum Copper

Porosity [%] 86.5 86.5 86.5 86.5 81.5 86.5

Installation type Diffusion bonding Brazing Not adhere Diffusion bonding Fig. 1. Schematic view of a test section.

Table 1. Specifications of the test samples.

Fig. 2. SEM image of aluminum fibrous metal.

Fibrous metal

Diffusion bonding

Convection

Heat transfer wall

Conduction Fibrous metal

Diffusion bonding

Convection

Heat transfer wall

Conduction

ぢ࠿ࡅࡢᒁᡤ⇕ఏ㐩⋡ ᐃ࡜ᅽຊᦆኻ ᐃ

ᐇ㦂⤖ᯝ࡜⪃ᐹ ᒁᡤ⇕ఏ㐩⋡≉ᛶ࡜ᅽຊᦆኻ≉ᛶ

(3)

ࢩ࣮ࢺࢆᣳࡳ㸪ຍ⇕ࡋࡓ⇕ࡀὶ㊰ࡢୗቨ㸦ఏ⇕㠃㸧

࡟ࡴࡽ↓ࡃఏࢃࡿࡼ࠺⇕᢬ᢠࢆ㜵࠸ࡔ㸬ࡲࡓ㸪ࢸࢫ ࢺࣔࢪ࣮ࣗࣝࡢୖ࡟ࡣ᩿⇕ࢩ࣮ࢺࢆタ⨨ࡋ㸪࢔ࢡࣜ

ࣝࡢୖቨ࡬ࡢ⇕ࡢ㏨ࡆࢆ↓ࡃࡋࡓ㸬ࢫࢸࣥࣞࢫ⟩ࡢ

⿬㠃࡟ࡣᒁᡤ⇕ఏ㐩⋡ࡢ ᐃ⏝࡟⇕㟁ᑐࢆ 14 ⟠ᡤ 10mm 㛫㝸࡛タ⨨ࡋࡓ㸬ࡲࡓὶయ ᗘ࡜࢔ࢡࣜࣝୖ

ୗቨ㠃ࡢ ᗘࡶࡑࢀࡒࢀ⇕㟁ᑐ࡟ࡼࡾ ᐃࡋࡓ㸬ᗙ ᶆ⣔ࡣຍ⇕ୖὶ➃࠿ࡽୗὶ࡟ྥ࠿ࡗ࡚x㍈ࢆ࡜ࡿ㸬 ࢸࢫࢺࣔࢪ࣮ࣗࣝࡣ⧄⥔≧㔠ᒓ࡜ᇶᯈ࠿ࡽᵓᡂࡉࢀ㸪 ᇶᯈࡣὶ㊰ࡢୗቨ㠃㸦ఏ⇕㠃㸧࡟┦ᙜࡍࡿ㸬⧄⥔≧

㔠ᒓ㒊ࡣ✵Ẽࡀὶࢀࡿὶ㊰࡜ྠࡌ 150mm™150mm

™10mmࡢᑍἲࢆᣢࡕ㸪ᇶᯈࡢཌࡉࡣ1.5mm࡛࠶ࡿ㸬 ࡇࡢᇶᯈࡣቨ㠃࡜⧄⥔≧㔠ᒓ࡜ࡢᣑᩓ᥋ྜࡢ┠ⓗ࡜㸪 ቨ㠃ࡢᖹ㠃ᛶࢆ☜ಖࡍࡿ஧ࡘࡢ┠ⓗࡀ࠶ࡿ㸬ࡇࡢᇶ ᯈ࡟ࡼࡾ㸪୚࠼ࡓ⇕ࡢ୍㒊ࡣᇶᯈ㠃ෆ᪉ྥ࡟ࡶఏᑟ ࡋ㸪ὶࢀ᪉ྥࡢᒁᡤ⇕ఏ㐩⋡࡟ࡶᑡ࡞࠿ࡽࡎᙳ㡪ࢆ

