• 検索結果がありません。

HYERS-ULAM-RASSIAS STABILITY OF THE K -QUADRATIC FUNCTIONAL EQUATION

N/A
N/A
Protected

Academic year: 2022

シェア "HYERS-ULAM-RASSIAS STABILITY OF THE K -QUADRATIC FUNCTIONAL EQUATION"

Copied!
25
0
0

読み込み中.... (全文を見る)

全文

(1)

Hyers-Ulam-Rassias Stability M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi vol. 8, iss. 3, art. 89, 2007

Title Page

Contents

JJ II

J I

Page1of 25 Go Back Full Screen

Close

HYERS-ULAM-RASSIAS STABILITY OF THE K -QUADRATIC FUNCTIONAL EQUATION

MOHAMED AIT SIBAHA, BELAID BOUIKHALENE

University of Ibn Tofail, Faculty of Sciences Department of Mathematics

Kenitra, Morocco

EMail:mohaait@yahoo.fr bbouikhalene@yahoo.fr

ELHOUCIEN ELQORACHI

Laboratory LAMA , Harmonic Analysis and Functional Equations Team Department of Mathematics, Faculty of Sciences

University Ibn Zohr, Agadir, Morocco EMail:elqorachi@hotmail.com

Received: 26 January, 2007

Accepted: 08 June, 2007

Communicated by: K. Nikodem

2000 AMS Sub. Class.: 39B82, 39B52, 39B32.

Key words: Group, Additive equation, Quadratic equation, Hyers-Ulam-Rassias stability.

Abstract: In this paper we obtain the Hyers-Ulam-Rassias stability for the functional equation 1

|K|

X

k∈K

f(x+k·y) =f(x) +f(y), x, yG,

whereK is a finite cyclic transformation group of the abelian group(G,+), acting by automorphisms ofG. As a consequence we can derive the Hyers-Ulam-Rassias stability of the quadratic and the additive functional equations.

(2)

Hyers-Ulam-Rassias Stability M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page Contents

JJ II

J I

Page2of 25 Go Back Full Screen

Close

Contents

1 Introduction 3

2 Main Results 8

(3)

Hyers-Ulam-Rassias Stability M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page Contents

JJ II

J I

Page3of 25 Go Back Full Screen

Close

1. Introduction

In the book, A Collection of Mathematical Problems [32], S.M. Ulam posed the question of the stability of the Cauchy functional equation. Ulam asked: if we re- place a given functional equation by a functional inequality, when can we assert that the solutions of the inequality lie near to the solutions of the strict equation?

Originally, he had proposed the following more specific question during a lecture given before the University of Wisconsin’s Mathematics Club in 1940.

Given a groupG1, a metric group (G2, d), a numberε >0and a mapping f : G1 −→G2 which satisfies the inequalityd(f(xy), f(x)f(y))< εfor all x, y ∈ G1, does there exist an homomorphism h : G1 −→ G2 and a constantk >0, depending only onG1 andG2 such thatd(f(x), h(x))≤ kεfor allxinG1?

A partial and significant affirmative answer was given by D.H. Hyers [9] under the condition thatG1andG2 are Banach spaces.

In 1978, Th. M. Rassias [18] provided a generalization of Hyers’s stability theo- rem which allows the Cauchy difference to be unbounded, as follows:

Theorem 1.1. Letf :V −→Xbe a mapping between Banach spaces and letp < 1 be fixed. Iff satisfies the inequality

kf(x+y)−f(x)−f(y)k ≤θ(kxkp+kykp)

for someθ ≥ 0and for allx, y ∈ V (x, y ∈ V \ {0}ifp < 0), then there exists a unique additive mappingT :V −→X such that

kf(x)−T(x)k ≤ 2θ

|2−2p|kxkp for allx∈V (x∈V \ {0}ifp <0).

If, in addition,f(tx)is continuous intfor each fixedx, thenT is linear.

(4)

Hyers-Ulam-Rassias Stability M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page Contents

JJ II

J I

Page4of 25 Go Back Full Screen

Close

During the 27th International Symposium on functional equations, Th. M. Ras- sias asked the question whether such a theorem can also be proved forp ≥ 1. Z.

Gajda [7] following the same approach as in [18], gave an affirmative answer to Rassias’ question for p > 1. However, it was showed that a similar result for the casep= 1does not hold.

