• 検索結果がありません。

AND9166/D 感应烹饪

N/A
N/A
Protected

Academic year: 2022

シェア "AND9166/D 感应烹饪"

Copied!
22
0
0

読み込み中.... (全文を見る)

全文

(1)

AND9166/D 感应烹饪

电磁炉设计人员要了解的方方面面

简介统的燃 气炉电炉然 是 最欢迎的 理念 种技术是最色的烹饪热技术,

背理由的论未止 而,电磁热 烹饪领日益盛行 电磁感烹饪技术比统解 方案(燃气炉电炉)的热转换效率高,而还 有 热快!"部热!直接热!#率$%高!&靠性 色!运行成本'(无&)*+等,点 美-能源 部调查指,电磁热系统的能量转换效率.约/

84%,而0面炉1非感电 炉 的 热转换 率.约/ 74%,2等热转换量,3者比者&节约.约10%的 能源 [1]

电磁炉的4理是激5线6,由此7生的感电流进 8由特殊材质9成的锅:,这种材质必须 ;较高 的磁<率,=该锅:必须>?述线6的附近 电磁炉的@A4理B电感C相D,锅EF是GH.损 耗磁芯 C皿I7生的涡电流B锅E的磁性材料 7生的磁滞损耗相结J,而7生热量 KL所 有MN的电磁炉来说,烹饪OC都必须由铁磁性金P 9成,或QOC放置GH特殊的R形界面?, 而S得能TQ非电磁U用V 用电磁炉表面

电磁炉用,烹饪锅:W方放置铜X线6 G股Y流电流流经线6,7生振荡磁 通过该磁 的感效锅:7生电流 金P锅:流Z的 电流7生电阻热效,Q食物热 电流较高时,

[表示电\较'

这种系统的核心是电E电路,这设计角%来看是 最.的挑战 ]结J^电源段数_控9系统,而 还必须解热管理问题 `1/电磁炉的示意`

7生的热量a遵循焦耳效4理,b用Rc(感 电流的0方 `2是电磁炉逆dC的结构` e要结 构f括GHEMI滤波C过\!过流g护装置,GH 桥h整流C总线电O,谐振逆dC,线6,感C 致ZC,辅i电源,热管理系统控9jk

Figure 1. Equivalent of an Induction Cooking System Load N:1

VIN

Load

http://onsemi.com

APPLICATION NOTE

(2)

Figure 2. Block Diagram of an Inductor Cooker Line

Voltage

EMI Filter and Protections Rectification and BUS Power Board − Inverter Heat Sink

FAN Sensor and Actuators

Control Board (MCU) Auxiliary Power

Supply

Coil

感应加热工作原理 感热是指通过电磁感热金P的过程 电磁

感金Pl部7生涡电流,电阻引5焦耳热效 (m`3所示),而还n由锅:的金P材料的磁滞 而引起损耗 [1]电磁炉f括铜线6(通o情p),高频 Y流电(AC)流经该线6 所S用的Y流电的频率q rs的最高rs频率,此t的rs通o是IGBT

rs频率高能T降'线6的电感,缩u谐振电O的.

v,节约成本 感热的4理是电磁感w律 整H系统类Dd\C,x级是电磁炉的铜线6,

而次级是锅:的I(请y见`4`5) 由载^

锅:损耗等效电阻而7生热量,d\C而言,

Fz是次级绕组?的负载电阻

GLAS Inducted Current

Electrical Coil

(3)

Figure 4. Scheme of the Equivalent Transformer for an Induction Heating System Load

Np:Nsec VIN

Np:1

IIn Isec+IIn@Np IIn Isec+IIn@Np

Ns

Load VIN

Figure 5. Inducted Current in the Pot Bottom Layer

(4)

电磁感应电磁感{称/感,遵循法拉第w律:|闭J电 路7生的感电Z}的.v跟穿过该电路的磁通量 d~率成正比 W面的解释有i让€更清楚理 解这Gw律:当某HY流电流穿过的电路‚GH>

Yd磁通量的电路7生电流时,Fn7生电 磁感 而穿过<:的Y流电源{n遵循相2的ƒh

7生磁:

ŏ

H@dl+

ȍ

i (eq. 1)

f+

ŕŕ

A

B@dA (eq. 2)

B+m@H (eq. 3)

m+m0@mr (eq. 4)

e+N@df

dt (eq. 5)

H [A/m]是指磁强%(请y见`6) df是指沿

电线的极弧长%,而线积„[沿电线计算 i是指穿过 某H<:的电流 B [Wb/m2]是指磁通量$% m是指 磁<率,m0是指自由空间l的磁<率,mr是指相磁

<率 E是指电Z}(EMF),j>/…特,F[Wb]

