• 検索結果がありません。

A combinatorial proof for the largest power of 2 in the number of involutions

N/A
N/A
Protected

Academic year: 2022

シェア "A combinatorial proof for the largest power of 2 in the number of involutions"

Copied!
26
0
0

読み込み中.... (全文を見る)

全文

(1)

A combinatorial proof for the largest power of 2 in the number of involutions

Jang Soo Kim

KAIST

The 60th Séminaire Lotharingien de Combinatoire April 1st, 2008

(2)

Definition of τ

p

(n)

Sn: the set of permutations of[n] ={1,2, . . . ,n}

A: a finitely generated group

hn(A) :=the number of homomorphisms fromAtoSn mA(d) :=the number of subgroups of indexdinA Wohlfahrt (1977)

X

n≥0

hn(A)

n! xn=exp

 X

d≥1

mA(d) d xd

p: a prime number

Z/pZ: the cyclic group of orderp

τp(n) :=hn(Z/pZ)is the number ofπ∈Snsatisfyingπp=1 Then

X

n≥0

τp(n)

n! xn=exp

x+xp p

(3)

Some results for ord

p

p

(n))

ordp(n) :=max{k:pk|n}

ord3(72) =ord3(23·32) =2 Chowla, Herstein and Moore (1952)

ord22(n))≥jn 2

k−jn 4 k

Grady and Newman (1994)

ordpp(n))≥ n

p

n

p2

Ochiai (1999) foundordpp(n))for all primesp≤23. In particular, ifp=2 then Ochiai’s result is the following:

Letnr mod 4withr=0,1,2,3. Then ord22(n)) =jn 2 k

−jn 4 k

r,3

(4)

Case p = 2 : involutions

τ2(n) =the number ofπ∈Snwithπ2=1, which is called aninvolution.

In:=the set of involutions inSn tn:=|In|=τ2(n)

π∈ In↔anincomplete matchingonnvertices Example

π= (1 2)(3 5)(4 6)(7 9)(8 11)(10 12)(13 16)(18 19)(20 23)in cycle notation

1 2 3 4 5 6 7 8

21 22 9 10 11 12

13 14 15 16 17 18 19 20 23

We call each connected component afixed pointor anedge.

(5)

φ(π) : the block graph

1 2 3 4 5 6 7 8

21 22 9 10 11 12

13 14 15 16 17 18 19 20 23

B1 B2 B3 B4

B11 B5 B6

B7 B8 B9 B10 B12

1 2 3 4 5 6 7 8

21 22 9 10 11 12

13 14 15 16 17 18 19 20 23

Normalblocks contain two vertices.

Thespecialblock contains only one vertex. (exists only ifnis odd)

(6)

φ(π) : the block graph

1 2 3 4 5 6 7 8

21 22 9 10 11 12

13 14 15 16 17 18 19 20 23

B1 B2 B3 B4

B11 B5 B6

B7 B8 B9 B10 B12

Normalblocks contain two vertices.

Thespecialblock contains only one vertex. (exists only ifnis odd)

(7)

φ(π) : the block graph

1 2 3 4 5 6 7 8

21 22 9 10 11 12

13 14 15 16 17 18 19 20 23

B1 B2 B3 B4

B11 B5 B6

B7 B8 B9 B10 B12

Normalblocks contain two vertices.

Thespecialblock contains only one vertex. (exists only ifnis odd)

(8)

φ(π) : the block graph

1 2 3 4 5 6 7 8

21 22 9 10 11 12

13 14 15 16 17 18 19 20 23

↓ φ

B1 B2 B3 B4

B11 B5 B6

B7 B8 B9 B10 B12

Normalblocks contain two vertices.

Thespecialblock contains only one vertex. (exists only ifnis odd)

(9)

Dividing I

n

into φ

−1

(G)

Gn:=the set of block graphsφ(π)forπ∈ In, i.e., the imageφ(In) φ−1(G) :={π:φ(π) =G}

In= [

G∈Gn

φ−1(G)

tn= X

G∈Gn

−1(G)|

How to find|φ−1(G)|forG∈Gn? Eachπ∈φ−1(G)can be constructed by

labeling vertices with2i1and2iin the normal blockBiofG, adding an edge between the vertices in isolated normal blocks.

(10)

Lemma

LetG∈Gnandm(G)denote the number of2-block-cyclesinG.

| φ

−1

(G)| = 2 b

n2

c

−m(G)

Proof.

B1 B2 B3 B4

B11 B5 B6

B7 B8 B9 B10 B12

There are two ways to label vertices (or add an edge) in anormalblock.

In this counting, a 2-block-cycle doubles the number ofπ∈φ−1(G).

3 4 5 6 = 4 3 6 5

(11)

Deriving a formula for t

n

gn:=the number ofG∈Gnwithout2-block-cycles

The number ofG∈Gnwithexactlyi2-block-cycles is equal to n

2

2i

!

(2i)!!gn−4i

wherem!!denotes the product of all positiveoddintegers at mostm.