In 1994, P. Gavrutˇa [8] provided a generalization of the above theorem by replac- ing the function(x, y) 7−→ θ(kxkp +kykp)with a mappingϕ(x, y)which satisfies the following condition:

X

n=0

2−nϕ(2nx,2ny)<∞ or

X

n=0

2nϕ x 2n+1, y

2n+1

<∞ for everyx, yin a Banach spaceV.

Since then, a number of stability results have been obtained for functional equa- tions of the forms

(1.1) f(x+y) =g(x) +h(y), x, y ∈G, and

(1.2) f(x+y) +f(x−y) = g(x) +h(y), x, y ∈G,

whereGis an abelian group. In particular, for the classical equations of Cauchy and Jensen, the quadratic and the Pexider equations, the reader can be referred to [4] – [22] for a comprehensive account of the subject.

In the papers [24] – [31], H. Stetkær studied functional equations related to the action by automorphisms on a groupGof a compact transformation groupK. Writ- ing the action ofk ∈K onx∈Gask·xand lettingdkdenote the normalized Haar measure onK,the functional equations (1.1) and (1.2) have the form

(1.3)

Z

K

f(x+k·y)dk =g(x) +h(y), x, y ∈G,

(5)

Hyers-Ulam-Rassias Stability M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page Contents

JJ II

J I

Page5of 25 Go Back Full Screen

Close

whereK ={I}andK ={I,−I}, respectively,I denoting the identity.

The purpose of this paper is to investigate the Hyers-Ulam-Rassias stability of

(1.4) 1

|K|

X

k∈K

f(x+k·y) = f(x) +f(y), x, y ∈G,

whereK is a finite cyclic subgroup ofAut(G)(the group of automorphisms ofG),

|K|denotes the order ofK, andGis an abelian group.

The set up allows us to give a unified treatment of the stability of the additive functional equation

(1.5) f(x+y) =f(x) +f(y), x, y ∈G, and the quadratic functional equation

(1.6) f(x+y) +f(x−y) = 2f(x) + 2f(y), x, y ∈G.

In particular, we want to see how the compact subgroupK enters into the solutions formulas.

The stability problem for the quadratic equation (1.6) was first solved by Skof in [23]. In [4] Cholewa extended Skof’s result in the following way, whereGis an abelian group andEis a Banach space.

Theorem 1.2. Letη >0be a real number andf :G−→E satisfies the inequality (1.7) |f(x+y) +f(x−y)−2f(x)−2f(y)| ≤η for all x, y ∈G.

Then for everyx ∈ Gthe limitq(x) = limn−→+∞f(2nx)

22n exists and q : G −→ E is the unique quadratic function satisfying

(1.8) |f(x)−q(x)| ≤ η

2, x∈G.

(6)

Hyers-Ulam-Rassias Stability M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page Contents

JJ II

J I

Page6of 25 Go Back Full Screen

Close

In [5] Czerwik obtained a generalization of the Skof-Chelewa result.

Theorem 1.3. Letp6= 2,θ > 0, δ > 0be real numbers. Suppose that the function f :E1 −→E2 satisfies the inequality

kf(x+y) +f(x−y)−2f(x)−2f(y)k ≤δ+θ(kxkp+kykp) for all x, y ∈E1. Then there exists exactly one quadratic functionq :E1 −→E2such that

kf(x)−q(x)k ≤c+kθkxkp for allx∈E1ifp≥0and for allx∈E1\ {0}ifp≤0, where

• c= kf(0)k3 ,k = 4−22p andq(x) = limn−→+∞f(2nx)

4n , forp < 2.

• c= 0,k = 2p2−4 andq(x) = limn−→+∞f(2nx)

4n , forp >2.

Recently, B. Bouikhalene, E. Elqorachi and Th. M. Rassias [1], [2] and [3] proved the Hyers-Ulam-Rassias stability of the functional equation (1.4) with K = {I, σ}

(σis an automorphism ofGsuch thatσ◦σ=I).

The results obtained in the present paper encompass results from [2] and [18]

given in Corollaries2.5and2.6below.

General Set-Up. LetKbe a compact transformation group of an abelian topological group(G,+), acting by automorphisms ofG. We letdkdenote the normalized Haar measure onK, and the action ofk ∈ K onx ∈ Gis denoted byk·x. We assume that the functionk 7−→k·yis continuous for ally∈G.

A continuous mappingq : G −→ C is said to be K-quadratical if it satisfies the functional equation

(1.9)

Z

K

q(x+k·y)dk =q(x) +q(y), x, y ∈G.

