• 検索結果がありません。

CHARACTERIZATION OF BESOV SPACES FOR THE DUNKL OPERATOR ON THE REAL LINE

N/A
N/A
Protected

Academic year: 2022

シェア "CHARACTERIZATION OF BESOV SPACES FOR THE DUNKL OPERATOR ON THE REAL LINE"

Copied!
21
0
0

読み込み中.... (全文を見る)

全文

(1)

Characterization of Besov-Dunkl spaces Chokri Abdelkefi and Mohamed Sifi

vol. 8, iss. 3, art. 73, 2007

Title Page

Contents

JJ II

J I

Page1of 21 Go Back Full Screen

Close

CHARACTERIZATION OF BESOV SPACES FOR THE DUNKL OPERATOR ON THE REAL LINE

CHOKRI ABDELKEFI MOHAMED SIFI

Department of Mathematics Department of Mathematics

Preparatory Institute of Engineer Studies of Tunis Faculty of Sciences of Tunis

1089 Monfleury Tunis, Tunisia 1060 Tunis, Tunisia

EMail:chokri.abdelkefi@ipeit.rnu.tn EMail:mohamed.sifi@fst.rnu.tn

Received: 07 February, 2007

Accepted: 28 August, 2007

Communicated by: S.S. Dragomir 2000 AMS Sub. Class.: 46E30, 44A15, 44A35.

Key words: Dunkl operators, Dunkl transform, Dunkl translation operators, Dunkl convolu- tion, Besov-Dunkl spaces.

Abstract: In this paper, we define subspaces ofLpby differences using the Dunkl transla- tion operators that we call Besov-Dunkl spaces. We provide characterization of these spaces by the Dunkl convolution.

Acknowledgements: The authors thank the referee for his remarks and suggestions.

(2)

Characterization of Besov-Dunkl spaces Chokri Abdelkefi and Mohamed Sifi

vol. 8, iss. 3, art. 73, 2007

Title Page Contents

JJ II

J I

Page2of 21 Go Back Full Screen

Close

Contents

1 Introduction 3

2 Preliminaries 5

3 Characterization of Besov-Dunkl Spaces 9

(3)

Characterization of Besov-Dunkl spaces Chokri Abdelkefi and Mohamed Sifi

vol. 8, iss. 3, art. 73, 2007

Title Page Contents

JJ II

J I

Page3of 21 Go Back Full Screen

Close

1. Introduction

On the real line, Dunkl operators are differential-difference operators introduced in 1989, by C. Dunkl in [5] and are denoted byΛα,whereαis a real parameter>−12. These operators, are associated with the reflection groupZ2onR. The Dunkl kernel Eα is used to define the Dunkl transformFα which was introduced by C. Dunkl in [6]. Rösler in [13] showed that the Dunkl kernel satisfies a product formula. This allows us to define the Dunkl translationτx,x ∈R. As a result, we have the Dunkl convolution∗α.

There are many ways to define Besov spaces (see [4, 12, 16]). This paper deals with Besov-Dunkl spaces (see [1,2,8]). Letβ >0,1≤p <+∞and1≤q ≤+∞, the Besov-Dunkl space denoted byBDβ,αp,q is the subspace of functionsf ∈ Lpα) satisfying

Z +∞

0

x(f) +τ−x(f)−2fkp,α

xβ

q

dx

x <+∞ if q <+∞

and

sup

x∈(0,+∞)

x(f) +τ−x(f)−2fkp,α

xβ <+∞ if q = +∞,

whereµαis a weighted Lebesgue measure onR(see next section).

Put

A=

φ∈ S(R) : Z +∞

0

φ(x)dµα(x) = 0

,

whereS(R)is the space of even Schwartz functions onR. Givenφ ∈ A, we shall denote byCφ,β,αp,q the subspace of functionsf ∈Lpα)satisfying

Z +∞

0

kf∗αφtkp,α tβ

q

dt

t <+∞ if q <+∞

(4)

Characterization of Besov-Dunkl spaces Chokri Abdelkefi and Mohamed Sifi

vol. 8, iss. 3, art. 73, 2007

Title Page Contents

JJ II

J I

Page4of 21 Go Back Full Screen

Close

and

sup

t∈(0,+∞)

kf ∗αφtkp,α

tβ <+∞ if q= +∞, whereφt(x) = t2(α+1)1 φ(xt), for allt∈(0,+∞)andx∈R.