是指磁通量 电Z}的方†根据楞次w律w dA是 移Z表面A的表面积,B是磁,B⋅dA是指磁通量总 量 更‡†视觉的角%来讲,穿过线6的磁通量 B穿过线6的磁通量线的数量成正比 N是指线的6 数,而B是指穿过jH线6的磁通量,j>是韦ˆ

当磁通量d~,线6Fn获得电Z}e [V],电Oh 的w‰是指j>电荷绕线6GŠ7生的能量 m`1 所示的等效电路,电\e是通过‹断电线,形成断路状 态,然电线G1连接电\计测量得的电\a

Figure 6. Graphical Illustration of Ampere’s Law and Lenz’s Law H

A

i1 in

e +

dfe dt u0 Fe

趋肤效应当G股Y流电流穿过<:时,<:l电路的„Œ是

Ž的,是电流‡†流Z<:表面,穿透深 8q电流的频率 这种效的计算ƒhmW所 示:

J+JS@edd (eq. 6)

d+ 2@ò w@m

Ǹ

(eq. 7)

h的J是指电流强%[A/m2],JS是指<:表面的电 流强%,d称/趋肤深%,而d是指深% 根据ƒ

h7,<:,Y流电流强%Jn随着表面深8 d>置,而表面a次方W降(m`7所示) ρ是指

<:的电阻率,w是电流的角频率,该频率a等电 流频率的2p‘ m是指<:的绝磁<率

(5)

Figure 7. Current Density as a Function of Depth and Skin Effect and Eddy Current I

H Ie

I I JS

Depth d [m]

Current Density J [A/m2]

0

趋肤深%效是由流Z的涡电流抵消^<:心

>置的电流,=驱迫电流朝表面>置流Z ’ Y流电流的情pW,由趋肤效的A用,等效电阻 n“高

热传递?文所述的现象Q7生需要的电流,=流8附近 的<:(m`8所示的涡电流) 这”进8<:的感 电流n7生热量 7生=进8<:的热量a遵循焦耳 热w律,{称/欧•热w律 这G过程,

穿过<:的电流(#率释放热量的形h消散 这G 效{称/焦耳第Gw律:

Q +P+R@i2+v@i (eq. 8)

hQ P [W]–表电能转换/热能的#率,I [A]

是指穿过<:的电流(此—是涡电流),而v [V]

是指整Hk˜的电\降(此—是EMF),R [W]是指

<:的等效电阻(m果是感热,[/锅:I的电 阻 根据ƒh8,释放的热量aB电流0方a成正 比 热技术(感热技术的4理™G)的性能系数 是1.0,意š着每1瓦特的电能Q转换/1瓦特的热能 相比较而言,热泵的系数.1.0,›/]还能T额œ

环ž收热能量,=Q这种能量输送至所需的>

Figure 8. Generated Eddy Current into the POT’s Bottom Pot

Eddy Current

Coil Top Plate

High Frequency Resonant Converter

(6)

感应加热烹饪应用中的谐振转换器

#率电Ek˜来说,rs模hW运行的普通 PWM电源转换C很o见 按照惯—,m`9所示, rsn所谓的硬rs模hW高电流‹换至'电 流 |硬rsG词是指#率电E装置的\rs行 / 接通断r过程,电源装置必须2时承高

电\高电流状态,引起较高的#率rs损耗

Ÿ 这”电路,通o通过 缓¡C来降'#

率C˜的电\瞬drs损耗 rs损耗Brs频率 成正比,而限9^电源转换C的最高rs频率[6]

Figure 9. Power Losses in a Conventional SMPS Converter Power LossesVoltage and CurrentSwitch Control Signal

off on off

Ton

Toff Toff

0

0

0

time

time

time von

vd ion vd

tfall_v trise_i

tdelay_on Tdelay_off

tfall_i trise_v

vd ion

von ion

rs频率“高,F能T转换CS用¢£更v!

成本更'的电感电O 是组˜¢£缩v必然n(

#率rs损耗“高A/–¤ /^S频率“高,2时 g留这”频率W运A的¥种,点,F采用^谐振转 换C 谐振转换C[3]普通转换C的¦础? ^谐 振§路,形成振荡(通o/正弦)电\/或电流波形,

而¨现#率rs的零电\rs(ZVS)零电流rs

(ZCS)状态 继而Srs#率损耗降',提高谐振转

换C的有效rs频率 谐振转换C的e要,点能 T极高的rs频率范©,(极'的#率损耗条˜

W@A ª种控9技术,—m零电流rs(ZCS)或零

电\rs(ZVS)都&用降'谐振转换C的#率损

`10显示^硬rs!缓¡C支持换†软rs[4] [5]