(7)

Hyers-Ulam-Rassias Stability M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page Contents

JJ II

J I

Page7of 25 Go Back Full Screen

Close

WhenK is finite, the normalized Haar measuredk onK is given by Z

K

h(k)dk = 1

|K|

X

k∈K

h(k)

for anyh : K −→ C, where|K|denotes the order of K. So equation (1.9) can in this case be written

(1.10) 1

|K|

X

k∈K

q(x+k·y) =q(x) +q(y), x, y ∈G.

(8)

Hyers-Ulam-Rassias Stability M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page Contents

JJ II

J I

Page8of 25 Go Back Full Screen

Close

2. Main Results

Let ϕ : G ×G −→ R+ be a continuous mapping which satisfies the following condition

(2.1) ψ(x, y)

=

X

n=1

2−n Z

K

Z

K

· · · Z

K

ϕ

x+ X

ij<ij+1, kij∈{k1,k2,...,kn−1}

(ki1ki2· · ·kip)·x,

y+ X

ij<ij+1, kij∈{k1,k2,...,kn−1}

(ki1ki2· · ·kip)·y

dk1dk2. . . dkn−1 <∞, for allpsuch that1 ≤p ≤ n−1,for allx, y ∈ G(uniform convergence). In what follows, we setϕ(x) = ϕ(x, x)andψ(x) = ψ(x, x)for allx∈G.

The main results of the present paper are based on the following proposition.

Proposition 2.1. Let G be an abelian group and let ϕ : G × G −→ R+ be a continuous control mapping which satisfies (2.1). Suppose that f : G −→ C is continuous and satisfies the inequality

(2.2)

Z

K

f(x+k·y)dk−f(x)−f(y)

≤ϕ(x, y) for allx, y ∈G.Then, the formulaq(x) = lim

n−→∞

fn(x) 2n , with

(2.3) f0(x) =f(x) and fn(x) = Z

K

fn−1(x+k·x)dk for all n ≥1,

(9)

Hyers-Ulam-Rassias Stability M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page Contents

JJ II

J I

Page9of 25 Go Back Full Screen

Close

defines a continuous function which satisfies

(2.4) |f(x)−q(x)| ≤ψ(x) and Z

K

q(x+k·x)dk = 2q(x) for all x∈G.

Furthermore, the continuous functionqwith the condition (2.4) is unique.

Proof. Replacingybyxin (2.2) gives (2.5) |f1(x)−2f(x)|=

Z

K

f(x+k·x)dk−2f(x)

≤ϕ(x) and consequently

|f2(x)−2f1(x)|= Z

K

f1(x+k1 ·x)dk1−2 Z

K

f(x+k1·x)dk1 (2.6)

≤ Z

K

|f1(x+k1·x)−2f(x+k1 ·x)|dk1

≤ Z

K

ϕ(x+k1·x)dk1. Next, we prove that

(2.7)

fn(x)

2n − fn−1(x) 2n−1

≤2−n Z

K

Z

K

· · · Z

K

ϕ

x+ X

ij<ij+1, kij∈{k1,k2,...,kn−1}

(ki1ki2· · ·kip)·x

dk1dk2. . . dkn−1

for alln ∈ N\ {0}. Clearly (2.7) is true for the casen = 1, since settingn = 1 in (2.7) gives (2.5). Now, assume that the induction assumption is true forn ∈N\ {0},

(10)

Hyers-Ulam-Rassias Stability M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page Contents

JJ II

J I

Page10of 25 Go Back Full Screen

Close

and consider

|fn+1(x)−2fn(x)|= Z

K

fn(x+kn·x)dkn−2 Z

K

fn−1(x+kn·x)dkn (2.8)

≤ Z

K

|fn(x+kn·x)−2fn−1(x+kn·x)|dkn. Then

fn+1(x)

2n+1 − fn(x) 2n

(2.9)

≤ 1 2

Z

K

fn(x+kn·x)

2n −fn−1(x+kn·x) 2n−1

dkn

≤2−(n+1) Z

K

Z

K

· · · Z

K

ϕ

x+ X

ij<ij+1, kij∈{k1,k2,...,kn}

(ki1ki2· · ·kip)·x

dk1dk2. . . dkn,

so that the inductive assumption (2.7) is indeed true for all positive integers. Hence, forr > swe get

fr(x)

2r − fs(x) 2s

(2.10)

r−1

X

n=s

fn+1(x)

2n+1 − fn(x) 2n

r−1

X

n=s

2−(n+1) Z

K

· · · Z

K

ϕ

x+ X

ij<ij+1, kij∈{k1,k2,...,kn}

(ki1ki2· · ·kir)·x

dk1. . . dkn,

(11)

Hyers-Ulam-Rassias Stability M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page Contents

JJ II

J I

Page11of 25 Go Back Full Screen

Close

which by assumption (2.1) converges to zero (uniformly) asrandstend to infinity.