ཬࡰࡍ 7)㸬≀యࢆタ⨨ࡋ࡞࠸⁥㠃ὶ㊰࡟࠾࠸࡚⾜ࡗ ࡓணഛᐇ㦂ࡼࡾ㸪ࡇࡢᙳ㡪ࡣ᭱ୖὶ఩⨨࡜᭱ୗὶ఩

⨨࡛᭱኱࡜࡞ࡾ㸪ᇶᯈࡢ↓࠸ሙྜ࡟ᑐࡋ࡚ࡑࢀࡒࢀ

ซࡑ10%పࡃ㸪10%㧗ࡃぢ✚ࡶࡿࡇ࡜࡟࡞ࡿ㸬ࡓࡔ ࡋ㸪ᐇᶵ࡬ࡢ㐺⏝ࡢ㝿࡟ࡶࡇࡢᇶᯈࡣᚲ㡲࡛࠶ࡿࡓ

ࡵ㸪ࡑࡢᙳ㡪ࢆྵࡴ⤖ᯝࢆ⪃ᐹࡍࡿࡇ࡜࡜ࡋࡓ㸬࡞

࠾㸪ᇶᯈࢆྲྀࡾ㝖ࡁ㸪⧄⥔≧㔠ᒓࡀ↓࠸ሙྜ࡟ᚓࡓ ᒁᡤ⇕ఏ㐩⋡ศᕸࡣ㸪㏵୰ຍ⇕ࡋࡓᖹᯈୖࡢ⇕ఏ㐩

⋡ศᕸ࡟ᑐࡍࡿ⤒㦂ᘧ࡜ࡢᕪࡣ┦ᑐ್࡛ 3%ᮍ‶࡛

࠶ࡾ㸪Ⰻዲ࡟୍⮴ࡍࡿࡇ࡜ࢆ☜ㄆࡋ࡚࠶ࡿ㸬

౑⏝ࡍࡿ⧄⥔≧㔠ᒓࡣ㸪ᖹᆒ┤ᚄ 100ȣmࡢ⁐⼥

⣳⣒࠿ࡽ〇సࡉࢀࡓ୙⧊ᕸࢆὶ㊰ࡢୖୗቨ࡜ᖹ⾜࡟

✚ᒙࡋࡓࡶࡢ࡛㸪ࡉࡽ࡟ᣑᩓ᥋ྜࢆ᪋ࡋᡂᙧࡋ࡚࠶

ࡿ㸬⧄⥔≧㔠ᒓࡢࢸࢫࢺࢧࣥࣉࣝ࡜ࡋ࡚㸪Table 1࡟

♧ࡍࡼ࠺࡟㸪ᮦ㉁㸦࢔࣑ࣝ㸸Al㸪㖡㸸Cu㸧㸪✵㝽๭

ྜ㸦86.5%㸪81.5%㸧㸪ᇶᯈ࡬ࡢタ⨨᪉ἲ㸦ศᏊᣑᩓ

᥋ྜ㸸㸩㸪ࣟ࢘௜ࡅ᥋ྜ㸸㸫㸪᥋ྜຍᕤࢆ᪋ࡉ࡞࠸

᥋ゐࡢࡳ㸸✵ḍ㸧ࢆኚ᭦ࡋࡓ㸴✀㢮ࢆࢸࢫࢺࡋࡓ㸬 ࡇࡇ࡛㸪᭱ᚋࡢA㸪Bࡢ㆑ูࡣ㸪ಶయᕪࢆぢࡿࡓࡵ

࡟ྠࡌ᮲௳࡛సᡂࡋࡓࢧࣥࣉࣝࡢ⤖ᯝࢆ⾲ࡋ࡚࠸ࡿ㸬 㟁Ꮚ㢧ᚤ㙾࡟ࡼࡿ⧄⥔≧㔠ᒓ㸦࢔࣑ࣝ㸧ࡢ෗┿ࡢ୍

౛ࢆFig. 2࡟♧ࡍ㸬ὶ㊰ࡢୖୗቨ࡜ᖹ⾜࡞㠃ෆ࡟࠾

࠸࡚㸪ࢸࢫࢺࢧࣥࣉࣝࢆὶࢀ࡟ᑐࡋ࡚㸲᪉ྥ࡟ኚ᭦

ࡋ࡚ᚓࡓᒁᡤ⇕ఏ㐩࡜ᅽຊᦆኻࡣྛࠎ4%௨ෆ୍࡛

⮴ࡋ㸪౑⏝ࡋࡓ⧄⥔≧㔠ᒓࡣỈᖹ㠃ෆ࡟࠾࠸࡚ࡣᴫ ࡡྠᵝ࡞ᵓ㐀ࢆᣢࡘࡶࡢ࡜⪃࠼ࡽࢀࡿ㸬࡞࠾㸪ᮏ◊

✲࡛ὀ┠ࡍࡿ⧄⥔≧㔠ᒓࡣ㸪ࡑࡢ⧄⥔ࡢ㓄⨨᪉ྥ࡟

౫Ꮡࡋ࡚⇕ఏᑟ࡟ᑐࡍࡿ␗᪉ᛶࢆᣢࡘ8, 9)ࡀ㸪ࡑࡢ␗

᪉ᛶ࡟ᑐࡍࡿ᳨ウࡣ㸪௒ᚋὀព῝ࡃ⾜࠺ணᐃ࡛࠶ࡿ㸬 ぢ࠿ࡅࡢᒁᡤ⇕ఏ㐩⋡ ᐃ࡜ᅽຊᦆኻ ᐃ

⇕ఏ㐩ࡢホ౯࡟ࡣぢ࠿ࡅࡢᒁᡤ⇕ఏ㐩⋡ࢆ⏝࠸ࡓ㸬 ぢ࠿ࡅࡢᒁᡤ⇕ఏ㐩⋡ࡣ㸪௚⪅ࡢ◊✲౛ 6)࡜ྠᵝ࡟

ᇶᯈࡢ⇕ఏᑟࡢᙳ㡪ࢆྵࡴᒁᡤ⇕ఏ㐩⋡࡛࠶ࡾ㸪ຍ

⇕ቨ㠃࠿ࡽὶయ࡟ఏࢃࡿ⇕ὶ᮰ࢆࢫࢸࣥࣞࢫ⟩⿬㠃 ࡢᒁᡤ ᗘ࡜ὶయࡢධཱྀ ᗘࡢᕪ࡛㝖ࡋ࡚ồࡵࡓ㸬

࡞࠾㸪౑⏝ࡋࡓ⇕ὶ᮰ࡣ㸪ຍ⇕⇕ὶ᮰࠿ࡽࢸࢫࢺ㒊

ୗቨ࡬࡜㏨ࡆࡿ⇕ఏᑟᦆኻࢆィ⟬ࡋᕪࡋᘬ࠸࡚ồࡵ

ࡓ㸬ᅽຊᦆኻࡣ㸪ࢸࢫࢺ㒊ࡢୖὶ㸪ୗὶࡑࢀࡒࢀ

40mm ࡢ఩⨨࡟㟼ᅽᏍࢆタࡅ㸪୧⪅ࡢᕪᅽࡼࡾồࡵ

