• 検索結果がありません。

-boundedness of the maximal operator

N/A
N/A
Protected

Academic year: 2022

シェア "-boundedness of the maximal operator"

Copied!
20
0
0

読み込み中.... (全文を見る)

全文

(1)

Necessary and sufficient conditions for the boundedness of the anisotropic Riesz potential

in anisotropic modified Morrey spaces

Malik S. Dzhabrailov and Sevinc Z. Khaligova

Abstract

We prove that the anisotropic fractional maximal operator Mα,σ

and the anisotropic Riesz potential operator Iα,σ, 0 < α <|σ| are bounded from the anisotropic modified Morrey space Le1,b,σ(Rn) to the weak anisotropic modified Morrey space WLeq,b,σ(Rn) if and only if, α/|σ| ≤1−1/q≤α/(|σ|(1−b)) and from Lep,b,σ(Rn) to Leq,b,σ(Rn) if and only if, α/|σ| ≤1/p−1/q≤α/((1−b)|σ|) . In the limiting case

|σ|(1−b)

α ≤p≤ |σ|α we prove that the operator Mα,σ is bounded from Lep,b,σ(Rn) to L(Rn) and the modified anisotropic Riesz potential operator Ieα,σ is bounded from Lep,b,σ(Rn) to BM Oσ(Rn) .

1 Introduction

For x∈Rn and t >0 , let B(x, t) denote the open ball centered at x of radius t and {B(x, t) =Rn\B(x, t) . Let 0≤b≤1 , σ= (σ1,· · ·, σn) with σi >0 for i= 1,· · · , n, |σ|=σ1+· · ·+σn and tσx≡(tσ1x1, . . . , tσnxn) for t >0 . For x∈Rn and t >0, let Eσ(x, t) =Qn

i=1(xi−tσi, xi+tσi) denote the open parallelepiped centered at x of side length 2tσi for i = 1,· · · , n.

Key Words: anisotropic Riesz potential, anisotropic fractional maximal function, anisotropic modified Morrey space, anisotropic BMO space

2010 Mathematics Subject Classification: Primary 42B20, 42B25, 42B35 Received: September 2011.

Revised: December 2011.

Accepted: June 2012.

111

(2)

By [3, 10], the function F(x, ρ) =Pn

i=1x2iρ−2σi , considered for any fixed x∈Rn, is a decreasing one with respect to ρ >0 and the equation F(x, ρ) = 1 is uniquely solvable. This unique solution will be denoted by ρ(x) . Define ρ(x) =ρ and ρ(0) = 0 . It is a simple matter to check that ρ(x−y) defines a distance between any two points x, y∈Rn . Thus Rn , endowed with the metric ρ, defines a homogeneous metric space ([3, 5, 10]). Note that ρ(x) is equivalent to |x|σ= max

1≤i≤n|xi|σi1 .

One of the most important variants of the anisotropic maximal function is the so-called anisotropic fractional maximal function defined by the formula

Mα,σf(x) = sup

t>0

|Eσ(x, t)|−1+α/|σ|

Z

Eσ(x,t)

|f(y)|dy, 0≤α <|σ|, where |Eσ(x, t)| = 2nt|σ| is the Lebesgue measure of the parallelepiped Eσ(x, t) .

It coincides with the anisotropic maximal function Mσf ≡M0,σf and is intimately related to the anisotropic Riesz potential operator

Iα,σf(x) = Z

Rn

f(y)dy

|x−y||σ|−ασ

, 0< α <|σ|.

If σ =1, then Mα ≡Mα,1 and Iα ≡Iα,1 is the fractional maximal operator and Riesz potential, respectively. The operators Mα, Mα,σ , Iα

and Iα,σ play important role in real and harmonic analysis (see, for example [4] and [35]).

Definition 1.1. Let 0 ≤ b ≤1, 1 ≤p < ∞ and [t]1 = min{1, t}. We denote by Lp,b,σ(Rn) anisotropic Morrey space, and by Lep,b,σ(Rn) the mod- ified anisotropic Morrey space, the set of locally integrable functions f(x), x∈Rn, with the finite norms

kfkL

p,b,σ = sup

x∈Rn, t>0

t−b|σ|

Z

Eσ(x,t)

|f(y)|pdy

!1/p

,

kfk

Lep,b,σ = sup

x∈Rn, t>0

[t]−b|σ|1 Z

Eσ(x,t)

|f(y)|pdy

!1/p

respectively.

Remark 1.1. Note that Lp,0,σ =Lp(Rn) and Lp,1,σ =L(Rn). If b <0 or b >1, then Lp,b,σ= Θ, where Θ is the set of all functions equivalent to 0 on Rn . In the case σ≡1= (1, . . . ,1) and b= λn we get the classical Morrey space Lp,λ(Rn) =Lp,λ

n,1(Rn), 0≤λ≤n.

(3)

In the theory of partial differential equations, together with weighted Lp,w(Rn) spaces, Morrey spaces Lp,λ(Rn) play an important role. Morrey spaces were introduced by C. B. Morrey in 1938 in connection with certain problems in elliptic partial differential equations and calculus of variations (see [25]). Later, Morrey spaces found important applications to Navier-Stokes ([22], [36]) and Schr¨odinger ([26], [28], [29], [31], [32]) equations, elliptic prob- lems with discontinuous coefficients ([8], [11]), and potential theory ([1], [2]).

An exposition of the Morrey spaces can be found in the book [20].