Thus the sequence of complex functions fn2(x)n is a Cauchy sequence for each fixed x ∈ G and then this sequence converges for each fixedx ∈ Gto some limit inC, which is continuous onG. We call this limitq(x). Next, we prove that

(2.11)

fn(x)

2n −f(x)

n

X

l=1

2−l Z

K

· · · Z

K

ϕ

x+ X

ij<ij+1, kij∈{k1,k2,...,kl−1}

(ki1ki2· · ·kip)·x

dk1. . . dkl−1

for alln∈N\ {0}. We get the case ofn = 1by (2.5) (2.12) |f1(x)−2f(x)|=

Z

K

f(x+k·x)dk−2f(x)

≤ϕ(x),

so the induction assumption (2.11) is true forn = 1. Assume that (2.11) is true for n∈N\ {0}. By using (2.9), we obtain

|fn+1(x)−2n+1f(x)|

(2.13)

≤ |fn+1(x)−2fn(x)|+ 2|fn(x)−2nf(x)|

≤ Z

K

· · · Z

K

ϕ

x+ X

ij<ij+1, kij∈{k1,k2,...,kn}

(ki1ki2· · ·kip)·x

dk1dk2. . . dkn

+2n+1

n

X

l=1

2−l Z

K

· · · Z

K

ϕ

x+ X

ij<ij+1, kij∈{k1,k2,...,kl−1}

(ki1ki2· · ·kip)·x

dk1dk2. . . dkl−1

(12)

Hyers-Ulam-Rassias Stability M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page Contents

JJ II

J I

Page12of 25 Go Back Full Screen

Close

so (2.11) is true for all n ∈ N\ {0}. By letting n −→ +∞, we obtain the first assertion of (2.4). We now shall show thatq satisfies the second assertion of (2.4).

By using (2.2) we get

Z

K

f1(x+k1·x)dk1−f1(x)−f1(x) (2.14)

= Z

K

Z

K

f(x+k1·x+k2·(x+k1·x))dk1dk2

− Z

K

f(x+k1·x)dk1− Z

K

f(x+k1·x)dk1

≤ Z

K

Z

K

f(x+k1·x+k2·(x+k1·x))dk2

−f(x+k1·x)−f(x+k1·x)

dk1

≤ Z

K

ϕ(x+k1·x)dk1. Make the induction assumption (2.15)

Z

K

fn(x+k·x)dk−2fn(x)

≤ Z

K

· · · Z

K

ϕ

x+ X

ij<ij+1, kij∈{k1,k2,...,kn}

(ki1ki2· · ·kip)·x

dk1. . . dkn,

(13)

Hyers-Ulam-Rassias Stability M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page Contents

JJ II

J I

Page13of 25 Go Back Full Screen

Close

which is true forn = 1by (2.14). Forn+ 1we have

Z

K

fn+1(x+kn+1·x)dkn+1−2fn+1(x)

= Z

K

Z

K

fn(x+kn+1·x+k·(x+kn+1·x)dkn+1dk−2 Z

K

fn(x+kn+1·x))dkn+1

≤ Z

K

Z

K

fn(x+kn+1·x+k·(x+kn+1·x))dk−2fn(x+kn+1·x)

dkn+1

≤ Z

K

(Z

K

· · · Z

K

ϕ x

+kn+1·x+ X

ij<ij+1, kij∈{k1,k2,...,kn}

(ki1ki2· · ·kip)·(x+kn+1·x)

!

dk1. . . dkn )

dkn+1

= Z

K

· · · Z

K

ϕ

x+ X

ij<ij+1, kij∈{k1,k2,...,kn+1}

(ki1ki2· · ·kip)·x

dk1. . . dkn+1.

Thus (2.15) is true for alln∈N\{0}. Now, in view of the condition (2.1),qsatisfies the second assertion of (2.4).

To demonstrate the uniqueness of the mappingq subject to (2.4), let us assume on the contrary that there is another mappingq0 :G−→Csuch that

|f(x)−q0(x)| ≤ψ(x) and Z

K

q0(x+k·x)dk = 2q0(x) for all x∈G.