[6]条˜W的rs« 硬rs接通断r过程,

#率C˜必须2时承高电\高电流状态,引起较 高的#率rs损耗Ÿ ›此通o电源电路  无源无损缓¡C,而降'#率C˜的dv/dt电 源¬a 降'rs损耗,=持续改­#率rs有i S得IGBTrs的谐振转换C频率接近100 kHz 而缩v磁性组˜电O组˜的.v,2时提高转换 C的#率$%

(7)

Figure 10. Switching Area I

Imax

Vmax V Hard Switching

Area

Soft Switching Area

Snubber Switching Area

W`®示^感热系统的G”拓扑结构 `11(a) (b)„¯是°桥拓扑[8]!±桥拓扑[9] (b),(²H jrs逆dC拓扑,„¯是零电\rs(ZVS) [10] (c) 零电流rs(ZCS)操A[11] (d) 所有o用控9输

#率的调9策略都是¦³改rs频率或´空比来

¨现所需的#率这G4[[12] 每种#率转换C的拓 扑结构都提µ^2的性能特点,满足成本!硬˜(

控9¶杂%方面的¥种要求 此类系统o见¥种 文献,(相sy数的设计·[

最流行的IH拓扑结构h±桥(HB)¸联谐振转换C jrs¹激·谐振(QR)或QR¹激 谐振±桥º炉1 h灶»非oo见,而欧洲非o流行 而¹ 激·谐振或QR¹激[o用j炉1,而¼洲 最/流行

Figure 11. Samples of the Topologies Presented in Literature in the Last Decades (a)

VBus

S1

S3

Ceq Leq Req

(b) VBus

S1

S2

Ceq Leq Req Cr

S1

(d) VBus

S1

Ceq

Leq Req

(c) VBus

S1

Ceq Leq Req

Cr Laux

S1

S2

S4 Cr

(8)

谐振半桥谐振±桥逆dC(11b)是目3ª炉1感灶»用 最/½泛的拓扑结构,›/这种逆dC结构简j!

成本效率色组˜电气要求特点' 这种拓扑结构 o见欧洲 等效负载¦本?F是谐振§路,

由感线6!谐振电OC锅:等效电阻组成 感 线6锅:耦J&设计/¦d\C模拟的电感 电阻¸联,²Ha„¯/LrRload 这”ae要随着 施rs的rs频率!锅:材料!温%感C­锅 :耦J等条˜而d~ 谐振±桥P谐振转换C B 标·±桥相D,总线O量(谐振电OC)根据特w频 率条˜W谐振的线6(所谓的谐振频率)而设置 电源 段由²H¾¹†=联¿极管的rs!²H电OCG H线6组成 计算目的,电路&简~/m`12所 示,²H电OC=联/?文`的GH电 OC

Figure 12. Equivalent Circuit for a Resonant Half-Bridge for Cooking Application T1

T2

D1

D2

A B

Cr Lr

Rload Load

VBUS

Figure 13. Equivalent Series Resonant Circuits C R

L

`12表示的是等效¸联谐振电路 €&(5现,

谐振±桥的等效电路¸联电路等效 该电路的阻抗

&S用mWƒh计算:

Zseries+jwL) 1

jwC)R (eq. 9)

w+2@p@f (eq. 10)

hZseries(m`13所示)是指7生C角%的电路阻

抗,w指角频率 该ƒh计算得的最va称/谐振 频率w0 该a条˜W,电感的电抗相等,B电OC 的电抗相 w‰谐振电路的‚GH重要系数是Á质

›数Q,物理角%来看,是指G种无量纲y数,

(电路阻抗电路损耗比的形h表现 Q越高F表示 相谐振C’Â的能量,能量损耗比越';振荡消 Ã的速%缓慢

Q+Z0

R (eq. 11)

hZ0是指谐振频率条˜W的阻抗 此t,&S用 mWƒh计算谐振

fres+ 1

2@p@ǸLr@Cr (eq. 12)

wres+ 1 Lr@Cr

Ǹ (eq. 13)

Z0+ Lr Cr

Ǹ

(eq. 14)

QL+Z0

rpot (eq. 15)

ö+a tan

ǒ

rCrLrpot

Ǔ

(eq. 16)

hfres是指谐振频率 Lr是指线6电感,Cr是指=联 谐振电O的总 φ是指电流电\™间的相>

(9)

Figure 14. Impedance Module and Phase of the Equivalent Half-Bridge Resonant Circuit

w0 w

Z

Z0 = R

w0 w

ö

+90

−90

Figure 15. Output Power vs. Switching Frequency for Maximum Load and Minimum Load Power at the Resonance