The modified Morrey space Lep,b,σ(Rn) firstly was defined and investigated by [19] (see also [4]).

Note that

Lep,0,σ(Rn) =Lp,0,σ(Rn) =Lp(Rn),

Lep,b,σ(Rn)⊂Lp,b,σ(Rn)∩Lp(Rn) and max{kfkLp,b,σ,kfkLp} ≤ kfk

Lep,b,σ (1.1)

and if b <0 or b >1 , then Lp,b,σ(Rn) =Lep,b,σ(Rn) = Θ .

Definition 1.2. [6] Let 1≤p <∞,0≤b≤1. We denote by W Lp,b,σ(Rn) the weak anisotropic Morrey space and by WLep,b,σ(Rn) the weak modified anisotropic Morrey space as the set of locally integrable functions f(x),x∈ Rn with finite norms

kfkW L

p,b,σ = sup

r>0

r sup

x∈Rn, t>0

t−b|σ| |{y∈Eσ(x, t) : |f(y)|> r}|1/p ,

kfkW

Lep,b,σ = sup

r>0

r sup

x∈Rn, t>0

[t]−b|σ|1 |{y∈Eσ(x, t) : |f(y)|> r}|1/p

respectively.

Note that

W Lp(Rn) =W Lp,0,σ(Rn) =WLep,0,σ(Rn), Lp,b,σ(Rn)⊂W Lp,b,σ(Rn) and kfkW L

p,b,σ ≤ kfkL

p,b,σ, Lep,b,σ(Rn)⊂WLep,b,σ(Rn) and kfkW

Lep,b,σ ≤ kfk

Lep,b,σ.

The anisotropic result by Hardy-Littlewood-Sobolev states that if 1 <

p < q < ∞, then Iα,σ is bounded from Lp(Rn) to Lq(Rn) if and only if α =|σ|

1 p1q

and for p= 1 < q <∞, Iα,σ is bounded from L1(Rn) to W Lq(Rn) if and only if α=|σ|

1−1q

. Spanne (see [33]) and Adams

(4)

[1] studied boundedness of the Riesz potential Iα for 0< α < n in Morrey spaces Lp,λ. Later on Chiarenza and Frasca [9] was reproved boundedness of the Riesz potential Iα in these spaces. By more general results of Guliyev [13] (see also [14, 17]) one can obtain the following generalization of the results in [1, 9, 33] to the anisotropic case.

Theorem A.Let 0< α <|σ| and 0≤b <1, 1≤p < (1−b)|σ|α . 1) If 1 < p < (1−b)|σ|α , then condition 1p1q = (1−b)|σ|α is necessary and sufficient for the boundedness of the operator Iα,σ from Lp,b,σ(Rn) to Lq,b,σ(Rn).

2) If p= 1, then condition 1−1q = (1−b)|σ|α is necessary and sufficient for the boundedness of the operator Iα,σ from L1,b,σ(Rn) to W Lq,b,σ(Rn).

If α= (1−b)|σ| 1p1q

, then b= 0 and the statement of Theorem A re- duces to the aforementioned anisotropic result by Hardy-Littlewood-Sobolev.

Recall that, for 0< α <|σ|,

Mα,σf(x)≤2n(|σ|α−1)Iα,σ(|f|)(x), (1.2) hence Theorem A also implies the boundedness of the fractional maximal operator Mα,σ . It is known that the anisotropic maximal operator Mσ is also bounded from Lp,b,σ to Lp,b,σ for all 1 < p < ∞ and 0 < b < 1 , which isotropic case proved by F. Chiarenza and M. Frasca [9].

In this paper we study the fractional maximal integral and the Riesz po- tential in the modified Morrey space. In the case p= 1 we prove that the operators Mα,σ and Iα,σ are bounded from Le1,b,σ(Rn) to WLeq,b,σ(Rn) if and only if, α/|σ| ≤1−1/q≤α/((1−b)|σ|) . In the case 1< p < (1−b)|σ|α we prove that the operators Mα,σ and Iα,σ are bounded from Lep,b,σ(Rn) to Leq,b,σ(Rn) if and only if, α/|σ| ≤1/p−1/q≤α/((1−b)|σ|) . In the limiting case |σ|(1−b)α ≤p≤ |σ|α we prove that the operator Mα,σ is bounded from Lep,b,σ(Rn) to L(Rn) and the modified anisotropic Riesz potential operator Ieα,σ is bounded from Lep,b,σ(Rn) to BM Oσ(Rn) .

The structure of the paper is as follows. In section 2 the boundedness of the anisotropic maximal operator in anisotropic modified Morrey space Lep,b,σ

is proved. The main result of the paper is the Hardy-Littlewood-Sobolev inequality in anisotropic modified Morrey space for the anisotropic Riesz po- tential, established in section 3. In section 4 we prove that the operator Ieα,σ is bounded from Lep,b,σ(Rn) to BM Oσ(Rn) for |σ|(1−b)α ≤p≤|σ|α .

By A . B we mean that A ≤ CB with some positive constant C independent of appropriate quantities. If A . B and B . A, we write A≈B and say that A and B are equivalent.

