• 検索結果がありません。

Given a closed and translation-invariant subspace, we investigate under which conditions on the nonlinearityAa solution of the same type exists

N/A
N/A
Protected

Academic year: 2022

シェア "Given a closed and translation-invariant subspace, we investigate under which conditions on the nonlinearityAa solution of the same type exists"

Copied!
25
0
0

読み込み中.... (全文を見る)

全文

(1)

CAUCHY PROBLEMS

JOSEF KREULICH Received 28 February 2001

For a given closed and translation invariant subspace Y of the bounded and uniformly continuous functions, we will give criteria for the existence of solu- tionsuY to the equationu(t) +A(u(t)) +ωu(t) f(t), tR, or of solu- tionsuasymptotically close toY for the inhomogeneous differential equation u(t) +A(u(t)) +ωu(t)f(t),t >0,u(0)=u0, in general Banach spaces, where Adenotes a possibly nonlinear accretive generator of a semigroup. Particular ex- amples for the spaceY are spaces of functions with various almost periodicity properties and more general types of asymptotic behavior.

1. Introduction

For the case of linear Cauchy problems, results on the asymptotic behavior of the solutions can be obtained by applying the representation formula

u(t)= t

−∞expω(tr)S(tr)f(r)dr, (1.1) where{S(t)}t0 denotes the correspondingC0-contraction semigroup. More- over, a very general approach using a representation formula is given by Pr¨uss [8]

for linear Volterra-integrodifferential equations. In the nonlinear case, such for- mulas do not exist.

Recalling [6, 9], we learn that, for the nonlinear inhomogeneous Cauchy problem, almost periodic, asymptotically almost periodic, Eberlein weakly al- most periodic, orC0right-hand sides will lead mainly under compactness con- ditions on the resolvent ofAand uniform convexity of the dual space to solu- tions of the same type.

In this paper, we discuss the problem in the following more general form.

Given a closed and translation-invariant subspace, we investigate under which conditions on the nonlinearityAa solution of the same type exists. The starting

Copyright©2002 Hindawi Publishing Corporation Abstract and Applied Analysis 7:12 (2002) 637–661

2000 Mathematics Subject Classification: 47J35, 47H06, 34C27 URL:http://dx.doi.org/10.1155/S1085337502208015

(2)

points of [6,9] are the stability inequalities of the underlying differential equa- tions. This limits the result to special assumptions on continuity properties of the norm and the range of the solutionuand the right-hand side f. In this pa- per, the solution is constructed by involving an adequate existence theory to the equation

u(t) +Au(t)+ωu(t)f(t), tR, (1.2) in a real Banach spaceX, withωpositive andA m-accretive inX.

The following are the main results of this paper. Let Y be a closed and translation-invariant linear subspace of BUC(R, X) of bounded and uniformly continuous functions fromRintoX. Assume that the resolventJλ=(I+λA)1 ofAleavesY invariant, that is, ifhY, then the function{sJλh(s)}is inY, for allλ >0. Then, we have the following:

(a) if f Y, then the integral solutionuto (1.2) (seeDefinition 5.1) is an element ofYas well,

(b) limt→∞v(t)u(t)=0 for the integral solution of the initial value prob- lem

v(t) +Av(t)+ωv(t) f(t), t0, v(0)=v0 (1.3) for allv0D(A) (Theorem 5.2).

We note in passing that these results heavily depend on the assumption that ω >0. Forω=0, there are various counterexamples to the above inheritance property, see [5, Example 4.21] or [6, Example 5.2].

The main results will be applied to the particular casesY=AP(R, X), the space of almost periodic functions and Y =W(R, X), the space of Eberlein weakly almost periodic functions, as well as to functions having a limit at in- finity.

The main technique of the proof consists in showing that, for the case of ω >0, the approximate solutions to (1.2), as considered by [2], converge to the integral solution of (1.2), not just locally but uniformly on all ofR(Section 5).

The necessary technical prerequisites are the subject of Sections2,3, and4.

We finally note that, in the case ofAlinear, the corresponding results on the asymptotic behaviour of the solutions to (1.2) can be derived even for the case ω=0 if, instead, we invoke conditions on the relation of the spectra ofAand f (cf. [8]). Thus, one of the points of our results here is that, in the nonlinear case—with no “spectrum” ofAavailable—such spectral conditions may be com- pensated by adding the positive multipleωI toAin (1.2). For the existence of bounded solutions for history-dependent problems, we refer to Kartsatos [4].