Our objective will be to prove that BDβ,αp,q ⊂ Cφ,β,αp,q and when 1 < p < +∞, 0< β <1thenBDp,qβ,α =Cφ,β,αp,q .

Observe that the Besov-Dunkl spaces are independent of the specific selection of φinAand for1< p < +∞,0< β <1, we haveBDβ,αp,q ⊂BDe p,qβ,α,whereBDe p,qβ,α is the subspace of functionsf ∈Lpα)satisfying

Z +∞

0

x(f)−fkp,α xβ

q

dx

x <+∞ if q <+∞

and

sup

x∈(0,+∞)

x(f)−fkp,α

xβ <+∞ if q = +∞, (see Remark2in Section3, below).

Analogous results have been obtained for the weighted Besov spaces (see [3]).

The contents of this paper are as follows. In Section 2, we collect some basic definitions and results about harmonic analysis associated with Dunkl operators .In Section3, we prove the results about inclusion and coincidence between the spaces BDp,qβ,α andCφ,β,αp,q .

In what follows,crepresents a suitable positive constant which is not necessarily the same in each occurence.

(5)

Characterization of Besov-Dunkl spaces Chokri Abdelkefi and Mohamed Sifi

vol. 8, iss. 3, art. 73, 2007

Title Page Contents

JJ II

J I

Page5of 21 Go Back Full Screen

Close

2. Preliminaries

On the real line, we consider the first-order differential-difference operator defined by

Λα(f)(x) = df

dx(x) + 2α+ 1 x

f(x)−f(−x) 2

, f ∈ E(R), α >−1 2, which is called the Dunkl operator. Forλ ∈ C, the Dunkl kernelEα(λ .)onRwas introduced by C. Dunkl in [5] and is given by

Eα(λx) =jα(iλx) + λx

2(α+ 1)jα+1(iλx), x∈R,

where jα is the normalized Bessel function of the first kind of order α (see [17]).

The Dunkl kernelEα(λ .)is the unique solution onRof the initial problem for the Dunkl operator (see [5]).

Letµα be the weighted Lebesgue measure onRgiven by dµα(x) = |x|2α+1

2α+1Γ(α+ 1)dx.

For every1 ≤ p ≤ +∞, we denote by Lpα)the space Lp(R, dµα) and we use k · kp,αas a shorthand fork · kLpα).

The Dunkl transformFαwhich was introduced by C. Dunkl in [6], is defined for f ∈L1α)by

Fα(f)(x) = Z

R

Eα(−ixy)f(y)dµα(y), x∈R. For allx, y, z ∈R, consider

(2.1) Wα(x, y, z) = (Γ(α+ 1)2) 2α−1

πΓ(α+12)(1−bx,y,z+bz,x,y+bz,y,x)∆α(x, y, z),

(6)

Characterization of Besov-Dunkl spaces Chokri Abdelkefi and Mohamed Sifi

vol. 8, iss. 3, art. 73, 2007

Title Page Contents

JJ II

J I

Page6of 21 Go Back Full Screen

Close

where

bx,y,z =

x2+y2−z2

2xy ifx, y ∈R\{0}, z ∈R

0 otherwise

and

α(x, y, z) =

([(|x|+|y|)2−z2][z2−(|x|−|y|)2])α−12

|xyz| if|z| ∈Sx,y

0 otherwise

where

Sx,y =h

||x| − |y||, |x|+|y|i . The kernelWα(see [13]) is even and we have

Wα(x, , y, z) =Wα(y, x, z) =Wα(−x, z, y) = Wα(−z, y,−x)

and Z

R

|Wα(x, y, z)|dµα(z)≤4.

In the sequel we consider the signed measureγx,y, onR, given by

(2.2) dγx,y(z) =





Wα(x, y, z)dµα(z) ifx, y ∈R\{0}

x(z) ify = 0

y(z) ifx= 0.