(5)

2 L e

p,b,σ

-boundedness of the maximal operator

Define ftσ(x) =:f(tσx) and [t]1,+= max{1, t}. Then

kftσkL

p=t|σ|p kfkLp, kftσkL

p,b,σ =t|σ|p sup

x∈Rn, r>0

r−b|σ|

Z

Eσ(tσx,tr)

|f(y)|pdy

!1/p

=t(b−1)|σ|p kfkLp,b,σ, and

kftσk

Lep,b,σ = sup

x∈Rn, r>0

[r]−b|σ|1 Z

Eσ(x,r)

|ftσ(y)|pdy

!1/p

=t|σ|p sup

x∈Rn, r>0

[r]−b|σ|1 Z

Eσ(tσx,tr)

|f(y)|pdy

!1/p

=t|σ|p sup

r>0

[tr]1

[r]1

b|σ|/p

sup

x∈Rn, r>0

[tr]−b|σ|1 Z

Eσ(tσx,tr)

|f(y)|pdy

!1/p

=t|σ|p [t]

b|σ|

p

1,+ kfk

Lep,b,σ. (2.1)

In this section we study the Lep,b,σ -boundedness of the maximal operator Mσ.

Lemma 2.1. Let 1≤p <∞, 0≤b≤1. Then Lep,b,σ(Rn) =Lp,b,σ(Rn)∩Lp(Rn) and

kfk

Lep,b,σ = maxn kfkL

p,b,σ,kfkL

p

o .

Proof. Let f ∈Lep,b,σ(Rn) . Then from (1.1) we have that f ∈Lp,b,σ(Rn)∩ Lp(Rn) and maxn

kfkL

p,b,σ,kfkL

p

o≤ kfk

Lep,b,σ .

(6)

Let now f ∈Lp,b,σ(Rn)∩Lp(Rn) . Then

kfk

Lep,b,σ = sup

x∈Rn,t>0

[t]−b|σ|1 Z

Eσ(x,t)

|f(y)|pdy

!1/p

= max

 sup

x∈Rn,0<t≤1

t−b|σ|

Z

Eσ(x,t)

|f(y)|pdy

!1/p ,sup

x∈Rn,t>1

Z

Eσ(x,t)

|f(y)|pdy

!1/p

≤maxn kfkL

p,b,σ,kfkL

p

o .

Therefore, f ∈Lep,b,σ(Rn) and the embedding

Lp,b,σ(Rn)∩Lp(Rn)⊂ Lep,b,σ(Rn) is valid.

Thus

Lep,b,σ(Rn) =Lp,b,σ(Rn)∩Lp(Rn) and kfk

Lep,b,σ = maxn kfkL

p,b,σ,kfkL

p

o .

Analogously proved the following statement.

Lemma 2.2. Let 1≤p <∞, 0≤b≤1. Then

WLep,b,σ(Rn) =W Lp,b,σ(Rn)∩W Lp(Rn) and

kfkW

Lep,b,σ = maxn kfkW L

p,b,σ,kfkW L

p

o .

To prove our main result in this section we need the following statement.

Theorem 2.1. [23] 1. If f ∈ L1,b,σ(Rn), 0 ≤ b < 1, then Mσf ∈ W L1,b,σ(Rn) and

kMσfkW L1,b,σ≤Cb,σkfkL1,b,σ, where Cb,σ depends only on n, b and σ.

2. If f ∈Lp,b,σ(Rn), 1 < p <∞,0 ≤b <1, then Mσf ∈Lp,b,σ(Rn) and

kMσfkLp,b,σ ≤Cp,b,σkfkLp,b,σ, where Cp,b,σ depends only on n, p, b and σ.

(7)

Our main theorem in this section is the following statement:

Theorem 2.2. 1. If f ∈Le1,b,σ(Rn), 0≤b <1, then Mσf ∈WLe1,b,σ(Rn) and

kMσfkW

Le1,b,σ ≤C1,b,σkfk

Le1,b,σ, where C1,b,σ depends only on b and σ.

2. If f ∈Lep,b,σ(Rn), 1 < p <∞,0≤b <1, then Mσf ∈Lep,b,σ(Rn) and

kMσfk

Lep,b,σ ≤Cp,b,σkfk

Lep,b,σ, where Cp,b,σ depends only on p, b and σ. Proof. It is obvious that (see Lemmas 2.1 and 2.2)

kMσfk

Lep,b,σ = maxn

kMσfkL

p,b,σ,kMσfkL

p

o

for 1< p <∞ and kMσfkW

Le1,b,σ= maxn

kMσfkW L

1,b,σ,kMσfkW L

1

o

for p= 1 .

Let 1 < p < ∞. By the boundedness of Mσ on Lp(Rn) and from Theorem 2.1 we have

kMσfk

Lep,b,σ ≤max{Cp,σ, Cp,b,σ} kfk

Lep,b,σ.

Let p= 1 . By the boundedness of Mσ from L1(Rn) to W L1(Rn) and from Theorem 2.1 we have

kMσfkW

Le1,b,σ≤max{C1,σ, C1,b,σ} kfk

Le1,b,σ.

3 Hardy-Littlewood-Sobolev inequality in modified Mor- rey spaces

The following Hardy-Littlewood-Sobolev inequality in modified Morrey spaces is valid.

(8)

Theorem 3.3. Let 0< α <|σ|, 0≤b <1−|σ|α and 1≤p < (1−b)|σ|α . 1) If 1< p < (1−b)|σ|α , then condition |σ|α1p1q(1−b)|σ|α is necessary and sufficient for the boundedness of the operator Iα,σ from Lep,b,σ(Rn) to Leq,b,σ(Rn).