Letn=4k+rfor0≤r≤3.

tn= X

G∈Gn

−1(G)|= X

G∈Gn

2bn2c−m(G)

= bn4c X

i=0

2bn2c−i n

2

2i

!

(2i)!!gn−4i

=2bn2cbn4cXk

i=0

2i k i

!(2k+r

2

)!!

(2i+r

2

)!!g4i+r

(12)

Finding ord

2

(t

n

)

Theorem

Letn=4k+rfor0≤r≤3. Then

tn=2bn2cbn4cXk

i=0

2i k i

!(2k+r

2

)!!

(2i+r

2

)!!g4i+r

wheregndenotes the number ofG∈Gnwithout 2-block-cycles.

g2n+1=g2n+ng2n−1

n 0 1 2 3 4 5 6 7

gn 1 1 1 2 2 6 8 26

For alli6=0andr=0,1,2,3,

ord2 20 k 0

!(2k+r

2

)!!

(r

2

)!! gr

!

<ord2 2i k i

!(2k+r

2

)!!

(2i+r

2

)!!g4i+r

!

Thus

ord2(tn) =jn 2 k

−jn 4 k

r,3

(13)

Weights on involutions

Letπ∈ In, anincomplete matching.

fix(π) :=the number offixed pointsinπ edge(π) :=the number ofedgesinπ wt(π) :=xfix(π)yedge(π)

tn(x,y) := X

π∈In

wt(π)

Note thattn(x,−1)isthe Hermite polynomial.

tn(x,y) = X

π∈In

wt(π) = X

G∈Gn

X

π∈φ−1(G)

wt(π)

We want to definewt(G)satisfying X

π∈φ−1(G)

wt(π) =|φ−1(G)|wt(G)

(14)

Defining wt(G) satisfying wt(G) =

−11(G)|

P

π∈φ−1(G)

wt(π)

Recall the mapφ andwt(π) =xfix(π)yedge(π).

All edges and the fixed points remain the sameexceptthose in isolated normal blocks.

1 2 or 1 2

Put weight x2+y2 on eachisolated normal block.

wt(G) :=

x2+y 2

inb(G)

xfix(G0)yedge(G0)

HereG0denotes the block graph obtained fromGby removing the isolated normal blocks.

wt(G) = 1

−1(G)|

X

π∈φ−1(G)

wt(π) Note thatwt(G)is an integerif(x,y) = (1,1)or(1,−1).

(15)

The weighted sum of involutions, t

n

(x, y)

X

π∈φ−1(G)

wt(π) =|φ−1(G)|wt(G) =2bn2c−m(G)wt(G)

gn(x,y) :=the weighted sum ofG∈Gnwithout2-block-cycles The weighted sum ofG∈Gnwithexactlyi2-block-cycles is equal to

n

2

2i

!

(2i)!!y2ign−4i(x,y)

tn(x,y) = X

G∈Gn

X

π∈φ−1(G)

wt(π) = X

G∈Gn

−1(G)|wt(G)

=2bn2cbn4cXk

i=0

2i k i

!(2k+r

2

)!!

(2i+r

2

)!!y2k−2ig4i+r(x,y) In particular, if(x,y) = (1,−1)then

tn(1,−1) =2bn2cbn4cXk

i=0

2i k i

!(2k+r

2

)!!

(2i+r

2

)!!g4i+r(1,−1)

(16)

Properties of g

n

(x, y)

Recurrence relation:

g2n+1(x,y) =x·g2n(x,y) +ny·g2n−1(x,y) g2n(x,y) = x2+y

2 g2n−2(x,y) + (n−1)xy·g2n−3(x,y) +2 n−1

2

!

y2·g2n−4(x,y) +3 n−1 3

!

y4·g2n−8(x,y)

Using the recurrence, we obtain the following.

Letn=8k+rwhere0≤r<8. Then

gn(1,1)≡

(−1)bk2c mod 4 ifr=0,1,2, 2 mod 4 ifr=3,4,5,7, 0 mod 4 ifr=6.

Ifn≥8thengn(1,−1)is even.

Ifk≥2thenord2(g4k+2(1,−1))≥2.

(17)

ord

2

(t

n

(1, −1))

Using the recurrence, we obtaintn(1,−1)forn≤9.

n 0 1 2 3 4 5 6 7 8 9

gn(1,−1) 1 1 0 -1 -1 1 2 -1 -6 -2 Recall

tn(1,−1) =2bn2cbn4cXk

i=0

2i k i

!(2k+r

2

)!!

(2i+r

2

)!!g4i+r(1,−1).

Using the properties ofgn(1,−1)and some elementary number theory, we can obtainord2(tn(1,−1)).

n ord2(tn) ord2(tn(1,−1))

4k k k

4k+1 k k

4k+2 k+1 k+3+ord2(k) 4k+3 k+2 k+1

(18)

Even involutions and odd involutions

A permutationπisevenifsign(π) =1, andoddifsign(π) =−1.