ࡓ㸬ᐇ㦂ࡣ㸪᩿㠃ᖹᆒ㏿ᗘ࡜ࢸࢫࢺ㒊᩿㠃ࡢ➼౯┤

ᚄ࠿ࡽィ⟬ࡉࢀࡿࣞ࢖ࣀࣝࢬᩘࢆ 2300㹼5750 ࡟ኚ

᭦ࡋ࡚⾜ࡗࡓ㸬

ᐇ㦂⤖ᯝ࡜⪃ᐹ ᒁᡤ⇕ఏ㐩⋡≉ᛶ࡜ᅽຊᦆኻ≉ᛶ

Fig. 3࡟ࣞ࢖ࣀࣝࢬᩘࡀ4600࡟࠾ࡅࡿ඲ࢧࣥࣉࣝ

ࡢぢ࠿ࡅࡢᒁᡤ⇕ఏ㐩⋡ࡢὶࢀ᪉ྥศᕸࢆ♧ࡍ㸬ᅗ

ࢆᴫほࡍࡿ࡜㸪඲࡚ࡢሙྜ࡟࠾࠸࡚㸪⇕ఏ㐩⋡ࡣ  ᐃࡢୖὶ➃఩⨨࡟࠾࠸࡚᭱኱್ࢆ♧ࡋ㸪ୗὶ࡟ྥ࠿

࠺࡟ࡘࢀ࡚ḟ➨࡟ῶᑡࡍࡿࡇ࡜ࡀศ࠿ࡿ㸬ࡇࢀࡣ㸪

ୖὶഃ࡛ࡣ᪂㩭࡞ὶయ࡜ࡢ⇕஺᥮ࡀάⓎ࡟⾜ࢃࢀ㸪 ὶయഃ࡟ࡼࡾከࡃࡢ⇕ࡀ⛣ືࡍࡿ୍᪉࡛㸪ὶయࡣୗ

ὶ࡟ྥ࠿࠺࡜࡜ࡶ࡟ ࡵࡽࢀ࡚ ᗘࡀୖ᪼ࡍࡿࡓࡵ㸪

⧄⥔≧㔠ᒓ࡜ࡢ ᗘᕪࡀḟ➨࡟ᑠࡉࡃ࡞ࡾ⇕஺᥮ࡀ ᢚไࡉࢀࡿࡓࡵ࡜⪃࠼ࡽࢀࡿ㸬

Fig. 3 ࡢࢹ࣮ࢱࢆ⧄⥔≧㔠ᒓࢆタ⨨ࡋ࡞࠸⁥㠃ࡢ

ሙྜ࡟ồࡵࡓ⇕ఏ㐩⋡࡛㝖ࡋ࡚㸪ᒁᡤఏ⇕ಁ㐍⋡࡜

ࡋ࡚Fig. 4࡟♧ࡍ㸬ఏ⇕ಁ㐍⋡ࡣඛ➃࡟࠾࠸࡚᭱኱

࡛⣙8ಸࢆ㉺࠼㸪⧄⥔≧㔠ᒓࡢタ⨨ࡀఏ⇕ಁ㐍ୖ᭷

ຠ࡛࠶ࡿࡇ࡜ࡀศ࠿ࡿ㸬ఏ⇕ಁ㐍⋡ࡢ್ࡣୗὶ࡟ྥ

࠿࠺࡜࡜ࡶ࡟పୗࡍࡿࡶࡢࡢ㸪᭱ୗὶ࡟࠾࠸࡚ࡶ᭱

኱࡛⣙ 5.5 ࡜࡞ࡾ㸪౫↛࡜ࡋ࡚㧗࠸ఏ⇕ಁ㐍ຠᯝࢆ

ಖࡘࡇ࡜ࡀศ࠿ࡿ㸬࡞࠾㸪ࢧࣥࣉࣝ[Al 86.5㸩A]࡜[Al 86.5㸩B]ࡢᕪࡣ㸪᭱኱࡛ࡶ┦ᑐⓗ࡟3.5%௨ෆ୍࡛⮴

(4)

ࡋ㸪ಶయᕪࡣᑠࡉ࠸㸬

Fig. 5 ࡟ᅽຊᦆኻࡢࣞ࢖ࣀࣝࢬᩘ࡟ᑐࡍࡿኚ໬ࢆ

♧ࡍ㸬ᴫほࡍࡿ࡜㸪⧄⥔≧㔠ᒓࡢタ⨨࡟ࡼࡾ㸪඲࡚

ࡢࢧࣥࣉࣝ࡟࠾࠸࡚㸪ᅽຊᦆኻࡣࣞ࢖ࣀࣝࢬᩘࡢቑ ຍ࡜࡜ࡶ࡟ቑ኱ࡍࡿഴྥࢆᣢࡘࡇ࡜ࡀศ࠿ࡿ㸬ᆒ㉁

࡞⊃࠸✵㛫࠿ࡽ࡞ࡿ⌮᝿ⓗ࡞ከᏍ㉁య࡛ࡣ㸪⢓ᛶࡏ

ࢇ᩿ຊࡀᙉࡃ㸪ᅽຊᦆኻࡀ㏿ᗘࡢ୍஌࡟ẚ౛ࡍࡿࢲ

ࣝࢩ࣮ࡢ᢬ᢠἲ๎ࡀᡂ❧ࡍࡿ㸬ࡋ࠿ࡋ㸪ᅽຊᦆኻࡢ

≉ᛶࡣ㸪㏿ᗘࡢቑຍ࡜࡜ࡶ࡟✵㛫ࡢ࠶ࡾ᪉࡟ᛂࡌ࡚

័ᛶຊࡢᙳ㡪ࢆཷࡅ㸪㏿ᗘࡢ஧஌ࢆ⪃៖ࡋࡓಟṇࢲ

ࣝࢩ࣮๎6)࡛ㄝ᫂ࡉࢀࡿ㸬Fig. 5ࡼࡾ㸪ᅽຊᦆኻࡣࣞ

࢖ࣀࣝࢬᩘࡢ㸰ḟ㛵ᩘ࡜⾲⌧ࡉࢀ㸪⧄⥔≧㔠ᒓࢆタ

⨨ࡋࡓሙྜ࡟ࡶ័ᛶࡀᙳ㡪ࡍࡿࡇ࡜ࡀぢ࡚ྲྀࢀࡿ㸬 ௨ୗ࡛ࡣྛࣃ࣓࣮ࣛࢱࡢᙳ㡪࡟ࡘ࠸࡚ぢࡿ㸬 ᮦ㉁ࡢᙳ㡪

✵㝽⋡ࡀ➼ࡋ࠸ࢧࣥࣉࣝ[Al 86.5㸩A]㸦ۑ༳㸧࡜[Cu 86.5㸩]㸦ۃ༳㸧ࢆẚ㍑ࡍࡿ㸬⇕ఏ㐩࡟࠾࠸࡚ࡣ㖡ࡢ ࢧࣥࣉࣝࡢ᪉ࡀ㧗ࡃ㸪ᒁᡤ⇕ఏ㐩⋡ࡢ᭱኱್ࡢẚࡣ㸪