Forx, y ∈Randf a continuous function onR, the Dunkl translation operator τx is given by

τx(f)(y) = Z

R

f(z)dγx,y(z).

(7)

Characterization of Besov-Dunkl spaces Chokri Abdelkefi and Mohamed Sifi

vol. 8, iss. 3, art. 73, 2007

Title Page Contents

JJ II

J I

Page7of 21 Go Back Full Screen

Close

According to [9], forx∈R, τx is a continuous linear operator fromE(R)into itself and for allf ∈ E(R), we have

τx(f)(y) = τy(f)(x), τ0(f)(x) =f(x), forx, y ∈R, whereE(R)denotes the space ofC-functions onR.

According to [14, 15], the operatorτx can be extended toLpα),1≤ p ≤+∞

and forf ∈Lpα)we have

(2.3) kτx(f)kp,α ≤4kfkp,α.

Using the change of variablez = Ψ(x, y, θ) =p

x2+y2−2xycosθ, we have also (2.4) τx(f)(y) = cα

Z π 0

f(Ψ) +f(−Ψ) + x+y

Ψ (f(Ψ)−f(−Ψ))

α(θ), wheredνα(θ) = (1−cosθ) sinθdθandcα = 2Γ(α+1)πΓ(α+1

2).

From the generalized Taylor formula with integral remainder (see [11, Theorem 2, p. 349]), we have forf ∈ E(R)andx, y ∈R

x(f)−f)(y) = Z |x|

−|x|

sgn(x)

2|x|2α+1 + sgn(z) 2|z|2α+1

τzαf)(y)dµα(z).

The Dunkl convolution f ∗α g , of two continuous functions f and g on R with compact support, is defined by

(f ∗α g)(x) = Z

R

τx(f)(−y)g(y)dµα(y), x∈R. The convolution∗α is associative and commutative (see [13]).

We have the following results (see [14]).

(8)

Characterization of Besov-Dunkl spaces Chokri Abdelkefi and Mohamed Sifi

vol. 8, iss. 3, art. 73, 2007

Title Page Contents

JJ II

J I

Page8of 21 Go Back Full Screen

Close

i) Assume that p, q, r ∈ [1,+∞[ satisfying 1p + 1q = 1 + 1r (the Young condi- tion). Then the map(f, g) →f ∗α g defined onCc(R)×Cc(R), extends to a continuous map fromLpα)×Lqα)toLrα)and we have

(2.5) kf ∗α gkr,α ≤4kfkp,αkgkq,α. ii) For allf ∈L1α)andg ∈L2α), we have

(2.6) Fα(f ∗αg) =Fα(f)Fα(g) and forf ∈L1α),g ∈Lpα)and1≤p < ∞, we get (2.7) τt(f ∗α g) = τt(f) ∗αg =f ∗ατt(g), t ∈R.

(9)

Characterization of Besov-Dunkl spaces Chokri Abdelkefi and Mohamed Sifi

vol. 8, iss. 3, art. 73, 2007

Title Page Contents

JJ II

J I

Page9of 21 Go Back Full Screen

Close

3. Characterization of Besov-Dunkl Spaces

Letβ >0,1≤p <+∞and1≤q ≤+∞. We say that a measurable functionf on Ris in the Besov-Dunkl spaceBDp,qβ,αiff ∈Lpα)with

Z +∞

0

x(f) +τ−x(f)−2fkp,α xβ

q

dx

x <+∞ if q <+∞

and

sup

x∈(0,+∞)

x(f) +τ−x(f)−2fkp,α

xβ <+∞ if q = +∞.

Remark 1. Note that forf ∈Lpα)the functionR→R+,x7→ kτx(f) +τ−x(f)− 2fkp,αis measurable (see [10, Lemma 1, (ii)]).

Lemma 3.1. Let0 < β < 1, 1 ≤ p < +∞, 1 ≤ q ≤ +∞and f ∈ Lpα). If Λα(f)∈Lpα)thenf ∈ BDp,qβ,α.