Note that

tn(1,−1) = X

π∈In

sign(π).

tevenn :=the number of even involutions inIn

toddn :=the number of odd involutions inIn

tneven=1

2(tn+tn(1,−1)), tnodd=1

2(tntn(1,−1))

n ord2(tn) ord2(tn(1,−1)) ord2(tevenn ) ord2(toddn )

4k k k kodd(k) ??

4k+1 k k ?? k+ord2(k) +χeven(k)

4k+2 k+1 k+3+ord2(k) k k

4k+3 k+2 k+1 k k

χeven(k)is 1 ifkis even, and 0 otherwise.

χodd(k)is 1 ifkis odd, and 0 otherwise.

(19)

Case p ≥ 3 : π

p

= 1, fixed points and p-cycles

p: a prime number≥3

τp(n): the number ofπ∈Snwithπp=1 Sn,p:={π∈Snp=1}

π∈Sn,pis a directed graph consisting of fixed points andp-cycles.

1

2 3

4

5 6

7

8 9

10

11 12

13

14 15

16

17 18

19

20 21

22

23 24

25

26 27

28

29

Grady and Newman (1994)

ordpp(n))≥ n

p

n

p2

(20)

π to the directed block graph φ

p

(π)

1

2 3

4

5 6

7

8 9

10

11 12

13

14 15

16

17 18

19

20 21

22

23 24

25

26 27

28

29

B1 B2

B3 1

2 3

4

5 6

7

8 9

B4 B5

B6 10

11 12

13

14 15

16

17 18

B7 B8

B9 B10

19

20 21

22

23 24

25

26 27

28

29

(21)

π to the directed block graph φ

p

(π)

1

2 3

4

5 6

7

8 9

10

11 12

13

14 15

16

17 18

19

20 21

22

23 24

25

26 27

28

29

B1 B2

B3

B4 B5

B6

B7 B8

B9 B10

(22)

π to the directed block graph φ

p

(π)

1

2 3

4

5 6

7

8 9

10

11 12

13

14 15

16

17 18

19

20 21

22

23 24

25

26 27

28

29

B1 B2

B3

B4 B5

B6

B7 B8

B9 B10

(23)

π to the directed block graph φ

p

(π)

1

2 3

4

5 6

7

8 9

10

11 12

13

14 15

16

17 18

19

20 21

22

23 24

25

26 27

28

29

↓ φ

p

B1 B2

B3

B4 B5

B6

B7 B8

B9 B10

(24)

Finding |φ

−1p

(G)|

Gn,p:=the set of directed block graphsφp(π)forπ∈Sn,p

τp(n) =|Sn,p|= X

G∈Gn,p

−1p (G)|

B1 B2

B3

B4 B5

B6

B7 B8

B9 B10

inb(G) :=the number ofisolated normal blocks

Connected componentsCandC0,not contained in an isolated normal block, are calledidenticalif they have the same sequence of visiting blocks.

Divide all connected components ofG,not contained in an isolated normal block, into identical classes.

type(G) := (c1,c2, . . . ,cl), wherecidenotes the number of components in an identical class.

In the example,inb(G) =2andtype(G) = (3,2,2,1,1,1,1)

(25)

Finding |φ

−1p

(G)|

B1 B2

B3

B4 B5

B6

B7 B8

B9 B10

Letn=pk+randG∈Gn,p. Lettype(G) = (c1,c2, . . . ,cl).

Then

−1p (G)|= (1+ (p−1)!)inb(G)(p!)k−inb(G)r!

c1!· · ·cl!

cipand equality holds only if there arepcycles inpblocks.

1+ (p−1)!≡0 mod p

ordp(|φ−1p (G)|)≥ n

p

n

p2

ordpp(n))≥ n

p

n

p2

(26)

Thank you for listening!

参照

関連したドキュメント

Now it makes sense to ask if the curve x(s) has a tangent at the limit point x 0 ; this is exactly the formulation of the gradient conjecture in the Riemannian case.. By the

[3] Chen Guowang and L¨ u Shengguan, Initial boundary value problem for three dimensional Ginzburg-Landau model equation in population problems, (Chi- nese) Acta Mathematicae

Then it follows immediately from a suitable version of “Hensel’s Lemma” [cf., e.g., the argument of [4], Lemma 2.1] that S may be obtained, as the notation suggests, as the m A

Applying the representation theory of the supergroupGL(m | n) and the supergroup analogue of Schur-Weyl Duality it becomes straightforward to calculate the combinatorial effect

As a consequence of this characterization, we get a characterization of the convex ideal hyperbolic polyhedra associated to a compact surface with genus greater than one (Corollary

To be specic, let us henceforth suppose that the quasifuchsian surface S con- tains two boundary components, the case of a single boundary component hav- ing been dealt with in [5]

The theory of log-links and log-shells, both of which are closely related to the lo- cal units of number fields under consideration (Section 5, Section 12), together with the

We relate group-theoretic constructions (´ etale-like objects) and Frobenioid-theoretic constructions (Frobenius-like objects) by transforming them into mono-theta environments (and