࢔࣑ࣝࡢ⣙ 1.4 ಸ࡟ཬࡪ㸬ࡇࢀࡣ㸪ᇶᮏⓗ࡟ࡣ㖡ࡢ

⇕ఏᑟ⋡ࡀ㧗࠸ࡓࡵ࡜⪃࠼ࡽࢀࡿ㸬ࡲࡓ㖡ࡣᣑᩓ᥋

ྜࡢ〇సୖࡢᐜ᫆ࡉ࡟ࡶඃࢀ࡚࠾ࡾ㸪ࡑࡢⅬࡢᙳ㡪

ࡶ࠶ࡿࡶࡢ࡜ᛮࢃࢀࡿ㸬ᮏ◊✲࡛ࡣ㸪〇సୖࡢᐜ᫆

ࡉ㸪㍍㔞ᛶ㸪ࡲࡓᐇ⏝ୖࡢ㞺ᅖẼࢆ᝿ᐃࡋࡓ⪏⭉㣗 ᛶࢆ⥲ྜⓗ࡟⪃៖ࡋ࡚㸪࢔࣑ࣝࢆ୺ࡓࡿᮦᩱ࡜⪃࠼

᳨࡚ウࢆ⾜ࡗ࡚࠸ࡿࡀ㸪⇕⛣ືࡢ⤒㊰➼ࢆྵࡵ࡚㸪 ୧⪅ࡢ㐪࠸ࢆ௒ᚋ᭦࡟ワࡵ࡚࠸ࡃᚲせࡀ࠶ࡿ㸬ᅽຊ ᦆኻࡶ㖡ࡢࢧࣥࣉࣝࡢ᪉ࡀ⣙ 1.7 ಸ㧗࠸㸬ࡇࢀࡣ㸪 㖡⧄⥔ࡣᣑᩓ᥋ྜࡀ⾜࠸᫆࠸ᮦᩱ࡛㸪᥋ྜ⟠ᡤࡀከ ࡃ࡞ࡾὶయࡢ㛢ሰ⟠ᡤࡀቑ࠼ࡿࡓࡵ࡜᥎ᐹࡉࢀࡿ㸬 ✵㝽⋡ࡢᙳ㡪

✵㝽⋡ࡀ␗࡞ࡿࢧࣥࣉࣝ[Al 86.5㸩A]㸦ۑ༳㸧࡜[Al

81.5㸩]㸦ە༳㸧ࢆẚ㍑ࡍࡿ࡜㸪Fig. 3ࡢᒁᡤ⇕ఏ㐩

⋡࡜Fig. 5ࡢᅽຊᦆኻ࡜ࡶ࡟ᚋ⪅ࡢࢧࣥࣉࣝࡀ㧗࠸

್ࢆ♧ࡋࡓ㸬ᇶᮏⓗ࡟ࡣ⧄⥔≧㔠ᒓ㔞ࡀቑຍࡍࡿ࡜

࡜ࡶ࡟ᅽຊᦆኻࡀቑ኱ࡍࡿ㸬ࢧࣥࣉࣝ[Al 86.5㸩A]

ࢆ࣮࣋ࢫ࡟⪃࠼ࡿ࡜㸪[Al 81.5㸩]࡛ࡣ㔠ᒓ⧄⥔ࡢ㉁

㔞ẚࡀ 1.4 ಸቑຍࡍࡿࡢ࡟ᑐࡋ㸪ᒁᡤ⇕ఏ㐩⋡࡛ࡣ ᴫࡡ1.3ಸ㸪ᅽຊᦆኻ࡛ࡣ1.6ಸ⛬ᗘࡢቑຍ࡜࡞ࡗࡓ㸬 タ⨨᪉ἲࡢᙳ㡪

ቨ㠃࡜ࡢᣑᩓ᥋ྜࢆ᪋ࡋࡓࢧࣥࣉࣝ[Al 86.5㸩A]

㸦ۑ༳㸧࡜ᣑᩓ᥋ྜࢆࡋ࡚࠸࡞࠸[Al 86.5]㸦ڧ༳㸧 ࡢ⤖ᯝࢆẚ㍑ࡍࡿ㸬Fig. 3 ࡼࡾ㸪⇕ఏ㐩⋡࡛ࡣ [Al

86.5㸩A]ࡢ᪉ࡀ㧗࠸㸬≉࡟ୖὶ➃࡛ࡣᚋ⪅࡟ᑐࡋ1.5

ಸ࡯࡝㧗࠸㸬࠸ࡗࡱ࠺࡛ᅽຊᦆኻࡣ୧⪅࡜ࡶ࡯࡜ࢇ

࡝ᕪࡀ⏕ࡌ࡞࠸㸬ࡇࡢࡇ࡜ࡣ㸪⧄⥔≧㔠ᒓࡢෆ㒊ᵓ 㐀࡟ᕪࡀ↓࠸ࡇ࡜ࢆ㋃ࡲ࠼ࡿ࡜㸪ቨ㠃࡜⧄⥔≧㔠ᒓ Fig. 3. Distribution of local heat transfer coefficient.

Fig. 4. Distribution of heat transfer enhancement ratio.

Fig. 5. Pressure drop v.s. Reynolds number.