2) If p= 1<(1−b)|σ|α , then condition |σ|α ≤1−1q(1−b)|σ|α is necessary and sufficient for the boundedness of the operator Iα,σ from Le1,b,σ(Rn) to WLeq,b,σ(Rn).

Proof. 1) Sufficiency. Let 0< α < |σ|, 0 < b < 1− |σ|α , f ∈ Lep,b,σ(Rn) and 1< p < (1−b)|σ|α . Then

Iα,σf(x) = Z

Eσ(x,t)

+ Z

{Eσ(x,t)

!

f(y)|x−y|α−|σ|σ dy≡A(x, t) +C(x, t).

For A(x, t) we have

|A(x, t)| ≤ Z

Eσ(x,t)

|x−y|α−|σ|σ |f(y)|dy

X

j=1

2−jtα−|σ|

Z

Eσ(x,2−j+1t)\Eσ(x,2−jt)

|f(y)|dy.

Hence

|A(x, t)|.tαM f(x). (3.1) In the second integral by the H¨older’s inequality we have

|C(x, t)| ≤ Z

{Eσ(x,t)

|x−y|−βσ |f(y)|pdy

!1/p

× Z

{Eσ(x,t)

|x−y|(βp+α−|σ|)p0

σ dy

!1/p0

=J1·J2.

For J2 we obtain

J2. Z

t

r|σ|−1+(βp+α−|σ|)p0dr p10

≈tβp+α−|σ|p , (3.2) where β <|σ| −αp.

(9)

Let b|σ|< β <|σ| −αp. For J1 we get J1=X

j=0

Z

Eσ(x,2j+1t)\Eσ(x,2jt)

|x−y|−βσ |f(y)|pdy1/p

≤tβpkfk

Lep,b,σ

X

j=0

2−βj[2j+1t]b|σ|1 1/p

=tβpkfk

Lep,b,σ









2b|σ|tb|σ|

[log22t1]

P

j=0

2(b|σ|−β)j+

P

j=[log22t1]+1

2−βj1/p

, 0< t < 12,

P

j=0

2−βj1/p

, t≥ 12

≈tβpkfk

Lep,b,σ

(

tb|σ|+tβ1/p

, 0< t < 12,

1, t≥ 12

≈kfk

Lep,b,σ

(

tb|σ|−βp , 0< t < 12, tβp, t≥12

= [2t]

b|σ|

p

1 tβp kfk

Lep,b,σ. (3.3)

From (3.2) and (3.3) we have

|C(x, t)|.[t]

b|σ|

p

1 tα−|σ|p kfk

Lep,b,σ. (3.4)

Thus for all t >0 we get

|Iα,σf(x)|.tαMσf(x) + [t]

b|σ|

p

1 tα−|σ|p kfk

Lep,b,σ

≤minn

tαMσf(x) +tα−|σ|p kfk

Lep,b,σ, tαMσf(x) +tα−(1−b)|σ|p kfk

Lep,b,σ

o .

Minimizing with respect to t, at t=h

(Mσf(x))−1kfk

Lep,b,σ

ip/((1−b)|σ|)

and

t=h

(Mσf(x))−1kfk

Lep,b,σ

ip/|σ|

we get

|Iα,σf(x)|.min

Mσf(x) kfk

Lep,b,σ

!1−(1−b)|σ|

, Mσf(x) kfk

Lep,b,σ

!1−|σ|

 kfk

Lep,b,σ.

(10)

Then

|Iα,σf(x)|.(Mσf(x))p/qkfk1−p/q

Lep,b,σ . Hence, by Theorem 2.2, we have

Z

Eσ(x,t)

|Iα,σf(y)|qdy.kfkq−p

Lep,b,σ

Z

Eσ(x,t)

(Mσf(y))pdy .[t]b|σ|1 kfkq

Lep,b,σ,

which implies that Iα,σ is bounded from Lep,b,σ(Rn) to Leq,b,σ(Rn) . Necessity. Let 1< p < (1−b)|σ|α , f ∈Lep,b,σ(Rn) and Iα,σ bounded from Lep,b,σ(Rn) to Leq,b,σ(Rn) . Then from (2.1) we have

kftσk

Lep,b,σ =t|σ|p [t]

b|σ|

p

1,+ kfk

Lep,b,σ, and

Iα,σftσ(x) =t−αIα,σf(tσx), (3.5)

kIα,σftσk

Leq,b,σ =t−α sup

x∈Rn, r>0

[r]−b|σ|1 Z

Eσ(x,r)

|Iα,σf(tσy)|qdy

!1/q

=t−α−|σ|q sup

r>0

[tr]1 [r]1

b|σ|/q

sup

x∈Rn, r>0

[tr]−b|σ|1 Z

Eσ(tσx,tr)

|Iα,σf(y)|qdy

!1/q

=t−α−|σ|q [t]

b|σ|

q

1,+ kIα,σfk

Leq,b,σ.

By the boundedness of Iα,σ from Lep,b,σ(Rn) to Leq,b,σ(Rn) kIα,σfk

Leq,b,σ =tα+

|σ|

q [t]

b|σ|

q

1,+ kIα,σftσk

Leq,b,σ

≤tα+|σ|q [t]

b|σ|

q

1,+ kftσk

Lep,b,σ

=tα+|σ|q |σ|p [t]

b|σ|

p b|σ|q

1,+ kfk

Lep,b,σ, where Cp,q,b,σ depends only on p, q, b and σ.

If 1p < 1q +|σ|α , then in the case t→0 we have kIα,σfk

Leq,b,σ = 0 for all f ∈Lep,b,σ(Rn) .