(3)

Notation. (1) The bracket [·,·]+:X×X R is defined as the right-hand Gˆateaux-derivative of the norm

[x, y]+:=inf

λ>0

x+λyx

λ . (1.4)

(2) We recall thatAX×Xis accretive if and only if

xx, yˆ yˆ+0 (x, y),x,ˆ yˆA. (1.5) An accretive operator is calledm-accretive ifR(I+λA)=Xfor allλ >0.

(3) Throughout this paper,Jλ:=(I+λA)1denotes the resolvent ofA.

2. Approximants

Similar to the proof of existence given by [2], we consider the Yosida approxima- tion of the linear part of the equation. Looking for solutions on the whole line, consider the following forλ >0:

1 λ

u(t)1 λ

0 exp

s λ

u(ts)ds

+Au(t)+ωu(t) f(t), tR. (2.1) For the approximations, we have the following proposition.

Proposition2.1. LetY be a closed translation-invariant subspace ofBUC(R, X).

If, for givenhY, the function{sJλ(h(s))}is inY, then (2.1) admits a solution uY. Moreover, for given right-hand sides f , gBUC(R, X), and corresponding solutionsuandv,

u(t)v(t) λ

1 +λωf(t)g(t) +

1 1 +λω

2

0 exp

ωτ 1 +λω

f(tτ)g(tτ)dτ, (2.2)

and consequently, u(t)u(t+h)

λ

1 +λωf(t)f(t+h) +

1 1 +λω

2

0 exp

ωτ 1 +λω

f(tτ)f(t+hτ)dτ.

(2.3)

Proof. Givenλ >0, the solution to (2.1) will be found by applying the Banach fixed-point principle whereby the mapping

F(u)(t) :=Jλ/(1+λω)

1 1 +λω

λ f(t) +

0

1 λexp

s λ

u(ts)ds

(2.4) is obtained by rewriting (2.1).

(4)

Comparing the solutionsuandvfor the right-hand sides f andg, we get u(t)v(t)=

Jλ/(1+λω)

1 1 +λω

λ f(t) +

0

1 λexp

s λ

u(ts)ds

Jλ/(1+λω)

1 1 +λω

λg(t) +

0

1 λexp

s λ

v(ts)ds

λ

1 +λωf(t)g(t)

+ 1

1 +λω

0

1 λexp

s λ

u(ts)v(ts)ds

λ

1 +λωf(t)g(t)

+ 1

1 +λω

0

1 λexp

s λ

u(ts)v(ts)ds.

(2.5) The solution to the integral equation

u(t)= f(t) +α

0 exp(βτ)u(tτ)dτ, (2.6) for 0< α < β, is given by

u(t)=(R f)(t) :=f(t) +α

0 expα)τf(tτ)dτ. (2.7) Noting that the resolventRis positive, the above inequality yields

u(t)v(t) λ

1 +λωf(t)g(t) +

1 1 +λω

2

0 exp

ωs 1 +λω

f(ts)g(ts)ds.

(2.8)

From Gripenberg [2, Theorem 1], we know that, for a given initial valueu0 D(A), the solutions{uλ}of

1 λ

uλ(t)u0 t

0

1 λexp

r λ

uλ(tr)u0

dr +Auλ(t)+ωuλ(t)f(t), t >0

(2.9)

will converge uniformly on compact sets to the so-called generalized solution of (1.3). For the connection between the solution on the whole axis (1.2) and the Cauchy problem (1.3), we provide two lemmas.

(5)

Lemma2.2. Let f , gBUC(R+, X), and letuλ,vλbe the corresponding solutions to (2.9) with the initial valuesu0λ,v0λ. Then,

uλ(t)vλ(t) λ

1 +λωf(t)g(t)

+ 1

1 +λωexp

ωt 1 +λω

u0λv0λ +

1 1 +λω

2t

0exp

ωr 1 +λω

f(tr)g(tr)dr.

(2.10) Proof. From (2.9), we, after rearranging, obtain

uλ(t)=Jλ/(1+λω) 1

1 +λω λ f(t) + expλ1tu0λ +

t

0

1 λexp

s λ

uλ(ts)ds

.

(2.11)

Hence,

uλ(t)vλ(t) λ

1 +λωf(t)g(t)

+ 1

1 +λωexpλ1tu0λvλ0

+ 1

1 +λω t

0

1 λexp

s λ

uλ(ts)vλ(ts)ds.