㻜㻚㻜㻜㻜 㻜㻚㻜㻡 㻜㻚㻝㻜 㻜㻚㻝㻡

㻝㻜㻜 㻞㻜㻜 㻟㻜㻜 㻠㻜㻜 㻡㻜㻜

㻾㼑㻩㻠㻢㻜㻜

㻔㼃 㻛㼙

㻷㻕

㼤 㻌㻔㼙㻕

㻌㻭㼘㻌㻤㻢㻚㻡㻌㻗㻌㻭 㻌㻭㼘㻌㻤㻢㻚㻡㻌㻗㻌㻮 㻌㻭㼘㻌㻤㻢㻚㻡㻌㻙 㻌㻭㼘㻌㻤㻢㻚㻡 㻌㻭㼘㻌㻤㻝㻚㻡㻌㻗 㻌㻯㼡㻌㻤㻢㻚㻡㻌㻗

㻜㻚㻜㻜 㻜㻚㻜㻡 㻜㻚㻝㻜 㻜㻚㻝㻡

㻜 㻞 㻠 㻢 㻤 㻝㻜

㻾㼑㻩㻠㻢㻜㻜 㻌㻭㼘㻌㻤㻢㻚㻡 㻌㻭㼘㻌㻤㻝㻚㻡㻌㻗 㻌㻯㼡㻌㻤㻢㻚㻡㻌㻗

㻌㻛 㻌 㼔

㼤㻜

㼤 㻌㻔㼙㻕

㻌㻭㼘㻌㻤㻢㻚㻡㻌㻗㻌㻭 㻌㻭㼘㻌㻤㻢㻚㻡㻌㻗㻌㻮 㻌㻭㼘㻌㻤㻢㻚㻡㻌㻙

㻞㻜㻜㻜 㻠㻜㻜㻜 㻢㻜㻜㻜

㻝㻜 㻝㻞

㻼㼞㼑㼟㼟㼡㼞㼑㻌㻰㼞㼛㼜㻌㻔㼗㻼㼍㻕

㻾㼑

㻌㻭㼘㻌㻤㻢㻚㻡㻌㻗㻌㻭 㻌㻭㼘㻌㻤㻢㻚㻡㻌㻗㻌㻮 㻌㻭㼘㻌㻤㻢㻚㻡㻌㻙 㻌㻭㼘㻌㻤㻢㻚㻡 㻌㻭㼘㻌㻤㻝㻚㻡㻌㻗 㻌㻯㼡㻌㻤㻢㻚㻡㻌㻗

⥲ྜᛶ⬟ホ౯

௚◊✲౛࡜ࡢẚ㍑

(5)

ࡢᣑᩓ᥋ྜࡀᅽຊᦆኻࢆቑຍࡉࡏࡿࡇ࡜࡞ࡃ㸪ቨ㠃

࡜⧄⥔≧㔠ᒓࡢ᥋ゐ⇕᢬ᢠࢆ㍍ῶࡍࡿୖ࡛ᴟࡵ࡚᭷

ຠ࡛࠶ࡿࡇ࡜ࢆ♧၀ࡋ࡚࠸ࡿ㸬ࡲࡓ㸪Fig. 3 ࡼࡾ㸪

ࣟ࢘௜ࡅ᥋ྜࢧࣥࣉࣝ[Al 86.5 㸫]ࡢ⇕ఏ㐩⋡ࡣ㸪ᣑ ᩓ᥋ྜࢧࣥࣉࣝ[Al 86.5 +A]࡜ẚ㍑ࡋ࡚᭱኱⣙9%࡯

࡝㧗࠸㸬ࡇࢀࡣ㸪ࣟ࢘ᮦࡀ⧄⥔≧㔠ᒓࢆそ࠺࡜࡜ࡶ

࡟㸪ఏ⇕㠃࡜ࡢࡍࡁ㛫࡟ᾐ㏱ࡋ࡚ᅛ໬ࡋ㸪㔠ᒓ㒊ࡢ タ⨨㠃✚ࡀቑຍࡋࡓࡓࡵ࡛࠶ࡿ㸬ࡇࡢࡇ࡜ࡣ㸪⇕ఏ 㐩ࢆⰋዲ࡟ࡍࡿ཯㠃㸪᥋ྜ㠃㏆ࡃࡢὶ㊰ࢆ㛢ሰࡋ㸪 ᅽຊᦆኻࢆቑຍࡉࡏࡿ㸬ࡑࡢቑຍ㔞ࡣ㸪ࣞ࢖ࣀࣝࢬ