As well as if 1p > 1q+(1−b)|σ|α , then at t→ ∞ we obtain kIα,σfk

Leq,b,σ = 0 for all f ∈Lep,b,σ(Rn) .

(11)

Therefore |σ|α1p1q(1−b)|σ|α .

2)Sufficiency. Let f ∈Le1,b,σ(Rn) . We have

|{y∈Eσ(x, t) : |Iα,σf(y)|>2β}|

≤ |{y∈Eσ(x, t) : |A(y, t)|> β}|

+|{y∈Eσ(x, t) : |C(y, t)|> β}|. Then

C(y, t) =

X

j=0

Z

Eσ(y,2j+1t)\Eσ(y,2jt)

|f(z)||y−z|α−|σ|σ dz

≤tα−|σ|kfk

Le1,b,σ

X

j=0

2−(|σ|−α)j[2j+1t]b|σ|1 =tα−|σ|kfk

Le1,b,σ

×









2b|σ|tb|σ|

[log22t1]

P

j=0

2(b|σ|−|σ|+α)j+

P

j=[log22t1]+1

2−(|σ|−α)j, 0< t < 12,

P

j=0

2−(|σ|−α)j, t≥12

≈tα−|σ|kfk

Le1,b,σ

tb|σ|+t|σ|−α, 0< t < 12,

1, t≥12

≈kfk

Le1,b,σ

tb|σ|+α−|σ|, 0< t <12, tα−|σ|, t≥ 12

= [2t]b|σ|1 tα−|σ| kfk

Le1,b,σ.

Taking into account inequality (3.1) and Theorem 2.2, we have

|{y∈Eσ(x, t) : |A(y, t)|> β}|

y∈Eσ(x, t) : M f(y)> β C1tα

≤ C2tα

β ·[t]b|σ|1 kfk

Le1,b,σ,

where C2 = C1 ·C1,b,σ and thus if C2[2t]b|σ|1 tα−|σ| kfk

Le1,b,σ = β , then

|C(y, t)| ≤β and consequently, | {y∈Eσ(x, t) : |C(y, t)|> β} |= 0 . Then

|{y∈Eσ(x, t) : |Iα,σf(y)|>2β}|. 1

β [t]b|σ|1 tαkfk

Le1,b,σ

.[t]b|σ|1 kfk

Le1,b,σ

β

!(1−b)|σ|−α(1−b)|σ|

, if 2t <1

(12)

and

|{y∈Eσ(x, t) : |Iα,σf(y)|>2β}|. 1

β[t]b|σ|1 tα kfk

Le1,b,σ

.[t]b|σ|1 kfk

Le1,b,σ

β

!|σ|−α|σ|

, if 2t≥1.

Finally we have

|{y∈Eσ(x, t) : |Iα,σf(y)|>2β}|

.[t]b|σ|1 min

 kfk

Le1,b,σ

β

!(1−b)|σ|−α(1−b)|σ|

, kfk

Le1,b,σ

β

!|σ|−α|σ|

≤[t]b|σ|1 1

βkfk

Le1,b,σ

q

.

Necessity. Let Iα,σ is bounded from Le1,b,σ(Rn) to WLeq,b,σ(Rn) . From (3.5) we have

kIα,σftσkW

Leq,b,σ = sup

r>0

r sup

x∈Rn, τ >0

[τ]−b|σ|1 Z

{y∈Eσ(x,τ) :|Iα,σf(y)|>r}

dy

!1/q

= sup

r>0

r sup

x∈Rn, τ >0

[τ]−b|σ|1 Z

{y∈Eσ(x,τ) :|Iα,σf(tσy)|>rtα}

dy

!1/q

=t−α−|σ|q sup

τ >0

[tτ]1 [τ]1

b|σ|/q

sup

r>0

rtα

× sup

x∈Rn, τ >0

[tτ]−b|σ|1 Z

{y∈Eσ(tσx,tτ) :|Iα,σf(y)|>rtα}

dy

!1/q

=t−α−|σ|q [t]

b|σ|

q

1,+ kIα,σfkW

Leq,b,σ.

By the boundedness of Iα,σ from Le1,b,σ(Rn) to WLeq,b,σ(Rn) and from (2.1) we get

kIα,σfkW

Leq,b,σ=tα+|σ|q [t]

b|σ|

q

1,+ kIα,σftσkW

Leq,b,σ

.tα+

|σ|

q [t]

b|σ|

q

1,+ kftσk

Le1,b,σ

.tα+|σ|q −|σ|[t]b|σ|−

b|σ|

q

1,+ kfk

Le1,b,σ.

(13)

If 1< 1q +|σ|α, then in the case t→0 we have kIα,σfkW

Leq,b,σ = 0 for all f ∈Le1,b,σ(Rn) .

Similarly, if 1> 1q+(1−b)|σ|α , then for t→ ∞ we obtain kIα,σfkW

Leq,b,σ = 0 for all f ∈Le1,b,σ(Rn) .

Therefore 1p1q =(1−b)|σ|α .

Corollary 3.1. Let 0< α <|σ|, 0≤b <1−|σ|α and 1≤p≤|σ|α . 1) If 1< p < (1−b)|σ|α , then condition |σ|α1p1q(1−b)|σ|α is necessary and sufficient for the boundedness of the operator Mα,σ from Lep,b,σ(Rn) to Leq,b,σ(Rn).