Proof. Using the generalized Taylor formula, Minkowski’s inequality for integrals and (2.3), we can write

x(f) +τ−x(f)−2fkp,α ≤ kτx(f)−fkp,α+kτ−x(f)−fkp,α

≤ckΛα(f)kp,α Z x

−x

1

2|x|2α+1 + 1 2|z|2α+1

α(z), hence we obtain forx >0,

x(f) +τ−x(f)−2fkp,α ≤c xkΛα(f)kp,α.

(10)

Characterization of Besov-Dunkl spaces Chokri Abdelkefi and Mohamed Sifi

vol. 8, iss. 3, art. 73, 2007

Title Page Contents

JJ II

J I

Page10of 21 Go Back Full Screen

Close

Then it follows that forA >0 Z +∞

0

x(f) +τ−x(f)−2fkp,α xβ

q

dx x

≤c Z A

0

xkΛα(f)kp,α xβ

q

dx x +c

Z +∞

A

kfkp,α xβ

q

dx

x <+∞.

Here whenq= +∞, we make the usual modification. This completes the proof.

Example 3.1. Let0< β < 1,1≤ p < +∞and1≤ q ≤+∞. By Lemma3.1, we can assert that

1. S(R), Cc1(R)⊂ BDβ,αp,q.

2. The functions g, hndefined onR, byg(x) = e−|x|andhn(x) = coshxnx, n ∈ N are inBDβ,αp,q.

Now, in order to establish that for all φ ∈ A, BDβ,αp,q ⊂ Cφ,β,αp,q and for 1 < p <

+∞,0< β <1,BDp,qβ,α =Cφ,β,αp,q , we need to show some useful lemmas.

Lemma 3.2. Letφ∈ A,1≤p <+∞andr >0, then there exists a constantc >0 such that for allf ∈Lpα)andt >0, we have

(3.1) kφtαfkp,α

≤c Z +∞

0

min x

t

2(α+1)

, t

x r

x(f) +τ−x(f)−2fkp,αdx x . Proof. Lett >0, we have

Z +∞

0

φt(x)dµα(x) = Z +∞

0

φ(x)dµα(x) = 0

(11)

Characterization of Besov-Dunkl spaces Chokri Abdelkefi and Mohamed Sifi

vol. 8, iss. 3, art. 73, 2007

Title Page Contents

JJ II

J I

Page11of 21 Go Back Full Screen

Close

and

tαf)(y) = Z

R

φt(x)τy(f)(−x)dµα(x)

= Z

R

φt(x)τy(f)(x)dµα(x), then we can write fory∈R

2(φtαf)(y) = Z

R

φt(x) [τy(f)(x) +τy(f)(−x)−2f(y)]dµα(x)

= 2 Z +∞

0

φt(x) [τx(f)(y) +τ−x(f)(y)−2f(y)]dµα(x).

Using Minkowski’s inequality for integrals, we obtain kφtαfkp,α

Z +∞

0

t(x)| kτx(f) +τ−x(f)−2fkp,αα(x)

≤c Z +∞

0

x t

2(α+1) φx

t

x(f) +τ−x(f)−2fkp,αdx (3.2) x

≤c Z +∞

0

x t

2(α+1)

x(f) +τ−x(f)−2fkp,αdx x . (3.3)

On the other hand, since the functionφbelongs toS(R), then forr >0there exists a constantcsuch that

x t

2(α+1)+r φx

t

≤c.

By (3.2), we obtain

(3.4) kφtαfkp,α ≤c Z +∞

0

t x

r

x(f) +τ−x(f)−2fkp,αdx x . From (3.3) and (3.4), we deduce (3.1).

(12)

Characterization of Besov-Dunkl spaces Chokri Abdelkefi and Mohamed Sifi

vol. 8, iss. 3, art. 73, 2007

Title Page Contents

JJ II

J I

Page12of 21 Go Back Full Screen

Close

Lemma 3.3. Letφ ∈ Aand1 < p <+∞, then there exists a constantc > 0such that for allf ∈Lpα)andx >0, we have

(3.5) kτx(f) +τ−x(f)−2fkp,α≤c Z +∞

0

minn 1,x

t

okφtαfkp,αdt t . Proof. Put for0< ε < δ <+∞

fε,δ(y) = Z δ

ε

tαφtαf)(y)dt

t , y∈R.