(14)

Hyers-Ulam-Rassias Stability M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page Contents

JJ II

J I

Page14of 25 Go Back Full Screen

Close

First, we prove by induction the following relation (2.16)

fn(x)

2n −q0(x)

≤ 1 2n

Z

K

· · · Z

K

ψ

x+ X

ij<ij+1, kij∈{k1,k2,...,kn}

(ki1ki2· · ·kip)·x

dk1. . . dkn.

Forn= 1, we have

|f1(x)−2q0(x)|= Z

K

f(x+k·x)dk− Z

K

q0(x+k·x)dk (2.17)

≤ Z

K

ψ(x+k·x)dk so (2.16) is true forn = 1. By using the following

|fn+1(x)−2n+1q0(x)|= Z

K

fn(x+k·x)dk−2n Z

K

q0(x+k·x)dk (2.18)

≤ Z

K

|fn(x+k·x)−2nq0(x+k·x)|dk we get the rest of the proof by proving that

1 2n

Z

K

· · · Z

K

ψ

x+ X

ij<ij+1, kij∈{k1,k2,...,kn}

(ki1ki2· · ·kip)·x

dk1. . . dkn

converges to zero. In fact by setting

X =x+ X

ij<ij+1, kij∈{k1,k2,...,kn}

(ki1ki2· · ·kip)·x

(15)

Hyers-Ulam-Rassias Stability M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page Contents

JJ II

J I

Page15of 25 Go Back Full Screen

Close

it follows that 1

2n Z

K

· · · Z

K

ψ

x+ X

ij<ij+1, kij∈{k1,k2,...,kn}

(ki1ki2· · ·kip)·x

dk1. . . dkn

= 1 2n

Z

K

· · · Z

K

+∞

X

r=1

2−r Z

K

· · · Z

K

ϕ

X+ X

ij<ij+1, kij∈{kn+1,kn+2,...,kn+r−1}

(ki1ki2· · ·kiq)·X

dkn+1. . . dkn+r−1

)

dk1. . . .dkn

=

+∞

X

r=1

2−(n+r) Z

K

· · · Z

K

ϕ

x+ X

ij<ij+1, kij∈{k1,k2,...,kn+r−1}

(ki1ki2· · ·kil)·x

dk1. . . dkn+r−1

=

+∞

X

m=n+1

2−m Z

K

· · · Z

K

ϕ

x+ X

ij<ij+1, kij∈{k1,k2,...,km−1}

(ki1ki2· · ·kil)·x

dk1. . . dkm−1.

In view of (2.1), this converges to zero, soq=q0. This ends the proof.

Our main result reads as follows.

Theorem 2.2. LetK be a finite cyclic subgroup of the group of automorphisms of the abelian group(G,+). Letϕ :G×G−→R+be a mapping such that

(2.19) ψ(x, y)

=

X

n=1

|K| (2|K|)n

X

k1,...,kn−1∈K

ϕ

x+ X

ij<ij+1;kij∈{k1,...,kn−1}

(ki1ki2· · ·kip)·x,

(16)

Hyers-Ulam-Rassias Stability M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page Contents

JJ II

J I

Page16of 25 Go Back Full Screen

Close

y+ X

ij<ij+1;kij∈{k1,...,kn−1}

(ki1ki2· · ·kip)·y

<∞, for allx, y ∈G. Suppose thatf :G−→Csatisfies the inequality

(2.20)

1

|K|

X

k∈K

f(x+k·y)−f(x)−f(y)

≤ϕ(x, y) for all x, y ∈G.Then, the limitq(x) = limn−→∞ fn(x)

2n , with (2.21) f0(x) = f(x) and fn(x) = 1

|K|

X

k∈K

fn−1(x+k·x) for all n ≥1, exists for allx ∈ G,andq : G −→ Cis the uniqueK-quadratical mapping which satisfies

(2.22) |f(x)−q(x)| ≤ψ(x) for allx∈G.

Proof. In this case, the induction relations corresponding to (2.7) and (2.11) can be written as follows

(2.23)

fn(x)

2n − fn−1(x) 2n−1

≤ |K| (2|K|)n

X

k1,...,kn−1∈K

ϕ

x+ X

ij<ij+1;kij∈{k1,...,kn−1}

(ki1ki2· · ·kip)·x

(17)

Hyers-Ulam-Rassias Stability M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page Contents

JJ II

J I

Page17of 25 Go Back Full Screen

Close

for anyn ∈N\ {0}.