2) If p= 1< (1−b)|σ|α , then condition |σ|α ≤1−1q(1−b)|σ|α is necessary and sufficient for the boundedness of the operator Mα,σ from Le1,b,σ(Rn) to WLeq,b,σ(Rn).

3) If (1−b)|σ|α ≤ p ≤ |σ|α , then the operator Mα,σ is bounded from Lep,b,σ(Rn) to L(Rn).

Proof. Sufficiency of Corollary 3.1 follows from Theorem 3.3 and inequality (1.2).

Necessity. (1) Let Mα,σ be bounded from Lep,b,σ(Rn) to Leq,b,σ(Rn) for 1< p < (1−b)|σ|α . Then we have

Mα,σftσ(x) =t−αMα,σf(tσx), and

kMα,σftσk

Leq,b,σ =t−α−|σ|q [t]

b|σ|

q

1,+ kMα,σfk

Leq,b,σ.

By the same argument in Theorem 3.3 we obtain |σ|α1p1q(1−b)|σ|α . (2) Let Mα,σ be bounded from Le1,b,σ(Rn) to WLeq,b,σ(Rn) . Then

kMα,σftσkW

Leq,b,σ =t−α−|σ|q [t]

b|σ|

q

1,+ kMα,σfkW

Leq,b,σ.

Hence we obtain |σ|α ≤1−1q(1−b)|σ|α .

(14)

(3) Let (1−b)|σ|α ≤p≤ |σ|α . Then by the H¨older’s inequality we have kMα,σfkL

= 2−n sup

x∈Rn, t>0

tα−|σ|

Z

Eσ(x,t)

|f(y)|dy

≤2np sup

x∈Rn, t>0

tα−|σ|p [t]

b|σ|

p

1 [t]−b|σ|1 Z

Eσ(x,t)

|f(y)|pdy

!1/p

≤2npkfk

Lep,b,σsup

t>0

tα−|σ|p [t]

b|σ|

p

1

= 2npkfk

Lep,b,σmaxn sup

0<t≤1

tα−|σ|(1−b)p ,sup

t>1

tα−|σ|p o

= 2npkfk

Lep,b,σ.

4 The modified anisotropic Riesz potential in the spaces L e

p,b,σ

( R

n

)

The examples show that the anisotropic Riesz potential Iα,σ are not defined for all functions f ∈ Lp,b,σ(Rn) , 0 ≤ b < 1−|σ|α , if p ≥ |σ|(1−b)α , and Iα,σ are not defined for all functions f ∈ Lep,b,σ(Rn) , 0 ≤b < 1−|σ|α , if p≥|σ|(1−b)α .

We consider the modified Riesz potential Ieα,σf(x) =

Z

Rn

|x−y|α−|σ|σ − |y|α−|σ|σ χ{Eσ(0,1)(y)

f(y)dy.

Note that in the limiting case |σ|(1−b)α ≤p≤ |σ|α statement 1) in Theorem A does not hold. Moreover, there exists f ∈Lep,b,σ(Rn) such that Iα,σf(x) =

∞ for all x∈ Rn. However, as will be proved, statement 1) holds for the modified anisotropic Riesz potential Ieα,σ if the space L(Rn) is replaced by a wider space BM Oσ(Rn) .

The following theorem is our main result in which we obtain conditions ensuring that the modified anisotropic Riesz potential Ieα,σ is bounded from the space Lep,b,σ(Rn) to BM Oσ(Rn) .

Theorem 4.4. Let 0 < α < |σ|, 0 ≤ b < 1−|σ|α , and |σ|(1−b)α ≤ p ≤

|σ|

α , then the operator Ieα,σ is bounded from Lep,b,σ(Rn) to BM Oσ(Rn).

(15)

Moreover, if the integral Iα,σf exists almost everywhere for f ∈Lep,b,σ(Rn),

|σ|(1−b)

α ≤p≤|σ|α , then Iα,σf ∈BM Oσ(Rn) and the following inequality is valid

kIα,σfkBM Oσ ≤Ckfk

Lep,b,σ, where C >0 is independent of f .

Proof. For given t >0 we denote

f1(x) =f(x)χEσ(0,2t)(y), f2(x) =f(x)−f1(x), (4.1) where χEσ(0,2t) is the characteristic function of the set Eσ(0,2t) . Then

Ieα,σf(x) =Ieα,σf1(x) +Ieα,σf2(x) =F1(x) +F2(x), (4.2) where

F1(x) = Z

Eσ(0,2t)

|x−y|α−|σ|σ − |y|α−|σ|σ χ{Eσ(0,1)(y)

f(y)dy,

F2(x) = Z

{Eσ(0,2t)

|x−y|α−|σ|σ − |y|α−|σ|σ χ{Eσ(0,1)(y)

f(y)dy.

Note that the function f1 has compact (bounded) support and thus a1=−

Z

Eσ(0,2t)\Eσ(0,min{1,2t})

|y|α−|σ|σ f(y)dy is finite.

Note also that

F1(x)−a1= Z

Eσ(0,2t)

|x−y|α−|σ|σ f(y)dy

− Z

Eσ(0,2t)\Eσ(0,min{1,2t})

|y|α−|σ|σ f(y)dy

+ Z

Eσ(0,2t)\Eσ(0,min{1,2t})

|y|α−|σ|σ f(y)dy

= Z

Rn

|x−y|α−|σ|σ f1(y)dy=Iα,σf1(x).