By interchanging the orders of integration and (2.7), we obtain τx(fε,δ)(y) =

Z δ ε

τxtαφtαf)(y)dt t

= Z δ

ε

xt)∗αφtαf)(y)dt

t , y ∈R, x∈(0,+∞), so we can write forx∈(0,+∞)andy ∈R,

x(fε,δ) +τ−x(fε,δ)−2fε,δ)(y) = Z δ

ε

[(τxt) +τ−xt)−2φt)∗αφtαf](y)dt t . Using Minkowski’s inequality for integrals and (2.5), we get

k(τx(fε,δ) +τ−x(fε,δ)−2fε,δkp,α (3.6)

≤ Z δ

ε

k(τxt) +τ−xt)−2φt)∗αφtαfkp,αdt t

≤c Z δ

ε

xt) +τ−xt)−2φtk1,αtαfkp,αdt t .

(13)

Characterization of Besov-Dunkl spaces Chokri Abdelkefi and Mohamed Sifi

vol. 8, iss. 3, art. 73, 2007

Title Page Contents

JJ II

J I

Page13of 21 Go Back Full Screen

Close

Forx, t∈(0,+∞), we have kτxt) +τ−xt)−2φtk1,α

= Z

R

Z

R

φt(z)(dγx,y(z) +dγ−x,y(z))

−2φt(y)

α(y)

= Z

R

Z

R

φ z

t

(dγx,y(z) +dγ−x,y(z))

−2φ y

t

t−2(α+1)α(y).

By (2.1) and the change of variablez0 = zt , we have Wα(x, y, z0t)t2(α+1) =Wαx

t,y t, z0

,

then from (2.2), we get

x,y(z) =dγx

t,yt(z0) and dγ−x,y(z) = dγ−x

t ,yt(z0), hence

xt) +τ−xt)−2φtk1,α (3.7)

= Z

R

Z

R

φ(z0) dγx

t,yt(z0) +dγ−x

t ,yt(z0)

−2φy t

t−2(α+1)α(y)

= Z

R

h

τx

t(φ) y

t

−x

t (φ) y

t i

t−2(α+1)−2φt(y)

α(y)

=

τx

t(φ) +τ−x

t (φ)−2φ

t

1,α

= τx

t(φ) +τ−x

t (φ)−2φ 1,α

.

(14)

Characterization of Besov-Dunkl spaces Chokri Abdelkefi and Mohamed Sifi

vol. 8, iss. 3, art. 73, 2007

Title Page Contents

JJ II

J I

Page14of 21 Go Back Full Screen

Close

Sinceφ∈ S(R), then using (2.4) and [7, Theorem 2.1] (see also [11, Theorem 2, p.

349]), we can assert that τx

t(φ) +τ−x

t (φ)−2φ

1,α≤cx

tkφ0k1,α ≤cx t. On the other hand, by (2.3) we have

τx

t(φ) +τ−x

t (φ)−2φ 1,α

≤10kφk1,α ≤c, then we get,

(3.8)

τx

t(φ) +τ−x

t (φ)−2φ 1,α

≤cminn 1,x

t o

.

From (3.6), (3.7) and (3.8), we obtain

(3.9) kτx(fε,δ) +τ−x(fε,δ)−2fε,δkp,α ≤c Z δ

ε

minn 1,x

t

okφtαfkp,αdt t . Using (2.6), observe that

Z

R

(φ∗αφ)(x)|x|2α+1dx= 2α+1Γ(α+ 1)Fα(φ∗αφ)(0)

= 2α+1Γ(α+ 1)(Fα(φ)(0))2

= 2α+1Γ(α+ 1) Z

R

φ(z)dµα(z) 2

= 0, and sinceφ∗αφis in the Schwarz spaceS(R), we have

Z

R

|log|x|| |φ∗αφ(x)| |x|2α+1dx <+∞.

(15)

Characterization of Besov-Dunkl spaces Chokri Abdelkefi and Mohamed Sifi

vol. 8, iss. 3, art. 73, 2007

Title Page Contents

JJ II

J I

Page15of 21 Go Back Full Screen

Close

Then, by the Calderón reproducing formula related to the Dunkl operators (see [10, Theorem 3]), we have

ε→0, δ→+∞lim fε,δ =c f, inLpα).