(2.12)

As in the previous proof, this time, using the generalized Gronwall lemma [3, page 257], we get

uλ(t)vλ(t) λ

1 +λωf(t)g(t)+ 1

1 +λωexpλ1tu0λv0λ

+ 1

(1 +λω)2 t

0exp ω(tr) 1 +λω

f(r)g(r)dr

+ 1

λ(1 +λω)2 t

0exp ω(tr) 1 +λω

expλ1rdru0λv0λ

= λ

1 +λωf(t)g(t)

+ 1

1 +λωexp

ωt 1 +λω

u0λv0λ

+ 1

(1 +λω)2 t

0exp ω(tr) 1 +λω

f(r)g(r)dr.

(2.13)

(6)

Lemma2.3. Let f BUC(R, X),v0D(A), and letuλ be the solution of (2.1), andvλbe the solution of (2.9) with the initial valuev0. Then, fort0,

uλ(t)vλ(t) 1

1 +λωexp ωt 1 +λω

uλ(0)v0

+ ω

1 +λω 0

−∞expλ1(tr)uλ(r)uλ(0)dr

+ 1

1 +λωexp

ωt 1 +λω

0

−∞

1

λexpλ1ruλ(r)uλ(0)dr.

(2.14) Proof. To give the connection between the solutions of (2.1) and (2.9), we rewrite (2.1) to obtain

1 λ

uλ(t)uλ(0)1 λ

t

0exp

tr λ

uλ(r)uλ(0)dr

+Auλ(t)+ωuλ(t) f(t) + 1

λ2 0

−∞exp

tr λ

uλ(r)uλ(0)dr.

(2.15) Thus, byLemma 2.2, we find

uλ(t)vλ(t) 1 λ(1 +λω)

0

−∞expλ1(tr)uλ(r)uλ(0)dr

+ 1

1 +λωexp

ωt 1 +λω

uλ(0)v0

+ 1

λ2(1 +λω)2 t

0exp ω(tr) 1 +λω

× 0

−∞expλ1(rs)uλ(s)uλ(0)ds dr

= ω 1 +λω

0

−∞expλ1(tr)uλ(r)uλ(0)dr

+ 1

1 +λωexp

ωt 1 +λω

uλ(0)v0

+ 1

1 +λωexp

ωt 1 +λω

0

−∞

1

λexpλ1ruλ(r)uλ(0)dr.

(2.16)

3. Integral solution

In this section, we show that the generalized solution provided by Gripenberg [2]

and the integral solution of (1.3) coincide. For the sake of completeness, we recall the definition of the integral solution.

(7)

Definition 3.1. LetxX, let f be a Bochner integrable function on [0, T], and letωbe a real number. We callu: [0, T]X an integral solution of typeωof the Cauchy problem (1.3) if

(1)u(0)=x;

(2)uis continuous on [0, T];

(3) for every 0< s < t < Tand (x, y)A+ωI, we have u(t)xexpω(ts)u(s)x

+ t

sexpω(tr)u(r)x, f(r)y+dr. (3.1) The next lemma will be the first step for showing that the generalized solution and the integral solution coincide.

Lemma3.2. Let f BUC(R+, X)and letuλbe the solution of (2.9) with the initial valueu0, then

uλ(t)x λ 1 +λω

uλ(t)x, f(t)y+

+ 1

1 +λωexp

ωt 1 +λω

u0x

+ 1

(1 +λω)2 t

0exp

ωτ 1 +λω

uλ(tτ)x, f(tτ)y+dτ, (3.2) for all(x, y)A+ωI.

Proof. ForyAx+ωx, we, after rearranging, obtain x+ λ

1 +λωAx 1 1 +λω

λy+ exp

t λ

x+1 λ

t

0exp

r λ

x dr

. (3.3) Rearranging (2.9) gives

uλ(t) + λ

1 +λωAuλ(t) 1 1 +λω

λ f(t) + exp

t λ

u0

+1 λ

t

0exp

r λ

uλ(tr)dr

.

(3.4)

AsAis accretive, we obtain uλ(t)x 1

1 +λω

λuλ(t)x, f(t)y++ exp

t λ

u0x +1

λ t

0exp

r λ

uλ(tr)xdr

.