Therefore

|F1(x)−a1| ≤ Z

Rn

|y|α−|σ|σ |f1(x−y)|dy= Z

Eσ(0,2t)

|y|α−|σ|σ |f(x−y)|dy.

(16)

Then

|Eσ(x, t)|−1 Z

Eσ(x,t)

|F1(y)−a1|dy

=|Eσ(0, t)|−1 Z

Eσ(0,t)

|F1(x−y)−a1|dy

≤ |Eσ(0, t)|−1 Z

Eσ(0,t)

Z

Eσ(0,2t)

|z|α−|σ|σ |f(x−y−z)|dz

! dy

=|Eσ(0, t)|−1 Z

Eσ(0,2t)

Z

Eσ(0,t)

|f(x−y−z)|dy

!

|z|α−|σ|σ dz

.t−|σ|t|σ|−αkfkL1,1−α

|σ|

Z

Eσ(0,2t)

|z|α−|σ|σ dz

≈kfkL1,1−α

|σ|. (4.3)

Denote

a2= Z

Eσ(0,max{1,2t})\Eσ(0,2t)

|y|α−|σ|σ f(y)dy.

If 2|x|σ≤ |y|σ , then

||x−y|α−|σ|σ − |y|α−|σ|σ | ≤C|x|σ|y|α−|σ|−1σ . By the H¨older’s inequality we have

|F2(x)−a2| ≤C|x|σ

Z

{Eσ(0,2t)

|y|α−|σ|−1σ |f(y)|dy

.|x|σ

X

j=0

Z

2j+1t≤|y|σ≤2j+2t

|y|α−|σ|−1σ |f(y)|dy

.|x|σ

X

j=0

(2j+1t)α−|σ|−1 Z

|y|σ≤2j+2t

|f(y)|dy

.|x|σkfkL1,1−α

|σ|

X

j=0

(2j+2t)α−|σ|−1(2j+2t)|σ|−α

≈|x|σt−1kfkL1,1−α

|σ|. (4.4)

Therefore, from (4.3) and (4.4) we have sup

x,t

1

|Eσ(0, t)|

Z

Eσ(0,t)

Ieα,σf(x−y)−af

dy.kfkL1,1− α

|σ|. (4.5)

(17)

By the H¨older’s inequality we have kfkL

1,1−α

|σ| = sup

x∈Rn, t>0

tα−|σ|

Z

Eσ(x,t)

|f(y)|dy

≤2pn0 sup

x∈Rn, t>0

tα−|σ|p [t]

b|σ|

p

1 [t]−b|σ|1 Z

Eσ(x,t)

|f(y)|pdy

!1/p

≤2pn0 kfk

Lep,b,σsup

t>0

tα−|σ|p [t]

b|σ|

p

1 (4.6)

= 2pn0 kfk

Lep,b,σmaxn sup

0<t≤1

tα−|σ|(1−b)p ,sup

t>1

tα−|σ|p o

= 2pn0 kfk

Lep,b,σ.

Finally let |σ|(1−b)α ≤p≤ |σ|α and f ∈Lep,b,σ(Rn) , then from (4.5) and (4.6) we get

Ieα,σf

BM O

σ

≤2 sup

x,t

1

|Eσ(0, t)|

Z

Eσ(0,t)

Ieα,σf(x−y)−af

dy.kfk

Lep,b,σ.

The Theorem 4.4 is proved.

References

[1] D.R. Adams, A note on Riesz potentials. Duke Math., 42 (1975), 765-778.

[2] D.R. Adams, Choquet integrals in potential theory, Publ. Mat. 42 (1998), 3-66.

[3] O.V. Besov, V.P. Il’in, P.I. Lizorkin, The Lp -estimates of a certain class of non-isotropically singular integrals, (Russian) Dokl. Akad. Nauk SSSR, 169 (1966), 1250-1253.

[4] O.V. Besov, V.P. Il’in, S.M. Nikol’skii, Integral representations of functions, and embedding theorems (Russian) Second edition.

Fizmatlit “Nauka”, Moscow, 1996, 480.

[5] M. Bramanti, M.C. Cerutti, Commutators of singular integrals on homo- geneous spaces, Boll. Un. Mat. Ital.B, 10(7) (1996), 843-883.

(18)

[6] V.I. Burenkov, H.V. Guliyev, Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces. Studia Mathematica 163 (2) (2004), 157-176.

[7] Burenkov, V.I., Guliyev, V.S.: Necessary and sufficient conditions for the boundedness of the Riesz operator in local Morrey-type spaces. Potential Analysis,30(3), 211-249 (2009)

[8] L. Caffarelli, Elliptic second order equations, Rend. Sem. Mat. Fis. Milano 58 (1990), 253-284.

[9] F. Chiarenza, M. Frasca, Morrey spaces and Hardy–Littlewood maximal function. Rend. Math. 7 (1987), 273-279.

[10] E.B. Fabes, N. Riv`ere,Singular integrals with mixed homogeneity,Studia Math., 27 (1966), 19-38.

[11] G. Di Fazio, D.K. Palagachev and M.A. Ragusa, Global Morrey regu- larity of strong solutions to the Dirichlet problem for elliptic equations with discontinuous coefficients, J. Funct. Anal. 166 (1999), 179-196.

[12] C. Feffermann and E. Stein,Some maximal inequalities. Amer. J. Math.

93 (1971), 107-115.