From (2.3) and (3.9), we deduce (3.5).

Lemma 3.4. Let0 ≤ ε, r < +∞ andr > β > 0, then there exists constants c1, c2 >0such that we have

(3.10)

Z +∞

0

y z

β

min y

z ε

, z

y r

dy

y ≤c1, z ∈(0,+∞) and

(3.11)

Z +∞

0

y z

β

min y

z ε

, z

y r

dz

z ≤c2, y ∈(0,+∞).

Proof. We can write Z +∞

0

y z

β

min y

z ε

, z

y r

dy y

=z−(β+ε) Z z

0

yβ+ε−1dy+zr−β Z +∞

z

yβ−r−1dy ≤c1, z ∈(0,+∞) and

Z +∞

0

y z

β

min y

z ε

, z

y r

dz z

=yβ−r Z y

0

z−β+r−1dz+yβ+ε Z +∞

y

z−β−ε−1dz ≤c2, y∈(0,+∞), which proves the results.

(16)

Characterization of Besov-Dunkl spaces Chokri Abdelkefi and Mohamed Sifi

vol. 8, iss. 3, art. 73, 2007

Title Page Contents

JJ II

J I

Page16of 21 Go Back Full Screen

Close

Theorem 3.5.

1. Let1≤p < +∞,1≤q≤+∞andβ >0, then we have for allφ∈ A (3.12) BDβ,αp,q ⊂ Cφ,β,αp,q .

2. Let1< p <+∞,1≤q≤+∞and0< β <1, then we have for allφ∈ A (3.13) BDβ,αp,q =Cφ,β,αp,q .

Proof. Putωpα(f)(x) =kτx(f) +τ−x(f)−2fkp,αforf ∈Lpα)andq0 = q−1q the conjugate ofqwhen1< q <+∞.

• We start with the proof of the inclusion (3.12). Suppose that 1 ≤ p < +∞, 1≤q≤+∞,φ∈ A,r > β andf ∈ BDp,qβ,α.

Case whenq= 1. By (3.1) and Fubini’s theorem, we have Z +∞

0

kf∗αφtkp,α

tβ

dt t

≤c Z +∞

0

Z +∞

0

min x

t

2(α+1)

, t

x r

ωαp(f)(x)t−β−1dtdx x

≤c Z +∞

0

ωpα(f)(x)

Z +∞

0

min x

t

2(α+1)

, t

x r

t−β−1dt dx

x

≤c Z +∞

0

ωpα(f)(x)

x−r Z x

0

tr−β−1dt+x2(α+1) Z +∞

x

t−β−2α−3dt dx

x

≤c Z +∞

0

ωpα(f)(x) xβ

dx

x <+∞, hencef ∈ Cφ,β,αp,1 .

(17)

Characterization of Besov-Dunkl spaces Chokri Abdelkefi and Mohamed Sifi

vol. 8, iss. 3, art. 73, 2007

Title Page Contents

JJ II

J I

Page17of 21 Go Back Full Screen

Close

Case whenq= +∞. By (3.1), we have kφtαfkp,α ≤c

Z t 0

x t

2(α+1)

ωpα(f)(x)dx x +

Z +∞

t

t x

r

ωαp(f)(x)dx x

≤c sup

x∈(0,+∞)

ωαp(f)(x) xβ

t−2(α+1) Z t

0

x2α+1+βdx+tr Z +∞

t

x−β−r−1dx

≤ctβ sup

x∈(0,+∞)

ωαp(f)(x) xβ , then we deduce thatf ∈ Cφ,β,αp,+∞.