(3.5)

(8)

The generalized Gronwall lemma leads to uλ(t)x 1

1 +λω

λuλ(t)x, f(t)y++ exp

t λ

u0x

+ 1

1+λω t

0exp

ωr 1+λω

uλ(tr)x, f(tr)y+dr

+ 1

1+λω 1 λ

t

0exp

ωr 1 +λω

exp

tr λ

dru0x

1 1 +λω

λuλ(t)x, f(t)y+

+ 1

1 +λω t

0exp

ωr 1 +λω

uλ(tr)x, f(tr)y+dr

+ exp

ωt 1 +λω

u0x

.

(3.6) Proposition3.3. Letube the generalized solution of (1.3), with the right-hand side f and the initial valueu0, letuλbe the solution of (2.9), forh >0, let fh(t) :=

f(t+h),v0:=u(h), and letvλbe the solution of 1

λ

vλ(t)v0 t

0

1 λexp

r λ

vλ(tr)v0

dr +Avλ(t)+ωvλ(t) fh(t), t >0,

(3.7) that is,vλis the solution of (2.9) with the right-hand side fh, and the initial valuev0.

Then,

(1) limλ0vλ(t)uλ(t+h) =0uniformly on compact sets, that is,

limλ0vλ(t)=u(t+h); (3.8) (2)moreover,

u(t+h)xexp(ωt)u(h)x +

t+h

h expω(t+hr)u(r)x, f(r)y+dr (3.9) for all(x, y)A+ωI,uis consequently the integral solution of (1.3).

Proof. Rearranging (2.9) and (3.7) gives uλ(t+h) + λ

1 +λωAuλ(t+h) 1

1 +λω

λ f(t+h) + exp

t+h λ

u0

+1 λ

t+h

0 exp

r λ

uλ(t+hr)dr

,

(3.10)

(9)

vλ(t) + λ

1 +λωAvλ(t) 1

1 +λω

λ f(t+h) + exp

t λ

u(h) +1 λ

t

0exp

r λ

vλ(tr)dr

. (3.11)

By accretiveness ofA, we obtain uλ(t+h)vλ(t) 1

1 +λω

uλ(t+h)vλ(t),exp

t+h λ

u0

+

+

uλ(t+h)vλ(t), 1

λ t+h

t exp

r λ

uλ(t+hr)dr

exp

t λ

u(h)

+

+1 λ

t

0exp

r λ

uλ(t+hr)vλ(tr)dr

1 1 +λω

exp

t+h λ

u0+u(h)

+1 λ

t+h

t exp

r λ

uλ(t+hr)u(h)dr

+1 λ

t

0exp

r λ

uλ(t+hr)vλ(tr)dr

. (3.12) For given >0, choose, by the local uniform convergence of theuλ and the continuity ofu, 0< δ < hand 0< λ0such that for all 0< λ < λ0,

sup

0<s<δ

uλ(hs)u(hs)+ sup

0<s<δ

u(hs)u(h)<

4 (3.13)

and, by the local boundedness ofuλandu,

exp

δ

λ sup

0sh

uλ(s)+u0+ 2u(h)

<

4. (3.14)

(10)

This choice gives 1

λ t+h

t exp

s λ

uλ(t+hs)u(h)ds

=1 λ

h

0exp

s+t λ

uλ(hs)u(h)ds

=1 λ

δ

0exp

s+t λ

uλ(hs)u(h)ds

+1 λ

h

δ exp

s+t λ

uλ(hs)u(h)ds

exp

t

λ sup

0<s<δ

uλ(hs)u(h)

+ exp

δ

λ sup

0sh

uλ(s)+u(h)

exp

t λ

4+ exp

δ

λ sup

0sh

uλ(s)+u(h)

.

(3.15)

Thus,

uλ(t+h)vλ(t)

1

1 +λω exp

t λ

4+ exp

δ λ

× u0+ 2u(h)+ sup

0sh

uλ(s)

×1 λ

t

0exp

r λ

uλ(t+hr)vλ(tr)dr

.

(3.16)

Now, an application of the generalized Gronwall lemma gives uλ(t+h)vλ(t)

1 1 +λω

exp

t λ

2

+ 1

λ(1 +λω) t

0exp

ω(tr) 1 +λω

exp

r λ

dr

2

.

(3.17) Part (2) ofProposition 3.3is a consequence of part (1) and Lemma 5.

Uniform convergence onRandR+, respectively, of the Yosida approximants uλdefined by (1.2) and (2.9) will be provided inTheorem 5.2andCorollary 5.4.