ᩘࡢቑຍ࡜࡜ࡶ࡟㢧ᅾ໬ࡋ㸪ᣑᩓ᥋ྜ࡟ᑐࡋ࡚᭱኱

⣙10%࡟㐩ࡍࡿ㸬 ⥲ྜᛶ⬟ホ౯

ࡇࡇ࡛ࡣ㸪ࣞ࢖ࣀࣝࢬᩘࡀ4600ࡢሙྜ࡟ࡘ࠸࡚㸪 ᒁᡤ⇕ఏ㐩⋡࠿ࡽồࡵࡽࢀࡿᒁᡤࢾࢵࢭࣝࢺᩘ Nu

࡜ᅽຊᦆኻಀᩘCpࡢẚࢆồࡵ㸪⥲ྜⓗ࡞ᛶ⬟ホ౯ࢆ

⾜ࡗࡓ㸬ࡇࡇ࡛㸪ᒁᡤࢾࢵࢭࣝࢺᩘ Nu ࡢ௦⾲㛗ࡉ ࡣࢲࢡࢺࡢ➼౯┤ᚄ࡜ࡋ㸪ࡇࢀ࡜ᒁᡤ⇕ఏ㐩⋡ࢆ᥃

ࡅࡓࡶࡢࢆ✵Ẽࡢ⇕ఏᑟ⋡࡛㝖ࡋ࡚ồࡵࡓ㸬ࡲࡓ㸪 ᅽຊᦆኻಀᩘ Cpࡣᅽຊᦆኻࢆ᩿㠃ᖹᆒὶ㏿ࡢືᅽ

࡛㝖ࡋ࡚ồࡵࡓ㸬

Fig. 6 ࡟ୖ㏙ࡋࡓ୧⪅ࡢẚ Nu/Cpࡢὶࢀ᪉ྥኚ໬

ࢆ♧ࡍ㸬ᅗࡼࡾ㸪ࢧࣥࣉࣝ[Al 86.5㸩A]࠾ࡼࡧ[Al 86.5 㸩B]ࡀⰋዲ࡛࠶ࡿࡇ࡜ࡀศ࠿ࡿ㸬ࣟ࢘௜ࡅຍᕤࢆ᪋

ࡋࡓࢧࣥࣉࣝ[Al 86.5㸫]ࡣ㸪ᣑᩓ᥋ྜ࡜ྠ⛬ᗘࡢᛶ

⬟ࢆ♧ࡍࡇ࡜ࡶศ࠿ࡿ㸬⇕ఏ㐩ࡀⰋዲ࡛࠶ࡗࡓ[Cu 86.5㸩]࠾ࡼࡧ[Al 81.5㸩]ࡣ㸪ᅽຊᦆኻࡀ኱ࡁࡃ㸪⥲

ྜᛶ⬟ⓗ࡟ࡣప࠸ࡇ࡜ࡀศ࠿ࡿ㸬ࡲࡓ㸪ᣑᩓ᥋ྜࢆ

᪋ࡋ࡚࠸࡞࠸ࢧࣥࣉࣝ[Al 86.5]ࡢᛶ⬟್ࡣ᭱ࡶపࡃ㸪 ᣑᩓ᥋ྜࡣ⥲ྜⓗ࡞ᛶ⬟ホ౯ࡢほⅬ࠿ࡽࡶ᭷ຠ࡛࠶

ࡿࡇ࡜ࡀ☜ㄆ࡛ࡁࡿ㸬 ௚◊✲౛࡜ࡢẚ㍑

ࡇࡇ࡛ࡣ㸪FeCrAlYྜ㔠〇ࡢⓎἻ㔠ᒓࢆఏ⇕㠃࡟

ࣟ࢘௜ࡅ᥋ྜࡋᐇ㦂ࢆ⾜ࡗࡓHaackࡽ6)ࡢᩚ⌮᪉ἲ

࡟⩦ࡗ࡚㸪ᮏᐇ㦂࡛ᚓࡓ⤖ᯝ࡜ᙼࡽࡢ⤖ᯝࢆẚ㍑ࡍ

ࡿࡇ࡜࡜ࡋࡓ㸬Haack ࡽࡀᩚ⌮࡟౑⏝ࡋ࡚࠸ࡿࣃࣛ

࣓࣮ࢱࡣ㸪ቨ㠃ࡢᖹᆒࢾࢵࢭࣝࢺᩘNum࡜㏱㐣ࣞ࢖

ࣀࣝࢬᩘReK6)࡛࠶ࡿ㸬ࡇࡇ࡛㸪๓⪅ࡢᖹᆒࢾࢵࢭࣝ

ࢺᩘࡣࢸࢫࢺ㒊ࡢᒁᡤࡢ್ࢆ✚⟬ࡋ㛗ࡉ࡛㝖ࡋ࡚ồ

ࡵࡿࡇ࡜࡜ࡋࡓ㸬ࡲࡓ㸪ᚋ⪅ࡢ㏱㐣ࣞ࢖ࣀࣝࢬᩘReK

ࡣ㸪ᙼࡽ࡜ྠᵝ࡟ḟᘧ(1)࡛୚࠼ࡓ㸬

(1)

ࡓࡔࡋ㸪K ࡣከᏍ㉁≀య࡟࠾࠸࡚ᙧ≧᢬ᢠࢆ⪃៖ࡋ ࡓḟᘧ(2)ࡢಟṇࢲࣝࢩ࣮๎࡟࠾࠸࡚♧ࡉࢀࡿ㏱㐣

⋡࡛࠶ࡾ㸪Haack ࡽ࡜ྠᵝ࡟㸪ᐇ㦂࠿ࡽᚓࡓᅽຊᦆ ኻ࡜᩿㠃ᖹᆒ㏿ᗘUࡢ㛵ಀ࠿ࡽᐃࡵࡓ㸬 K ࡣ✵㝽

࡟࠾ࡅࡿᣑᩓࡢ✵㛫௦⾲ࢫࢣ࣮ࣝ࡟┦ᙜࡍࡿ㸬

(2)

ࡇࡇ࡛㸪ȝࡣ✵Ẽࡢ⢓ᛶಀᩘ㸪Icࡣ័ᛶಀᩘ࡛࠶ࡿ㸬 lࡣᅽຊᦆኻࡢ ᐃ㊥㞳ࡢ㛗ࡉࢆ⾲ࡍ㸬

Fig. 7࡟㸪ᶓ㍈࡟㏱㐣ࣞ࢖ࣀࣝࢬᩘReK㸪⦪㍈࡟ᖹ ᆒࢾࢵࢭࣝࢺᩘNumࢆ࡜ࡗ࡚㸪ᮏ◊✲࡛ᚓࡽࢀࡓ⤖

ᯝࢆࡲ࡜ࡵ࡚♧ࡋࡓ㸬ᅗ࡟ࡣ㸪Haack ࡽࡢ◊✲⤖ᯝ ࡢ࠺ࡕ㸪㧗࠸ᛶ⬟ࢆ♧ࡋࡓᮦᩱࡢ⤖ᯝࢆྠ᫬࡟ࣉࣟ

ࢵࢺࡋ࡚࠶ࡿ㸬Table 2 ࡟㸪Fig. 7 ࡟ࣉࣟࢵࢺࡋࡓ

HaackࡽࡢFeCrAlYྜ㔠〇ⓎἻ㔠ᒓࡢ✵㝽⋡࡜ⓎἻ

Porosity Pore size

Sample 2 85 % 10 PPI

Sample 4 90 % 30 PPI

Sample 5 95 % 60 PPI

Sample 6 85 % 60 PPI

K

Re U K Q

Fig. 6. Total performance of exchanger elements.

Table 2. Specifications of the test samples used by Haack et al.(2001)

1 1 IC

p U

l U K U K

P P

'

˜

㻜㻚㻜㻜 㻜㻚㻜㻡 㻜㻚㻝㻜 㻜㻚㻝㻡

㻜㻚㻜 㻜㻚㻝 㻜㻚㻞 㻜㻚㻟 㻜㻚㻠

㻾㼑㻩㻠㻢㻜㻜

㻺㼡 㻌 㻛㻌 㻯

㼤 㻌㻔㼙㻕

㻌㻭㼘㻌㻤㻢㻚㻡㻌㻗㻌㻭 㻌㻭㼘㻌㻤㻢㻚㻡㻌㻗㻌㻮 㻌㻭㼘㻌㻤㻢㻚㻡㻌㻙 㻌㻭㼘㻌㻤㻢㻚㻡 㻌㻭㼘㻌㻤㻝㻚㻡㻌㻗 㻌㻯㼡㻌㻤㻢㻚㻡㻌㻗

(6)