Capacitive Region

Inductive Region

Resonance Frequency Frequency

Power

Point of Maximum Load

Point of Minimum Load

VA

0 time

ILOAD VA

0 time

ILOAD

这种类M的电路,¦本?有Ä种操A模h:

'谐振频率!高谐振频率>谐振频率 这Ä 种模h的特点„¯是,f < fres时的电O性负载!f > fres 时的电感M负载f = fres时的纯电阻性负载 ‚请y 阅`15 感热用的谐振±桥设计,设计 能T电感M负载«,2时谐振范©l@A的整:

系统很重要 这是›/,电O性负载«,’Ä 种&能n接通时损Å装置的有Æ效:相¹极性r s的¹†=联¿极管的¹†恢¶;晶:管输电O的 放电$Ç电O效

半桥的工作原理

本节,Q探讨感热用±桥的@A4理

`16显示当转换C接近谐振频率条˜W@A时,

IH灶»rs频率等谐振频率时的电\波形`(?`

蓝色波形)!流8谐振电路电流的波形`(?`红色波 形`),(转换C接近谐振频率条˜W@A时,

²Hrs的闸极ÈN(W`蓝色波形闸极T1,红色波 形T2)波形` 这种@A模h能T¨现特w负载条˜W 的最高#率

(10)

m果#率级'最高a,那Érs频率“高,波形 Ê是正弦波 当炉E“\模hW@A时Fn 现这种现象 `17显示^rs频率超过谐振频率条˜

W,²Hrs的@A波形 正o操A¦本?&(„/

ºH间隔期:t0−t1!t1−t2!t2−t3t3−t4 `18表示的是 某H r s 的 电路 ± < : C ˜的 <顺Ë是 D1−T1−D2−T2 让我ÌÍ来看GWt0−t1(`17) 电流 t0穿过T2™3,m果T2断r,D1Fn被迫进8<状 态,而T1的闸极然断r 这是/^避ÎYÏ<通 闸极T1闸极T22时断r的时间段称/死«时间 t0™时,T1的闸极接通,是电流然m`17所示穿

过D1 t1™时,电流负极流†正极,rÐ流8T1

¿极管的¹†恢¶电流穿过相的IGBT,而n引 起谐振±桥C˜5生ÑÒ额œ损耗 接通时,C˜损 耗/零,而断r时, :的损耗[B高电流高电\

™间的Yϒ非o$‹的s系 Ó¨?,t2™时,

rsT1断r,是电流然很高,这F引5B电\™

间的重J,引起C˜l7生断r损耗 此œ还’$

Ç效,<致晶:管输8闸极电荷“高,断r速%d 慢,损耗“高 t2−t3t3−t4间隔期B™3的间隔期相 2,ÔG2点T2D2t@A状态

Figure 16. Resonant Half-Bridge Waveforms.

Upper Graph: Load Current (Red) and Voltage at the Central Point A (Blue).

Lower Graph: Gate Voltage for the Higher Side IGBT (Blue) and the Lower Side IGBT (Red).

Rload Lr

Load

A B

Cr D2

D1

T2 T1

VBUS

VGate T1 ISW1

ISW2 ILoad

VGate T2

0 t0 t1 t2 t3 t4

VGate T1 VGate T2

VA

ILoad

0 t0 t1 t2 t3 t4

(11)

Figure 17. Resonant Half-Bridge Waveforms for a Switching Frequency > Resonant Frequency.

Upper Graph: Load Current (Red) and Voltage at the Central Point A (Blue).

Lower Graph: Gate Voltage for the Higher Side IGBT (Blue) and the Lower Side IGBT (Red).

Rload Lr

Load

A B

Cr D2

D1

T2 T1

VBUS

VGate T1 ISW1

ISW2 ILoad

VGate T2

0 t0 t1 t2 t3 t4

VGate T1 VGate T2

VA

ILoad

0 t0 t1 t2 t3 t4

Rload Lr

Load

A B

Cr D2

D1

T2 T1

VBUS

VGate T1 ISW1

ISW2 ILoad

VGate T2

0 t0 t1 t2 t3 t4

0 t0 t1 t2 t3 t4

VGate T1

VA IIGBT1

(12)

准谐振·谐振(QR)转换C[13] [14] [15] [16] [17] [18]¥种 用½泛A/Y流电源S用,—m感热灶»或 /磁控管µ电的微波逆dC用 这种转换CÕ 用电C有着特殊的ž引Ÿ,›/]Ö需要GHrs,

通o是IGBTr s,而 Ö需 要G H谐振 电O QR转换C是成本能量转换效率²种›素的×美0 衡 目3非oo见¼洲»面j炉1灶»设计

而这种类M转换C的GH缺陷F是调9范©有限 调9范©通o是指最高#率级(rsl最高Ø许电

\的限9)最'&设置#率(零电\rs条˜ZVS 或软rs模hW损耗的限9)™间的比a m果需要 ZVS模hW@A,那ÉIH灶»通o能T谐振电\未 达零的#率级条˜W@A 而更'的#率级条