(2.24)

fn(x)

2n −f(x)

n

X

l=1

|K|

(2|K|)l

X

k1,...,kl−1∈K

ϕ

x+ X

ij<ij+1;kij∈{k1,...,kl−1}

(ki1ki2· · ·kip)·x

,

for all integersn ∈ N\ {0}. So, we can easily deduce thatq(x) = limn−→+∞fn(x) 2n

exists for allx∈Gandqsatisfies the inequality (2.22). Now, we will show thatqis aK-quadratical function. For allx,y∈G, we have

1

|K|

X

k∈K

f1(x+k·y)−f1(x)−f1(y) (2.25)

=

1

|K|

X

k∈K

1

|K| X

k1∈K

f((x+k·y) +k1·(x+k·y))

− 1

|K|

X

k1∈K

f(x+k1·x)− 1

|K|

X

k1∈K

f(y+k1·y)

=

1

|K|

X

k∈K

1

|K| X

k1∈K

f((x+k1·x) +k·(y+k1·y))

− 1

|K|

X

k1∈K

f(x+k1·x)− 1

|K|

X

k1∈K

f(y+k1·y)

(18)

Hyers-Ulam-Rassias Stability M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page Contents

JJ II

J I

Page18of 25 Go Back Full Screen

Close

≤ 1

|K|

X

k1∈K

1

|K|

X

k∈K

f((x+k1·x) +k·(y+k1·y))

−f(x+k1·x)−f(y+k1·y)

≤ 1

|K|

X

k1∈K

ϕ(x+k1·x, y+k1·y).

Make the induction assumption (2.26)

1

|K|

X

k∈K

fn(x+k·y)

2n −fn(x)

2n − fn(y) 2n

≤ 1

(2|K|)n X

k1,...,kn∈K

ϕ

x+ X

ij<ij+1;kij∈{k1,...,kn}

(ki1ki2· · ·kip)·x, y

+ X

ij<ij+1;kij∈{k1,...,kn}

(ki1ki2· · ·kip)·y

which is true forn = 1by (2.26). By using

1

|K|

X

k∈K

fn(x+k·y)−fn(x)−fn(y)

=

1

|K|

X

k0∈K

1

|K| X

k0∈K

fn−1(x+k·y+k0 ·(x+k·y))

(19)

Hyers-Ulam-Rassias Stability M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page Contents

JJ II

J I

Page19of 25 Go Back Full Screen

Close

− 1

|K| X

k0∈K

fn−1(x+k0·x)− 1

|K| X

k∈K

fn−1(y+k0·y)

=

1

|K|

X

k0∈K

1

|K| X

k∈K

fn−1(x+k0·x+k·(y+k0·y))

− 1

|K| X

k0∈K

fn−1(x+k0·x)− 1

|K| X

k0∈K

fn−1(y+k0·y)

≤ 1

|K|

X

k0∈K

1

|K|

X

k∈K

fn−1(x+k0·x+k·(y+k0·y))

−fn−1(x+k0·x)−fn−1(y+k0·y)

we get the result (2.26) for alln∈ N\ {0}. Now, in view of the condition (2.19),q is aK-quadratical function. This completes the proof.

Corollary 2.3. LetK be a finite cyclic subgroup of the group of automorphisms of G, letδ >0. Suppose thatf :G−→Csatisfies the inequality

(2.27)

X

k∈K

f(x+k·y)− |K|f(x)− |K|f(y)

≤δ for all x, y ∈G.Then, the limitq(x) = limn−→∞ fn(x)

2n , with (2.28) f0(x) = f(x) and fn(x) = 1

|K|

X

k∈K

fn−1(x+k·x) for n≥1

(20)

Hyers-Ulam-Rassias Stability M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page Contents

JJ II

J I

Page20of 25 Go Back Full Screen

Close

exists for allx ∈ G,andq : G −→ Cis the uniqueK-quadratical mapping which satisfies

(2.29) |f(x)−q(x)| ≤ δ

|K| for allx∈G.

Corollary 2.4. LetK be a finite cyclic subgroup of the group of automorphisms of the normed space(G,k·k), letθ ≥0andp <1. Suppose thatf :G−→Csatisfies the inequality

(2.30)

1

|K| X

k∈K

f(x+k·y)−f(x)−f(y)

≤θ(kxkp+kykp) for all x, y ∈G.Then, the limitq(x) = limn−→∞ fn(x)

2n , with (2.31) f0(x) = f(x) and fn(x) = 1

|K|

X

k∈K

fn−1(x+k·x) for n≥1 exists for allx ∈ G,andq : G −→ Cis the uniqueK-quadratical mapping which satisfies

(2.32) |f(x)−q(x)|

X

n=1

|K|

(2|K|)n

X

k1,...,kn−1∈K

x+ X

ij<ij+1;kij∈{k1,...,kn−1}

(ki1ki2· · ·kip)·x

p

for allx∈G.