(11)

4. Inequalities and lemmas

Following the proof of Gripenberg by applying positive resolvents in a Banach lattice, we have to compute (ITλ,µ)1for

Tλ,µf(t, s) := µ λ+µ+λµω

1 λ

0 exp

1 λτ

f(tτ, s)dτ

+ λ

λ+µ+λµω 1 µ

0 exp

1 µτ

f(t, sτ)dτ

(4.1)

on BUC(R×R). For this aim, the modified Bessel functionsI0andI1are needed J(x, y) :=I0

2αγxy= k=0

αkγkxkyk (k!)2 =

2 π

1

0

1

1t2cosh2tαγxydt, I0(0)=1, xI0

2αγx

x=0=0,

xI0

2αγxy= αγy

x I1

2αγxy,

xyI0

2αγxy=αγI0

2αγxy.

(4.2) The equations inRemark 4.1are obtained by viewing the application of the reslovent to the function{t1}as a Laplace transform. Moreover, it will be shown which parts of the kernel for the resolvent Tλ,µ are neglectable when λ, µ0.

Remark 4.1. The following identities [10, pages 208–209] will give a first insight into the behavior of the kernel if (λ, µ)0:

λ λ+µ+λµω

0

0

1J(x, y) exp (1 +λω)y+ (1 +µω)x λ+µ+λµω

d y dx

=λ(λ+µ+λµω) (1 +µω)ω , µ

λ+µ+λµω

0

0

2J(x, y) exp (1 +λω)y+ (1 +µω)x λ+µ+λµω

d y dx

=µ(λ+µ+λµω) (1 +λω)ω , 2

(λ+µ+λµω)2

0

0 J(x, y) exp (1 +λω)y+ (1 +µω)x λ+µ+λµω

d y dx

= 2

ω(λ+µ+λµω).

(4.3)

(12)

The next lemma provides a representation for the positive resolvent of the operatorTλ,µ.

Lemma4.2. For the operatorTλ,µdefined above, (1)Tλ,µ(λ+µ)/(λ+µ+λµω)<1, consequently,

ITλ,µ1λ+µ+λµω

λµω , (4.4)

and(ITλ,µ)1is positive;

(2)letting

α= µ

λ+µ+λµω 1

λ, γ= λ

λ+µ+λµω 1

µ, (4.5)

the resolvent is given by

ITλ,µ

1

u(t, s)

=u(t, s) +γ

0 exp (1 +λω)y λ+µ+λµω

u(t, sy)d y +α

0 exp (1 +µω)x λ+µ+λµω

u(tx, s)dx +γ

0

0 xI0

2αγxyexp (1 +λω)y+ (1 +µω)x λ+µ+λµω

×u(tx, sy)d y dx +α

0

0 yI0

2αγxyexp (1 +λω)y+ (1 +µω)x λ+µ+λµω

×u(tx, sy)d y dx + 2αγ

0

0 I0

2αγxyexp (1 +λω)y+ (1 +µω)x λ+µ+λµω

×u(tx, sy)d y dx.

(4.6)

Proof. Defining

β:=1

λ, δ:=1

µ, (4.7)

(13)

we have to find a bounded solution of the integral equation

y(t, s)α t

−∞expβ(tτ)y(τ, s)dτ

γ s

−∞expδ(sσ)y(t, σ)dσ= f(t, s).

(4.8)

For f C2b(R×R), we define

g(t, s) :=exp(αtγs)∂ts

exp(βt+δs)f(t, s). (4.9) The solutionb(t, s) to the wave equation

12b(t, s)αγb(t, s)=exp(αtγs)∂12

exp(βt+δs)f(t, s)=:g(t, s), (4.10) such that, for a constantC >0,

b(t, s)Cexpα)t+ (δγ)s (4.11)

holds, is given by [10, pages 68–69]

b(t, s)= t

−∞

s

−∞I0

2αγ(tx)(sy)g(x, y)dx d y

=

0

0 I0

2αγxyexpα(tx)γ(sy)12

×

expβ(tx) +δ(sy)f(tx, sy)dx d y.

(4.12)

To enlarge the domain of the solution operator, we will rewrite the represen- tation formula by partial integration. For this purpose, let

B f(t, s) :=

0

0 J(x, y) expα(tx)γ(sy)f(tx, sy)dx d y, Bif(t, s) :=

0

0 iJ(x, y) expα(tx)γ(sy)f(tx, sy)dx d y.