[13] V.S. Guliyev, Integral operators on function spaces on the homogeneous groups and on domains in Rn , Doctor of Sciencies, Moscow, Mat. Inst.

Steklova, (1994, Russian), 1-329.

[14] V.S. Guliyev, Function spaces, integral operators and two weighted in- equalities on homogeneous groups,Some applications. Baku,(1999, Russian), 1-332.

[15] V.S. Guliyev, R.Ch. Mustafayev, Integral operators of potential type in spaces of homogeneous type, (Russian) Dokl. Ross. Akad. Nauk, 354 (6) (1997), 730-732.

[16] V.S. Guliyev, R.Ch. Mustafayev, Fractional integrals in spaces of func- tions defined on spaces of homogeneous type, Anal. Math., 24 (3) (1998, Russian), 181-200.

[17] V.S. Guliyev, Boundedness of the maximal, potential and singular op- erators in the generalized Morrey spaces, J. Inequal. Appl., 2009, Art. ID 503948, 20 pp.

(19)

[18] V.S. Guliyev, J. Hasanov, Yusuf Zeren, Necessary and sufficient condi- tions for the boundedness of the Riesz potential in modified Morrey spaces, Journal of Mathematical Inequalities, 5 (4) 2011, 1-16.

[19] V.P. Il’in, Certain properties of functions of the spaces Wp, a, κl (G). (Russian) Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 23, 33-40 (1971).

[20] A. Kufner, O. John and S. Fucik, Function Spaces, Noordhoff, Leyden, and Academia, Prague, 1977.

[21] K. Kurata, S. Sugano, A remark on estimates for uniformly elliptic oper- ators on weighted Lp spaces and Morrey spaces,Math. Nachr. 209 (2000), 137-150.

[22] A.L. Mazzucato, Besov-Morrey spaces: function space theory and appli- cations to non-linear PDE, Trans. Amer. Math. Soc. 355 (2003), 1297-1364.

[23] A. Meskhi, Maximal functions, potentials and singular integrals in grand Morrey spaces, Complex Var. Elliptic Eqns. (2011), 1-18.

[24] B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for frac- tional integrals, Trans. Amer. Math. Soc. 192 (1974), 261-274.

[25] C.B. Morrey, On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc. 43 (1938), 126-166.

[26] C. Perez, Two weighted norm inequalities for Riesz potentials and uni- form Lp -weighted Sobolev inequalities, Indiana Univ. Math. J. 39 (1990), 3144.

[27] B. Rubin, Fractional integrals and potentials, Pitman Monographs and Surveys in Pure and Applied Mathematics, 82. Longman, Harlow, 1996.

xiv+409 pp.

[28] A. Ruiz and L. Vega, Unique continuation for Schr¨odinger operators with potential in Morrey spaces, Publ. Mat. 35 (1991), 291-298.

[29] A. Ruiz and L. Vega, On local regularity of Schr¨odinger equations, Int.

Math. Res. Notices 1993:1 (1993), 13-27.

[30] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and deriva- tives. Theory and applications. Gordon and Breach Science Publishers, Yverdon, 1993. xxxvi+976 pp.

(20)

[31] Z. Shen, The periodic Schr¨odinger operators with potentials in the Morrey class, J. Funct. Anal. 193 (2002), 314-345.

[32] Z. Shen, Boundary value problems in Morrey spaces for elliptic systems on Lipschitz domains, Amer. J. Math. 125 (2003), 1079-1115.

[33] S. Spanne,Sur l’interpolation entre les espaces Lp,Φk ,Ann. Schola Norm.

Sup. Pisa, 20 (1966), 625-648.

[34] E.M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, NJ, 1970.

[35] E.M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton NJ, 1993.

[36] M.E. Taylor, Analysis on Morrey spaces and applications to Navier- Stokes and other evolution equations, Comm. Partial Differential Equations 17 (1992), 1407-1456.

Malik S. Dzhabrailov Department of Mathematics

Azerbaijan State Pedagogical University, Baku, Azerbaijan E-mail: vagif@guliyev.com

Sevinc Z. Khaligova Department of Mathematics

Azerbaijan State Pedagogical University, Baku, Azerbaijan Email: seva.xaligova@hotmail.com

参照

関連したドキュメント

This review is devoted to the optimal with respect to accuracy algorithms of the calculation of singular integrals with fixed singu- larity, Cauchy and Hilbert kernels, polysingular

This review is devoted to the optimal with respect to accuracy algorithms of the calculation of singular integrals with fixed singu- larity, Cauchy and Hilbert kernels, polysingular

This review is devoted to the optimal with respect to accuracy algorithms of the calculation of singular integrals with fixed singu- larity, Cauchy and Hilbert kernels, polysingular

In this paper, we …rst present a new de…nition of convex interval–valued functions which is called as interval–valued harmonically h–convex functions. Then, we establish some

Key words and phrases: Cebyšev type inequalities, Absolutely continuous functions, Cauchy-Schwarz inequality for double integrals, L p spaces, Hölder’s integral inequality..

Key words and phrases:Holomorphic and harmonic functions, Cauchy type integrals, singular integrals, piecewise holomorphic functions, Rie- mann and Riemann-Hilbert problems, Hardy

The time-frequency integrals and the two-dimensional stationary phase method are applied to study the electromagnetic waves radiated by moving modulated sources in dispersive media..

The comparisons above between the maximal functions for the Poisson kernels, the maximal function for the Fej´ er kernels, and the Hardy–Littlewood maximal function, show that