Corollary 2.5 ([18]). LetK = {I}, θ ≥ 0andp < 1. Suppose thatf : G −→ C satisfies the inequality

(21)

Hyers-Ulam-Rassias Stability M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page Contents

JJ II

J I

Page21of 25 Go Back Full Screen

Close

(2.33) |f(x+y)−f(x)−f(y)| ≤θ(kxkp+kykp) for allx, y ∈G.Then, the limitq(x) = limn−→∞ fn2(x)n , with (2.34) fn(x) = f(2nx) for n ∈N\ {0}

exists for allx∈G,andq:G−→Cis the unique additive mapping which satisfies (2.35) |f(x)−q(x)| ≤ 2θkxkp

2−2p for allx∈G.

Corollary 2.6 ([2]). LetK ={I, σ}, whereσ :G−→Gis an involution ofG, and letϕ :G×G−→[0,∞)be a mapping satisfying the condition

(2.36) ψ(x, y) =

X

n=0

2−2n−1[ϕ(2nx,2ny)

+ (2n−1)ϕ(2n−1x+ 2n−1σ(x),2n−1y+ 2n−1σ(y))]<∞ for allx, y ∈G. Letf :G−→Csatisfy

(2.37) |f(x+y) +f(x+σ(y))−2f(x)−2f(y)| ≤ϕ(x, y)

for allx, y ∈G. Then, there exists a unique solutionq:G−→Cof the equation (2.38) q(x+y) +q(x+σ(y)) = 2q(x) + 2q(y) x, y ∈G

given by

(2.39) q(x) = lim

n−→+∞2−2n{f(2nx) + (2n−1)f(2n−1x+ 2n−1σ(x))}

which satisfies the inequality

(2.40) |f(x)−q(x)| ≤ψ(x, x)

for allx∈G.

Remark 1. We can replace in Theorem 2.2 the condition that K is a finite cyclic subgroup by the condition thatK is a compact commutative subgroup ofAut(G).

(22)

Hyers-Ulam-Rassias Stability M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page Contents

JJ II

J I

Page22of 25 Go Back Full Screen

Close

References

[1] B. BOUIKHALENE, E. ELQORACHIANDTh.M. RASSIAS, On the Hyers- Ulam stability of approximately Pexider mappings, Math. Inequa. and Appl., (accepted for publication).

[2] B. BOUIKHALENE, E. ELQORACHIAND Th.M. RASSIAS, On the gener- alized Hyers-Ulam stability of the quadratic functional equation with a general involution, Nonlinear Funct. Anal. Appl. (accepted for publication).

[3] B. BOUIKHALENE AND E. ELQORACHI, Ulam-Gavrutˇa-Rassias stability of the Pexider functional equation, International J. of Appl. Math. and Stat., IJAMAS, 7 (2007), 27–39.

[4] P.W. CHOLEWA, Remarks on the stability of functional equations, Aequa- tiones Math., 27 (1984), 76–86.

[5] S. CZERWIK, On the stability of the quadratic mapping in normed spaces. Abh.

Math. Sem. Univ. Hamburg, 62 (1992), 59–64.

[6] G.L. FORTI, Hyers-Ulam stability of functional equations in several variables, Aequationes Math., 50 (1995), 143–190.

[7] Z. GAJDA, On stability of additive mappings, Internat. J. Math. Sci., 14 (1991), 431–434.

[8] P. G ˇAVRUTA, A generalization of the Hyers-Ulam-Rassias stability of approx- imately additive mappings, J. Math. Anal. Appl., 184 (1994), 431–436.

[9] D.H. HYERS, On the stability of the linear functional equation, Proc. Nat.

Acad. Sci. U. S. A., 27 (1941), 222–224.

(23)

Hyers-Ulam-Rassias Stability M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page Contents

JJ II

J I

Page23of 25 Go Back Full Screen

Close

[10] D.H. HYERS AND Th.M. RASSIAS, Approximate homomorphisms, Aequa- tiones Math., 44 (1992), 125–153.

[11] D.H. HYERS, G.I. ISACANDTh.M. RASSIAS, Stability of Functional Equa- tions in Several Variables, Birkhäuser, Basel, 1998.