˜W,整:#率调9F成/极'频率条˜W的脉¡Ù

%调9,(限9损耗的7生 这种'#率@A模h W,装置&('#率级条˜W@A1秒钟,然s 闭Ú秒钟 这要比锅:锅El食物的热时间o数短 得ª,{n烹饪操A7生ÑÒ良影Û;而还 有i最.程%提高#率级的效率,限9IGBTrs温

%“高

特w的负载条˜W(b某种特w的锅:),最高#

率级!最高电源电\!rs谐振电OC的额w¬a 电\&(通过QR理论计算,=通过等h17得近D a

Figure 19. Impedance Module and Phase of the Equivalent Half-Bridge Resonant Circuit

A B

Cr Lr

D1

T1 CBUS

VBUS

ICoil

ISW

Load

Vres^ 2@E

Ǹ

C (eq. 17)

E^1

2L@I2pk (eq. 18)

¬a电流BTON,Vdc−bus成正比 Ipk+TON@Vdc*bus

L (eq. 19)

谐振电\Vres的计算&S用TONVdc−bus表达h Vres^TON@Vdc*bus

ǸLC (eq. 20)

通o情pW,TON电源±衰期过程g持恒w 准谐振转换器的工作原理

QR转换C的@A,e要有²H@A阶段(请y 见`20):Ü电阶段,此阶段,系统表现类D LR 1阶系统,(谐振阶段,此阶段,系统表现

类DLRC 2阶系统 QR转换C按照²H阶段的顺Ë

@A,第GH阶段,线6(Lr)Ü电,维持rsT1 t接通状态,=¦感Cl的电流†负载输送 电源 第¿H阶段过程,感Cl贮’的能量 输至谐振电OC(Cr),=部„消散至负载,{F 是指锅:的I 消散至电阻C的能量F是输送至 负载的¨际能量 /^评Ý电路稳w状态rs部

„的@A情p,我Ì把波形„/ºH间隔期:(0−t0)! (t1−t2)!(t2−t3)(t3−t4) 谐振§路3GH间隔期(时 间0™3)rÐ振荡 m`20所示的0时间™时,¿极 管D1<电,T1的闸极断r 这G状态Q持续至时间 t0 时间t0™时,电流负极流†正极,=rÐ穿过 T1 ›此,QR转换C,接通rs损耗理论?&

(×°消除,$Ç效{’,¿极管的¹†恢¶

电流穿过T1,n谐振电路7生ÑÒ额œ的损耗 QR转换C,断r损耗B高电流高电\™间的过 渡相s Ó¨?,t2™时,rsT1断r,是电流 然很高,这F引5B电\™间的重J,引起装置l7 生断r损耗 $Ç效{n<致损耗“高 装置电源 断r,谐振§路rÐ振荡 这G谐振阶段&(„/

²H间隔期,t1−t2期间,整H装置l的电\是正电

\,流8线6的电流是正电流,而t2−t3期间,装置 l的电\然是正电\,是流8线6的电流{d/

正电流

(13)

Figure 20. Quasi-Resonant Inverter Waveforms.

Upper Graph: Red-waveform is the Current into the Coil Lr, while the Purple-waveform is the Voltage across the Power Devices (T1+D1).

Lower Graph: IGBT Fate voltage Lr

A B

Cr

D1 T1

0 t0 t1 t2 t3 t4

VGate T1

VB

ILoad

VBUS CBUS

Load

0 t0 t1 t2 t3 t4

控制接W来让我Ì重点研究GW²种结构的控9算法

²种拓扑结构的控9电路¦本@A模h方面’显 著的Þß 谐振±桥逆dC频率控9 特w#率级 的r s频率 是à w的,而² H控9闸极È N (高>IGBT'>)á相â离180°,àw´空比/50%

(然而a得注意的是,/避ÎYÏ<电,²HÈN™间 必须’死«时间) 而¹激·谐振逆dC[TON

控9 特w#率级的接通时间(TON)是àw的,而断r 时间(TOFF)[q谐振§路(LrCr)