ࢧ࢖ࢬ㸦1 ࢖ࣥࢳ❧᪉ᙜࡓࡾࡢⓎἻಶᩘ㸧ࢆ♧ࡍ㸬

Fig 7ࡼࡾ㸪ᮏ◊✲ࡢ⧄⥔≧㔠ᒓࡢఏ⇕㔞ࡣ㸪Haack

ࡽࡢࢧࣥࣉࣝ࡜ྠᵝ࡟ReK࡟ᑐࡋ୍࡚ḟ㛵ᩘⓗ࡟ቑ ຍࡍࡿࡇ࡜ࡀศ࠿ࡿ㸬✵㝽⋡ࡀᮏ◊✲࡜㏆࠸Sample 6 ࡜ẚ㍑ࡍࡿ࡜㸪౛࠼ࡤReK㸻20࡛ࡣ1.5ಸ௨ୖ㧗

࠸್ࢆ♧ࡍ㸬⧄⥔≧㔠ᒓࡣ㸪Haack ࡽࡢࢧࣥࣉࣝ࡜

ྠ➼㸪ࡶࡋࡃࡣቨ㠃࡬ࡢタ⨨࡟ᣑᩓ᥋ྜࢆ౑⏝ࡍࡿ

ሙྜ࡟ࡣࡑࢀ௨ୖࡢᛶ⬟ࢆ♧ࡍ㸬ࡇࡢ✀ࡢከᏍ㉁㔠 ᒓࡢఏ⇕≉ᛶࡀ✵㝽⋡࡟኱ࡁࡃ౫Ꮡࡍࡿࡇ࡜ࢆ⪃៖

ࡍࡿ࡜㸪Fig. 7 ࡢ⤖ᯝࡣᮏ◊✲ࡢ⧄⥔≧㔠ᒓࡢᵓ㐀

ࡀఏ⇕ಁ㐍࡟ᑐࡋ࡚᭷ຠ࡛࠶ࡿࡇ࡜ࢆ♧ࡋ࡚࠸ࡿ㸬

⏝࠸ࡓ⧄⥔≧㔠ᒓࡣ〇㐀ࣉࣟࢭࢫ࡟࠾ࡅࡿಙ㢗ᛶࡶ

༑ศ࡟☜ಖࡉࢀ࡚࠾ࡾ㸪⇕஺᥮ჾࢆ㧗ᛶ⬟໬ࡍࡿᇶ

♏せ⣲࡜ࡋ࡚㐺ࡋࡓᮦᩱ࡛࠶ࡿ࡜⤖ㄽ௜ࡅࡽࢀࡿ㸬 㸲⤖ゝ

⇕஺᥮ჾࡢఏ⇕ಁ㐍ࢆ┠ⓗ࡜ࡋ࡚㸪⧄⥔≧㔠ᒓࢆ

ὶ㊰ෆ࡟タ⨨ࡍࡿሙྜ࡟ὀ┠ࡋ㸪ఏ⇕㠃ࡢᒁᡤ⇕ఏ 㐩⋡࡜ὶ㊰ࡢᅽຊᦆኻࢆ ᐃࡋ㸪௨ୗࡢ⤖ㄽࢆᚓࡓ㸬 (1) ⧄⥔≧㔠ᒓࡢタ⨨ࡣఏ⇕ಁ㐍ୖ᭷ຠ࡛࠶ࡿ㸬 (2) ᒁᡤ⇕ఏ㐩⋡ࡣὶ㊰ୖὶ࡯࡝㧗ࡃ㸪⁥㠃࡟ᑐࡍ

ࡿఏ⇕ಁ㐍⋡ࡣ㸪ᮏᐇ㦂ࡢ ᐃ⠊ᅖ࡟࠾࠸࡚᭱

኱⣙8ಸ࡟㐩ࡍࡿ㸬ఏ⇕ಁ㐍⋡ࡣ᭱ୗὶ఩⨨࡟

࠾࠸࡚ࡶ᭱኱⣙5ಸ࡟㐩ࡍࡿ㸬

(3) ⧄⥔≧㔠ᒓ࡜ቨ㠃ࡢᣑᩓ᥋ྜࡣ㸪ᅽຊᦆኻࢆቑ ຍࡉࡏࡿࡇ࡜࡞ࡃ᥋ゐ⇕᢬ᢠࢆῶࡌ㸪⇕ఏ㐩ᛶ

⬟ࢆ㧗ࡵࡿࡇ࡜ࡀྍ⬟࡛࠶ࡾ㸪ఏ⇕ಁ㐍ἲ࡜ࡋ

࡚᭷ຠ࡛࠶ࡿ㸬

(4) ᮏ◊✲࡛⏝࠸ࡿ⧄⥔≧㔠ᒓࡢ⇕ఏ㐩⋡ࡣ㸪௚⪅

ࡢ௦⾲ⓗ࡞ⓎἻ㔠ᒓࡼࡾ㧗ࡃ㸪⇕஺᥮ჾࡢ㧗ᛶ

⬟໬࡟ᴟࡵ࡚᭷ຠ࡛࠶ࡿ㸬

ᮏ◊✲ࡣᩥ㒊⛉Ꮫ┬⛉Ꮫ◊✲㈝ᇶ┙◊✲(C)ࠕࣇ࢓

࢖࣓ࣥࢱࣝ⇕஺᥮ჾ࡟ࡼࡿ᤼⇕ᅇ཰ಁ㐍㸦ㄢ㢟␒ྕ

22560210㸧ࠖ࡟ࡼࡾ⾜ࢃࢀࡓ㸬୍㒊ࡣᩥ㒊⛉Ꮫ┬⚾❧

኱Ꮫᡓ␎ⓗ◊✲ᇶ┙ᙧᡂᨭ᥼஦ᴗࠕࢮ࢚࣑ࣟࢵࢩࣙ

ࣥᢏ⾡ࢆᇶ┙࡜ࡋࡓ⎔ቃㄪ࿴ᆺ࢚ࢿࣝࢠ࣮ࢢࣜࢵࢻ ࡢ᭱㐺໬◊✲ࠖࡢᨭ᥼ࢆཷࡅࡓ㸬⧄⥔≧㔠ᒓࡢ〇స

࡟ࡣ㜰ୖ㞞᫛Ặ㸦ኴ┒ᕤᴗᰴᘧ఍♫㸧ࡢ༠ຊࢆᚓࡓ㸬 ࡇࡇ࡟グࡋ࡚ㅰពࢆ⾲ࡍࡿ㸬

ཧ⪃ᩥ⊩

1) K. Boomsma, D. Poulikakos and F. Zwick, “Metal foams as compact high performance heat exchangers”, Int. J. of Heat and Mass Transfer, 35, 1161-1176(2003).