(4.13)

(14)

The following identities hold for the integral operatorsBandBi: B1f(t, s)

=

0

0 J(x, y) expα(tx)γ(sy)(x)f(tx, sy)dx d y

= −

0 J(x, y) expα(tx)γ(sy)f(tx, sy)d y0 +B1f(t, s) +αB f(t, s)

=exp(αt)

0 expγ(sy)f(t, sy)d y +B1f(t, s) +αB f(t, s),

B2f(t, s)

=

0

0 J(x, y) expα(tx)γ(sy)y

f(tx, sy)dx d y

= −

0 J(x, y) expα(tx)γ(sy)f(tx, sy)dx0 +B2f(t, s) +γB f(t, s)

=exp(γs)

0 expα(tx)f(tx, s)dx +B2f(t, s) +γB f(t, s),

B1

2f(t, s)

=

0

0

1J(x, y) expα(tx)γ(sy)

×

y

f(tx, sy)dx d y

= −

0

1J(x, y) expα(tx)γ(sy)f(tx, sy)dx0 +αγB f(t, s) +γB1f(t, s)

=+αγB f(t, s) +γB1f(t, s), B12

expβ(·)1+δ(·)2

f(t, s)

=expα)t

0 expγ(sy)y

×

expδ(sy)f(t, sy)d y +B1

2

expβ(·)1+δ(·)2

f(t, s) +αB2

expβ(·)1+δ(·)2

f(t, s)

(15)

=expα)t

0 expγ(sy)y

expδ(sy)f(t, sy)d y +αγBexpβ(·)1+δ(·)2

f(t, s) +γB1

expβ(·)1+δ(·)2

f(t, s) +αexpγ)s

0 expα)(tx)f(tx, s)dx +αB2

expβ(·)1+δ(·)2

f(t, s) +αγBexpβ(·)1+δ(·)2

f(t, s)

=expα)t+ (δγ)sf(t, s) +γexpα)t

0 expγ)(sy)f(t, sy)d y +αγBexpβ(·)1+δ(·)2

f(t, s) +γB1

expβ(·)1+δ(·)2

f(t, s) +αexpγ)s

0 expα)(tx)f(tx, s)dx +αB2

expβ(·)1+δ(·)2

f(t, s) +αγBexpβ(·)1+δ(·)2

f(t, s)

=expα)t+ (δγ)sf(t, s) +γexpα)t

0 expγ)(sy)f(t, sy)d y +αexpγ)s

0 expα)(tx)f(tx, s)dx +γB1

expβ(·)1+δ(·)2

f(t, s) +αB2

expβ(·)1+δ(·)2 f(t, s) + 2αγBexpβ(·)1+δ(·)2

f(t, s). (4.14)

The substitutiona(t, s)=exp(αt+γs)b(t, s) will provide a solution to the dif- ferential equation

12a(t, s)α∂2a(t, s)γ∂1a(t, s)=12

exp(βt+δs)f(t, s), (4.15)

and, for a constantC >0 andi=1,2,

(∂ia)(t, s),a(t, s)Cexp(βt+δs). (4.16)

Integration of the differential equation will lead to the integral equation a(t, s)α

t

−∞a(τ, s)dτγ s

−∞a(t, σ)dσ=exp(βt+δs)f(t, s). (4.17) Fitting the equations together, we obtain for

y(t, s) :=exp(βtδs)a(t, s)=expβ)t+ (γδ)sb(t, s) (4.18)

参照

関連したドキュメント

As explained above, the main step is to reduce the problem of estimating the prob- ability of δ − layers to estimating the probability of wasted δ − excursions. It is easy to see

In this paper, we focus on the existence and some properties of disease-free and endemic equilibrium points of a SVEIRS model subject to an eventual constant regular vaccination

The first paper, devoted to second order partial differential equations with nonlocal integral conditions goes back to Cannon [4].This type of boundary value problems with

In this work, we present a new model of thermo-electro-viscoelasticity, we prove the existence and uniqueness of the solution of contact problem with Tresca’s friction law by

This paper develops a recursion formula for the conditional moments of the area under the absolute value of Brownian bridge given the local time at 0.. The method of power series

Then it follows immediately from a suitable version of “Hensel’s Lemma” [cf., e.g., the argument of [4], Lemma 2.1] that S may be obtained, as the notation suggests, as the m A

We construct a sequence of a Newton-linearized problems and we show that the sequence of weak solutions converges towards the solution of the nonlinear one in a quadratic way.. In

Yin, “Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system,” Journal of Differential Equations, vol.. Yin, “Global weak