W`/¹激·谐振谐振±桥拓扑结构的流程`

`21,®示^感烹饪用谐振±桥逆dC的G 般控9算法 控9算法的第G步是检查输8电\是ã t限9范©l(最'最高输8电\范©) 这G条

˜核¨×毕,进8WGH步骤,=闭Je继电C 随等待零YÏ,Sw时C采集操A2步 随进 行锅:检测 这G步骤e要确认锅:是㒠m果

检测锅:’,控9算法Q进8WG步骤,ã[Q 止 然执行频率扫描操A rÐ,Q施频 率,=计算输至负载的相#率 此时rÐ,

xÐ频率Q“高=ä或者降',(生成G张表格,

S得rs频率能TB¥自相的#率级7生s联 然 t理用户请求,?述表格选择GHrs频率,

=特w间隔期l请求的#率¨际输#率进行 比较,(å输用户所请求的#率级 m果#率超过 请求的水0,那Érs频率Q“高,ã[Qg持恒w m果¨际#率'请求的水0,那Érs频率Q降 ' B此2时,所有g护装置QrÐ运行

`22,®示^感烹饪用¹激·谐振jrs 逆dC的G般控9算法 该控9算法B谐振±桥的算 法非o相D e要ÞßF是驱Z算法 谐振±桥

,驱Z数量是恒w´空比的rs频率,而¹激·

谐振,驱Z数量是TON[13]

(14)

.

.

Start f1 = P1 f2 = P2 fn = Pn actual

Power request from the user YES NO

ual = Prequested NO YES

ual > Prequested Decrease the frequency and calculate the power PI First of all the control operates a PAN detection in order to detect if there is any PAN. Once the PAN is detected the algorithm move on the next step. Depend of the user request − usually there is a frequency sweep. To Power is averaged along three of four semi cycles for each frequency in order to generate a table where each power level is associated with correspondent frequency (like a lookup table) Check Temperature YES

NO

Is the Devices Temperature within the limits T1?

Is the Devices Temperature within the limits T2? YES

NO Stop everything

Reduce the Power delivered by increasing the frequency YES

NOCheck over voltage and over current

Everything is within the limits?Stop everything Protections

Flowchart of a Resonant Half-Bridge for Induction Cooking.

(15)

Start Check the input voltage Close the relay Waiting for zero crossing and synchronize the timers Pan Detection Ton sweep in order to detect which load is present and if it is correspondent TON TON_1 = P1 TON_2 = P2 TON_n = Pn in order to actuate the power Sampling current and voltage along one or more semi cycles and calculated the actual power Pactual

Power request from the user YES NO

Is this Pactual = Prequested NO YES

Is this Pactual > Prequested Decrease the TONIncrease the TON PI

Flowchart of a Quasi-Resonant single switch for Induction Cooking. Check Temperature YES

NO

Is the Devices Temperature within the limits T1?

Is the Devices Temperature within the limits T2? YES

NO Stop everything

Reduce the Power delivered by increasing the frequency YES

NOCheck over voltage and over current

Everything is within the limits?Stop everything Protections

(16)

正常工作过程中的波形 本段,我ÌQ®示²种转换C正o@A过程

的G”¨际波形 `23®示^感烹饪用谐振±桥的

#率相>,该拓扑结构¾有谐振§路,§路由GH

29.5mH的谐振线6,GH²‘680 nF的谐振电OC 组成

X: 4.504e+04 Y: 1234

X: 4.502e+04 Y: 55.06

Frequency (Hz)

Power (W)

Power vs. Frequency

2.5 3 3.5 4 4.5 5

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

×104

Psi (deg)

Power vs. Frequency

2.5 3 3.5 4 4.5 5

× 4

−80

−60

−40

−20 0 20 40 60 80

(17)

Figure 24. Vin 220 Vac − 1200 W – 45 kHz Switching Frequency Operation for a Resonant Half-Bridge Inverter:

C1 Low Side IGBT Gate Voltage (10V/div) C2 Low side IGBT Collector Emitter Voltage (200 V/div) C3 High Side IGBT Gate Voltage (10 V/div) C4 Coil-Load Current (20 A/div). Time 5ms/div

Figure 25. Vin 220 Vac − 1500 W – 35 kHz operation for a Resonant Half-Bridge inverter: C1 Low Side IGBT Gate Voltage (10 V/div) C2 Low side IGBT Collector Emitter Voltage (200 V/div) C3 High Side IGBT Gate

Voltage (10 V/div) C4 Coil-Load Current (20 A/div). Time 5ms/div

(18)

Figure 27. Vin 220 Vac − 2300 W – 27 kHz Operation for a Resonant Half-Bridge Inverter: C1 Low Side IGBT Gate Voltage (10 V/div) C2 Low side IGBT Collector Emitter Voltage (100 V/div) C3 High Side IGBT Gate

Voltage (10 V/div) C4 Coil-Load Current (20 A/div). Time 5ms/div

Figure 28. Vin 230 Vac − 2450 W – 24.7 kHz Operation for a Resonant Half-Bridge Inverter: C1 Low Side IGBT Gate Voltage (10 V/div) C2 Low side IGBT Collector Emitter Voltage (100 V/div) C3 High Side IGBT Gate