Case when1< q <+∞. By (3.1) again, we have fort >0 kφtαfkp,α

tβ ≤c

Z +∞

0

x t

β

min x

t

2(α+1)

, t

x

rωpα(f)(x) xβ

dx x . Put

K(x, t) =x t

βmin x

t

2(α+1), t

x

r

. Using Hölder’s inequality and (3.10), we can write

tαfkp,α

tβ ≤c

Z +∞

0

(K(x, t))q10

(K(x, t))1qωpα(f)(x) xβ

dx x

≤c

Z +∞

0

K(x, t)

ωpα(f)(x) xβ

q dx

x 1q

. Then by Fubini’s theorem and (3.11), we have

Z +∞

0

tαfkp,α tβ

q

dt t ≤c

Z +∞

0

ωαp(f)(x) xβ

qZ +∞

0

K(x, t)dt t

dx x

(18)

Characterization of Besov-Dunkl spaces Chokri Abdelkefi and Mohamed Sifi

vol. 8, iss. 3, art. 73, 2007

Title Page Contents

JJ II

J I

Page18of 21 Go Back Full Screen

Close

≤c Z +∞

0

ωαp(f)(x) xβ

q dx

x <+∞, which proves the result.

• Let us now prove the equality (3.13). Assumef ∈ Cφ,β,αp,q ,φ ∈ Aand0< β <

1. For1< p <+∞and1≤q≤+∞, we have to show only thatf ∈ BDp,qβ,α. Case whenq= 1. By (3.5) and Fubini’s theorem, we have

Z +∞

0

ωpα(f)(x) xβ

dx x ≤c

Z +∞

0

Z +∞

0

minn 1,x

t

okφtαfkp,αx−β−1dt t dx

≤c Z +∞

0

tαfkp,α

Z +∞

0

minn 1,x

t o

x−β−1dx dt

t

≤c Z +∞

0

tαfkp,α 1

t Z t

0

x−βdx+ Z +∞

t

x−β−1dx dt

t

≤c Z +∞

0

tαfkp,α tβ

dt

t <+∞, then we obtain the result.

Case whenq= +∞. By (3.5), we get ωpα(f)(x)≤c

Z x 0

tαfkp,αdt t +

Z +∞

x

x

tkφtαfkp,αdt t

≤c sup

t∈(0,+∞)

tαfkp,α

tβ

Z x 0

tβ−1dt+x Z +∞

x

tβ−2dt

≤cxβ sup

t∈(0,+∞)

tαfkp,α tβ ,

(19)

Characterization of Besov-Dunkl spaces Chokri Abdelkefi and Mohamed Sifi

vol. 8, iss. 3, art. 73, 2007

Title Page Contents

JJ II

J I

Page19of 21 Go Back Full Screen

Close

so, we deduce thatf ∈ BDβ,αp,+∞.

Case when1< q <+∞. By (3.5) again, we have forx >0 ωpα(f)(x)

xβ ≤c Z +∞

0

t x

β

minn 1,x

t

okφtαfkp,α tβ

dt t . Put

R(x, t) = t

x

βminn 1,x

t o

. Using Hölder’s inequality and (3.10), we can write

ωpα(f)(x) xβ ≤c

Z +∞

0

(R(x, t))q10

(R(x, t))1qtαfkp,α tβ

dt t

≤c

Z +∞

0

R(x, t)

tαfkp,α tβ

q

dt t

1q ,

then by Fubini’s theorem and (3.11), we have Z +∞

0

ωαp(f)(x) xβ

q dx

x ≤c Z +∞

0

tαfkp,α tβ

qZ +∞

0

R(x, t)dx x

dt t

≤c Z +∞

0

tαfkp,α tβ

q

dt

t <+∞, thus the result is established.

Remark 2. By proceeding in the same manner as in Lemma3.3and (2) of Theorem 3.5, we can assert that for1< p < +∞and0 < β <1, we haveCφ,β,αp,q ⊂ BDe β,αp,q , hence from (3.13) we conclude thatBDβ,αp,q ⊂BDe p,qβ,α.

(20)

Characterization of Besov-Dunkl spaces Chokri Abdelkefi and Mohamed Sifi

vol. 8, iss. 3, art. 73, 2007

Title Page Contents

JJ II

J I

Page20of 21 Go Back Full Screen

Close

References

[1] C. ABDELKEFI ANDM. SIFI, On the uniform convergence of partial Dunkl integrals in Besov-Dunkl spaces, Fractional Calculus and Applied Analysis, 9(1) (2006), 43–56.

[2] C. ABDELKEFI AND M. SIFI, Further results of integrability for the Dunkl transform, Communications in Mathematical Analysis, 2(1) (2007), 29–36.