2) Shadi Mahjoob and Kambiz Vafai, “A synthesis of fluid and thermal transport models for metal foam heat exchangers”, Int. J. of Heat and Mass Transfer, 51, 3701–3711(2008).

3) ᑠᯇ႐⨾㸪Ⳣཎᚁὒ㸪బ⸨ᐶᡯ㸪⸨⏣ ᛅ㸪“↝

⤖࢔࣑ࣝࢽ࣒࢘⧄⥔ࣄ࣮ࢺࢩࣥࢡࡢఏ⇕ᛶ⬟ᐇ㦂”㸪

᪥ᮏ෭෾✵ㄪᏛ఍ㄽᩥ㞟㸪26-3, 217-224(2009).

4) V.V. Calmidi and R.L. Mahajan, “Forced convection in high porosity metal foams”, J. of Heat Transfer, 122, 557-565(2000).

5) ⸨ྜྷᩄ⏕㸪᭱᪂᥋ྜຍᕤᢏ⾡࡜ࡑࡢᛂ⏝㸦᪥หᕤ ᴗ᪂⪺♫㸪ᮾி㸪1993㸧, p.36-42.

6) D.P. Haack, K.R. Butcher, T.Kim, T.J. Lu, “Novel lightweight metal foam heat exchangers”, Porvair Fuel Cell Technology Inc, USA, 2001.

7) ᑠ⏣ ㇏㸪ᒾ஭ ⿱㸪㕥ᮌ೺஧㑻㸪ྜྷ⏣ⱥ⏕㸪“ከ Ꮝ㉁యෆ⇕ὶື࡜ᅛయቨෆ⇕ఏᑟࡢ㐃ᡂゎᯒ”㸪᪥ᮏ ᶵᲔᏛ఍ㄽᩥ㞟㸦B⦅㸧㸪69-679, 674-681(2003).

8) Ⳣཎᚁὒ㸪ྜྷᮌ♸ஓ㸪“୙⧊࢔࣑ࣝࢽ࣒࢘⧄⥔ᒙ ࡢ᭷ຠ⇕ఏᑟ⋡ࡢ኱ࡁ࡞␗᪉ᛶ”㸪᪥ᮏᶵᲔᏛ఍ㄽᩥ

㞟㸦B⦅㸧㸪70-696, 2105-2109(2004).

9) ᫓ᮌ┤ே㸪ᇼ㒊᫂ᙪ㸪ᕝᮏ⿱ኴ㸪✄ⴥⱥ⏨㸪“⇕ ఏᑟ␗᪉ᛶࢆ᭷ࡍࡿྛ✀㔠ᒓ⧄⥔ᒙࡢ⇕ఏᑟ≉ᛶ”㸪

⇕≀ᛶ㸪24-1, 9-14(2010).

Fig. 7. Num v.s. Rek including the results of Haack et al.

㻠㻜 㻤㻜 㻝㻞㻜

㻝㻜㻜 㻞㻜㻜 㻟㻜㻜

㻠㻜㻜 㻌㻭㼘㻌㻤㻢㻚㻡㻌㻗㻌㻭

㻌㻭㼘㻌㻤㻢㻚㻡㻌㻗㻌㻮 㻌㻭㼘㻌㻤㻢㻚㻡㻌㻙

㻴㼍㼍㼏㼗㻌㼑㼠㻌㼍㼘㻚㻔㻞㻜㻜㻝㻕 㻌㻿㼍㼙㼜㼘㼑㻌㻞 㻌㻿㼍㼙㼜㼘㼑㻌㻠 㻌㻿㼍㼙㼜㼘㼑㻌㻡 㻌㻿㼍㼙㼜㼘㼑㻌㻢

㻺㼡 㼙

㻾㼑

㻌㻭㼘㻌㻤㻢㻚㻡㻌 㻌㻭㼘㻌㻤㻝㻚㻡㻌㻗 㻌㻯㼡㻌㻤㻢㻚㻡㻌㻗

Table 1. Specifications of the test samples.
Fig. 4. Distribution of heat transfer enhancement ratio.
Fig. 6. Total performance of exchanger elements.
Fig. 7. Num v.s. Re k  including the results of Haack et al.

参照

関連したドキュメント

The reflection method together with the solution obtained for the whole space is applied to a semispace problem with a plane dis- tribution of heat sources located inside the

16 examined the simultaneous effects of variable viscosity, variable thermal conductivity, and Ohmic heating on the fluid flow and heat transfer past a continuously moving porous

So, the aim of this study is to analyze, numerically, the combined effect of thermal radiation and viscous dissipation on steady MHD flow and heat transfer of an upper-convected

On the other hand, the magnitude of the cross-flow velocity increases with the increase in either suction pa- rameter or frequency parameter, while it increases near the

In this paper, we discuss the nature of incompressible conducting fluid flow around a circular cylinder in the presence of an external magnetic field for a range of Reynolds

Pour tout type de poly` edre euclidien pair pos- sible, nous construisons (section 5.4) un complexe poly´ edral pair CAT( − 1), dont les cellules maximales sont de ce type, et dont

In particular, we show that the q-heat polynomials and the q-associated functions are closely related to the discrete q-Hermite I polynomials and the discrete q-Hermite II

A further simplification is to observe that since the flow is uniform at infinity, we may assume that the flow is in an infinitely long channel with width 2L L r and the obstacle