Voltage (10 V/div) C4 Low Side IGBT Collector Emitter Current (20 A/div). Time 10ms/div

(19)

`30`31®示^烹饪用¹激·谐振逆dC的正 o@A波形 `32®示^谐振线6的电流波形

Figure 30. Vin 220 Vac − 2100 W – 65 kHz operation for a Quasi-Resonant Inverter: C2 IGBT Collector Emitter Voltage (200 V/div) C3 IGBT Gate Voltage (20 V/div) C4 IGBT Collector current (20 A/div). Time 1 ms/div

Figure 31. Vin 220 Vac − 2100 W – 65 kHz Operation for a Resonant Half-Bridge Inverter: C2 IGBT Collector Emitter Voltage (200 V/div) C3 IGBT Gate Voltage (20 V/div) C4 IGBT Collector current (20 A/div). Time 2ms/div

(20)

结论 运用烹饪用的感热技术是G门非o 有ž

引Ÿ的技术,而由色的能量转换表现而日益 盛行 本用注释,感热烹饪系统的 运用进行^°面的阐述讨论 本文所探讨的lO

æ提µ^感热理念背的背景4理,而还概 括ç绍^当3的技术控9算法 此œ,还èé^最 o用的拓扑结构,b·谐振谐振±桥拓扑结构的G

”¨际波形

(21)

参考文献 [1] Technical support document for residential cooking

products. Volume 2: Potential impact of alternative efficiency levels for residential cooking products.

U.S. Department of Energy, Office of Codes and Standards. Retrieved 2011-12-06

[2] N. Mohan, T. M. Undeland, W. P. Robbins, Power Electronics − Converters, Applications and Design [3] M. K. Kazimieczuk, D. Czarkowski, “Resonant

Power Converter”, John Wiliey & Sons, inc.

[4] IGBT Applications Handbook − HBD871/D On Semiconductor 2012

[5] W. C. Moreland, “The Induction Range: Its Performance and Its Development Problems”, Industry Applications, IEEE Transactions on, vol.IA-9, no.1, pp.81, 85, Jan. 1973

[6] J. Acero, J. M. Burdio, L. A. Barragaìn, D. Navarro, R. Alonso, J.R. Garcia, F. Monterde, P. Hernandez, S. Llorente, I. Garde, “The domestic induction heating appliance: An overview of recent research”, Applied Power Electronics Conference and

Exposition, 2008. APEC 2008. Twenty-Third Annual IEEE, vol., no., pp.651,657, 24−28 Feb. 2008

[7] AN9012: Induction Heating System Topology Review, Fairchild, July 2000

[8] J. M. Burdio, F. Monterde, J. R. Garcia,

L. A. Barragan, and A. Martinez, “A two-output series-resonant inverter for inductionheating cooking appliances”, IEEE Transactions on Power

Electronics, vol.20, no.4, pp.815−822, July 2005 [9] H. W. Koertzen, J. D. v. Wyk, and J. A. Ferreira,

“Design of the Half-Bridge Series Resonant Converters for Induction Cooking”, in IEEE Power Electronics Specialist Conference Records, pp.729−735, 1995

[10] S. Wang, K. Izaki, I. Hirota, H. Yamashita, H. Omori, and M. Nakaoka, “Induction-heated cooking appliance using new Quasi-Resonant ZVS-PWM inverter with power factor correction”, Industry Applications, IEEE Transactions on, vol.34, no.4, pp.705−712, July/August 1998

[11] J. M. Leisten and L. Hobson, “A parallel resonant power supply for induction cooking using a GTO”, in Power Electronics and Variable-Speed Drives Conference, 1990, pp. 224−230

[12] O. Lucía, I. Millán, J. M. Burdio, S. Llorente, and D. Puyal, “Control algorithm of half-bridge series resonant inverter with different loads for domestic

[13] V. Crisafulli, C. V. Pastore, “New control method to increase power regulation in a AC/AC

Quasi-Resonant converter for high efficiency induction cooker,” Power Electronics for Distributed Generation Systems (PEDG), 2012 3rd IEEE International Symposium on, vol., no., pp.628,635, 25−28 June 2012

[14] V. Crisafulli, A. Gallivanoni, C. V. Pastore, “Model based design tool for EMC reduction using spread spectrum techniques in induction heating platform”, Optimization of Electrical and Electronic Equipment (OPTIM), 2012 13th International Conference on, vol., no., pp.845,852, 24−26 May 2012