[12] K.-W. JUNAND Y.-H. LEE, A generalization of the Hyers-Ulam-Rassias sta- bility of Jensen’s equation, J. Math. Anal. Appl., 238 (1999), 305–315.

[13] S.-M. JUNG, Hyers-Ulam-Rassias Stability of Functional Equations in Math- ematical Analysis, Hadronic Press, Inc., Palm Harbor, Florida, 2003.

[14] S.-M. JUNG, Stability of the quadratic equation of Pexider type, Abh. Math.

Sem. Univ. Hamburg, 70 (2000), 175–190.

[15] S.-M. JUNGANDP.K. SAHOO, Hyers-Ulam stability of the quadratic equation of Pexider type, J. Korean Math. Soc., 38(3) (2001), 645–656.

[16] S.-M. JUNG ANDP.K. SAHOO, Stability of a functional equation of Drygas, Aequationes Math., 64(3) (2002), 263–273.

[17] C.-G. PARK, On the stability of the linear mapping in Banach modules, J.

Math. Anal. Appl., 275 (2002), 711–720.

[18] Th.M. RASSIAS, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300.

[19] Th.M. RASSIAS, The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl., 246 (2000), 352–378.

[20] Th.M. RASSIAS, On the stability of functional equations and a problem of Ulam, Acta Applicandae Mathematicae, 62 (2000), 23–130.

(24)

Hyers-Ulam-Rassias Stability M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page Contents

JJ II

J I

Page24of 25 Go Back Full Screen

Close

[21] Th.M. RASSIASANDP. SEMRL, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc., 114 (1992), 989–993.

[22] Th.M. RASSIASAND J. TABOR, Stability of Mappings of Hyers-Ulam Type, Hardronic Press, Inc., Palm Harbor, Florida 1994.

[23] F. SKOF, Local properties and approximations of operators, Rend. Sem. Math.

Fis. Milano, 53 (1983), 113–129.

[24] H. STETKÆR, Functional equations on abelian groups with involution, Aequa- tiones Math., 54 (1997), 144–172.

[25] H. STETKÆR, D’Alembert’s equation and spherical functions, Aequationes Math., 48 (1994), 164–179.

[26] H. STETKÆR, On operator-valued spherical functions, J. Funct. Anal., 224 (2005), 338–351.

[27] H. STETKÆR, Wilson’s functional equation on groups, Aequationes Math., 49 (1995), 252–275.

[28] H. STETKÆR, Functional equation on abelian groups with involution, Aequa- tiones Math., 54 (1997), 144–172.

[29] H. STETKÆR, Functional equation on abelian groups with involution, II, Ae- quationes Math., 55 (1998), 227–240.

[30] H. STETKÆR, Functional equations and matrix-valued spherical functions, Aequationes Math., 69 (2005), 271–292.

[31] H. STETKÆR, Trigonometric functional equation of rectangular type, Aequa- tiones Math., 56 (1998), 251–270.

(25)

Hyers-Ulam-Rassias Stability M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page Contents

JJ II

J I

Page25of 25 Go Back Full Screen

Close

[32] S.M. ULAM, A Collection of Mathematical Problems, Interscience Publ. New York, 1961. Problems in Modern Mathematics, Wiley, New York 1964.

参照

関連したドキュメント

In this paper we solve the Ulam stability problem by establishing an approximation of approximately quadratic mappings by quadratic mappings.. Today there are applications in

CZERWIK, The stability of the quadratic functional equation, In Sta- bility of Mappings of Hyers-Ulam Type (edited by Th. GRABIEC, The generalized Hyers-Ulam stability of a class

In this paper, the method of Lyapunov functions is used to derive classes of stable quadratic discrete autonomous systems in a critical case in the presence of a simple eigenvalue λ

Key words: Hyers-Ulam stability, Quadratic functional equation, Amenable semigroup, Morphism of semigroup.... Hyers-Ulam Stability Bouikhalene Belaid,

Eskandani, “Stability of a mixed additive and cubic functional equation in quasi- Banach spaces,” Journal of Mathematical Analysis and Applications, vol.. Eshaghi Gordji, “Stability

Park, “On the stability of a generalized quadratic and quartic type functional equation in quasi-Banach spaces,” Journal of Inequalities and Applications, vol. 2009, 26

This paper is devoted to the investigation of the global asymptotic stability properties of switched systems subject to internal constant point delays, while the matrices defining

For a higher-order nonlinear impulsive ordinary differential equation, we present the con- cepts of Hyers–Ulam stability, generalized Hyers–Ulam stability,