[3] J.L. ANSORENA AND O. BLASCO, Characterization of weighted Besov spaces, Math. Nachr., 171 (1995), 5–17.

[4] O.V. BESOV, On a family of function spaces in connection with embeddings and extentions, Trudy Mat. Inst. Steklov, 60 (1961), 42–81.

[5] C.F. DUNKL, Differential-difference operators associated to reflection groups, Trans.Amer. Math. Soc., 311(1) (1989), 167–183.

[6] C.F. DUNKL, Hankel transforms associated to finite reflection groups in Proc.

of Special Session on Hypergeometric Functions on Domains of Positivity, Jack Polynomials and Applications. Proceedings, Tampa 1991, Contemp. Math., 138 (1992), 123–138.

[7] J. GOSSELIN AND K. STEMPAK, A weak type estimate for Fourier-Bessel multipliers, Proc. Amer. Math. Soc., 106 (1989), 655–662.

[8] L. KAMOUN, Besov-type spaces for the Dunkl operator on the real line, J.

Comp. and Appl. Math., 199(1) (2007), 56–67.

[9] M.A. MOUROU, Transmutation operators associated with a Dunkl-type differential-difference operator on the real line and certain of their applications, Integral transforms Spec. Funct., 12(1) (2001), 77–88.

(21)

Characterization of Besov-Dunkl spaces Chokri Abdelkefi and Mohamed Sifi

vol. 8, iss. 3, art. 73, 2007

Title Page Contents

JJ II

J I

Page21of 21 Go Back Full Screen

Close

[10] M.A. MOUROUANDK. TRIMÈCHE, Calderon’s reproducing formula related to the Dunkl operator on the real line, Monatshefte für Mathematik, 136 (2002), 47–65.

[11] M.A. MOUROU, Taylor series associated with a differential-difference opera- tor on the real line, J. Comp. and Appl. Math., 153 (2003), 343–354.

[12] J. PEETRE, New Thoughts on Besov Spaces, Duke Univ. Math. Series, Durham, NC, 1976.

[13] M. RÖSLER, Bessel-Type signed hypergroup onR, in Probability measure on groups and related structures, Proc. Conf Oberwolfach, (1994), H. Heyer and A. Mukherjea (Eds) World scientific Publ, 1995, pp 292–304.

[14] F. SOLTANI,Lp-Fourier multipliers for the Dunkl operator on the real line, J.

Funct. Analysis, 209 (2004), 16–35.

[15] S. THANGAVELYUANDY. XU, Convolution operator and maximal function for Dunkl transform, J. Anal. Math., 97 (2005), 25–56.

[16] A. TORCHINSKY, Real-variable Methods in Harmonic Analysis, Academic Press, 1986.

[17] H. TRIEBEL, Theory of Function Spaces, Monographs in Math., Vol. 78, Birkhäuser Verlag, Basel, 1983.

[18] G.N. WATSON, A Treatise on the Theory of Bessel Functions, Camb. Univ.

Press, Cambridge 1966.

参照

関連したドキュメント

[23] Ariel Barton, Svitlana Mayboroda; Layer potentials and boundary-value problems for second order elliptic operators with data in Besov spaces, Mem..

It is suggested by our method that most of the quadratic algebras for all St¨ ackel equivalence classes of 3D second order quantum superintegrable systems on conformally flat

We include applications to elliptic operators with Dirichlet, Neumann or Robin type boundary conditions on L p -spaces and on the space of continuous

Xiang; The regularity criterion of the weak solution to the 3D viscous Boussinesq equations in Besov spaces, Math.. Zheng; Regularity criteria of the 3D Boussinesq equations in

In this section, we are going to study how the product acts on Sobolev and Hölder spaces associated with the Dunkl operators. This could be very useful in nonlinear

“rough” kernels. For further details, we refer the reader to [21]. Here we note one particular application.. Here we consider two important results: the multiplier theorems

The commutative case is treated in chapter I, where we recall the notions of a privileged exponent of a polynomial or a power series with respect to a convenient ordering,

We study in Section 3 the generalized Cauchy problem of the Dunkl linear symmetric systems, and we prove the principle of finite speed of propagation of these systems.. In the