[15] N. A. Ahmed, A. Eid, Hyun Woo Lee, M. Nakaoka, Y. Miura, T. Ahmed, E. Hiraki, “Quasi-Resonant Dual Mode Soft Switching PWM and PDM High-Frequency Inverter with IH Load Resonant Tank”, Power Electronics Specialists Conference, 2005. PESC ’05. IEEE 36th Issue Date: 16-16 June 2005 On page(s): 2830−2835

[16] I. Hirota, H. Omori, K. A. Chandra, M. Nakaoka,

“Practical evaluations of single-ended load-resonant inverter using application-specific IGBT and driver IC for induction-heating appliance”, Power Electronics and Drive Systems, 1995., Proceedings of 1995 International Conference on , vol., no., pp.531-537 vol.1, 21−24 Feb 1995

[17] I. Hirota, H. Omori, M. Nakaoka, “Performance evaluations of single-ended quasi-load resonant inverter incorporating advanced-2nd generation IGBT for soft switching”, Industrial Electronics, Control, Instrumentation, and Automation, 1992.

Power Electronics and Motion Control., Proceedings of the 1992 International Conference on, vol., no., pp.223−228 vol.1, 9−13 Nov 1992

[18] H. Ogiwara, M. Nakaoka, “Zero-current soft-switched high-frequency induction-heating inverter using bipolar-mode normally-off SITs”, Industry Applications Society Annual Meeting, 1993., Conference Record of the 1993 IEEE , vol., no., pp.1106−1112 vol.2, 2−8 Oct 1993 [19] K. Chatterjee, V. Ramanarayanan, “Optimum design

of single switch resonant induction

heater”, Industrial Electronics, 1992., Proceedings of the IEEE International Symposium on, vol., no., pp.858−859 vol.2, 25−29 May 1992

(22)

术语表

感热(Induction Heating) IH

Y换电流(Alternating Current) AC

磁强%(Magnetic Field Intensity) H

通量$%(Flux Density) B

磁<率(Permeability) m 自由空间磁<率(Permeability in Free Space) m0

相自<率(Relative Permeability) mr

电Z}(Electromotive Force) (EMF) e

磁通量(Magnetic Flux) F

ê数(Number of Turns) N

电流$%(Current Density) J

<:表面电流$%

(Current Density at the Surface of the Conductor) JS

趋肤深%(Skin Depth) d

深%(Depth) d

<:电阻率(Resistivity of the Conductor) ρ

角频率(Angular Frequency) w

电能转换热能的#率(Power Converted from Electrical Energy to Thermal Energy) Q

<:等效电阻

(Equivalent Resistance of a Conductor) R 零电\rs(Zero Voltage Switching) ZVS 零电流rs(Zero Current Switching) ZCS

±桥(Half-Bridge) HB

¹激·谐振(Quasi-Resonant) QR 5电机角%的电路阻抗(Impedance of the Circuit from the Generator Point of View) Zseries 角谐振频率(Angular Resonant Frequency) w0

质量系数(Quality Factor) Q

谐振频率(Resonant Frequency) fres

电流电\™间的相>

(Phase between the Current and the Voltage) φ 绝缘栅ë极晶:管

(Insulated Gate Bipolar Transistor) IGBT 金P氧~物±<:ì(Metal-Oxide-Semiconductor) MOS ë极结M晶:管ì(Bipolar Junction Transistor) BJT

穿通ì(Punch Through) PT

非穿通ì(Non Punch Through) NPT

终止技术ì(Field Stop Technology) FS

ON Semiconductorííì是Semiconductor Components Industries, LLC (SCILLC).ƒî的注ïð标 SCILLC持有.量Uñ!ð标!版权!ðò机$相s权ñ知识7

参照

関連したドキュメント

The output is protected for high power conditions during Current Limit by thermal shutdown and the Overcurrent Detection shutdown

Amount of Remuneration, etc. The Company does not pay to Directors who concurrently serve as Executive Officer the remuneration paid to Directors. Therefore, “Number of Persons”

The input voltage of the QR flyback stage varies with the line voltage and operating mode of the PFC converter. In addition, the PFC can be disabled at light loads to reduce input

The resonant tank is designed in such a way that the LLC stage is operated in, or very close to, the series resonant frequency (fs) for full load conditions and nominal bulk

Figure 7.. Current Sense Resistor and Peak Current Limit The inductor current is sensed by a current sense resistor in series with the inductor. The sense resistor value configures

In the design example for this demo board, the PFC output bulk voltage is 10 times the output voltage (or V f ) due to the transformer turns ratio (5:1) and the fact that the

For GaN FETs that do not include a dedicated source Kelvin pin, best practice PCB layout techniques should be used to isolate the gate drive return current from the power stage,

• Step 3: M 1 is closed Î bridge pin moved to bulk level, D boot is still blocked &amp; C boot supplies floating area... Root of High Side Driver