• 検索結果がありません。

Positive Yuya

N/A
N/A
Protected

Academic year: 2022

シェア "Positive Yuya"

Copied!
32
0
0

読み込み中.... (全文を見る)

全文

(1)

Positive

flow

-

spines manifolds and contact 3

-

Yuya Koda I Hiroshima

Univ .

)

Joint work w/

Ippei

Ishii

(

Keio Univ . )

Masaharu Ishikawa

I

Keio Univ . )

Hironobu Nao e ( Chuo Univ . )

Intelligence of

Low -

dimensional Topology May

23 ,

2019

RIMS

(2)

Main Theorem

M

: a closed oriented 3 - manifold

{ positive flow

- spines of 'M

)

Cont I M )

/ isotopy

§ I

Positive

flow

-

spines

§

2 .

Contact 3

-

manifolds

§

3 .

Main results

§ 4

.

Tabulation

(3)

§ I

Positive

flow

-

spines

§

2 .

Contact

3 -

manifolds

§

3 .

Main

results

§ 4

.

Tabulation

(4)

M

: a closed oriented 3 -

manifold

.

¥

=

I

Yt

Ite

µ

: a non -

singular

flow on M

( generated by

a non -

singular

vector

field

X on M

)

.

A

compact

oriented

surface

I c M is a normal

section Eff

lil

I

In

X ( positively

transverse

)

i for

E

.pe#Ty .gg?i.RqfirsttimetomeetE

Cii )

( IT

ht P: e .M

Ip Mu

.

I {

Yt )

)

t , o n I F

4

i

)

I

p p p

I iii ) p E 2

-2

Tip

, ) e

2-2

IT ' Ip) e Int

-2

i and

liv ) P c- 2 -2

Ttp

, ) c-

2E &

Tap Ttip Ftp Tp

(

) *

2-2In 22

, . ":: p ,

(5)

P .. = the

discontinuity

of

set

IT

: Mpy to

I

I U× IR

Tip tp

) ,

)

=

I

u

{

ft

Cp

) e M I p c- I ,

Tip

orT

use

:!:::.: { !::i.i. coT

Smoothing tp

I T §

:p

Ti !:!:i::i.:) orE

ii.

2-2:ii:. 0::::iii::

f

i.. . .,::i.:'. or

smoothing

TUs2soI I tei:i.iT E

}

.

.

÷..

coo

Jo

, . - . . -0 O

(6)

@

P

c M : a

branched polyhedron

.

Q

M

- P I Int -2 x 10.1 ) .

In

particular

,

I

= D ' M - P = Int D

?

I

P

is a

flow

-

spine of I

M , E ) .

E

is carried

by

P .

(7)

Definition

P

c M : a flow -

spine

of ( M . E

)

lil P is a spine , i.e . M - P I Int D' i

def

Iii )

Vp

e P ,

7- a

positive

chart I U ix. y. ) of M Zaround p s 't .

Z

^

, y l . Type vertex r - type vertex

> x

( U . Un P ) I

og 9 Or

/

where I on U is

generated by Zz

; and

Z

> Y

where

I iii ) M - P = > x

, E on M - P is

generated by Fz

.

(8)

Proposition

n n

! n

^

.

. .

i

' ' ' ' ' ' ' ' '''

V M : a

closed

oriented 3 - manifoldµ , i... . .P.

y

. .

V

§

: a non .

singular

flow on , . .

Bp

a

flow

.

spine

P of I M . Be ) . section

local

normal

Ip

Vertices of a

flow

- spine

2-^ ---..-

f-

.

!

2- - - -

f -

: . .. - -

y

"

I ^ y .

i

'

7 7

...''

> x

\

> x

I -

type

r -

type

A

flow

- P is

spine positive

if

type {

.. vertex

has

at

Py

of P leastisI ofvertexl - ; and.

(9)

M : a closed oriented 3 - manifold

It

=

{

Yt } ten : a non .

singular

flow on M

E (

I D2) c M : a normal section

for Z

P

c M : a

flow

- spine of ( M , E ) .

"

÷

,

- is

.

i

.

I

.

to

! .

I

.

graph

3 -

regular

.

.

I

\

.

f

u

M - P

§

. .

( E. TIRE ) )

(10)

Example

Positive

abalone P

c-

S3

. . B

if

:÷÷ .

.

P

is a

Nbd I flow l

-S-

type spine

CP) ;Pof) the

flow

on

S3

"

"

"

i

. with a

regular

orbits

whose

formfiber. thea

positive

Seifert trefoilfibration.

(11)

§ I

Positive

flow

-

spines

§

2 .

Contact

3 -

manifolds

§

3 .

Main

results

§ 4

.

Tabulation

(12)

M : an oriented 3 - manifold Definition

(I) d : a I - form on M .

L is a (

positive )

contact form on M d n old > 0 .

def (2) G : a 2 -

plane

field on M .

}

is a I

positive )

contact structure

I d : a

I positive )

contact form on M

def

Sit .

3

= Ker a .

(13)

Z

Example

n

(' I

dstd

:=

d Z t x

dy

.

(

IR

? kerdstd )

mmmm

!!

Bst

'd > y

( Esta )

, . .az ,

=

Span III.

Ey - a

IT )

.

µ

(2) S ' =

{ I

x , , y,, xz . Ya )

I

x , 't Y, 't

aft

YE = I

}

c IR " I = 62

)

.

dstd

¥

,

(

Kid Yi - Yidxi

)

I

S3

.

(

S3.

kerdstd )

. TP Tps 's 3 Tp S3

mmmm ;

!!

} Std . . - - - - . --- .. - . . .. . - . . .

( Gst

.

d)

p =

Tps

' n J Tp

S3

.

jeez

(14)

Definition

(

M , , 5, ) . ( Mz , 52

)

: contact 3 - manifolds

(

Mi

,

es, ) I

(

Mz ,

}z

) contact

omorphic

I

f

: M , Mz : a

diffeomorphism

s. t . f-* (3, ) =

52

def -

contact

morphism

Theorem

( Darboux

1882 )

V-2

: a contact

form

on an oriented 3 - manifold M ,

t P E M ,

coordinates x. Y , Z on an open

neighborhood

U a M of p st .

p = ( O, 0,0 ) and d I u = dz t x dy .

In

particular

,

(

pUy , Kera

)

I

(

> Vuo

Ltu

.

esstdlv )

, where Vc 1123 : an open set

(15)

Theorem

( Gray

1959

)

M : a closed oriented 3 - manifold

{

at-

It

c. go,, ,

: a smooth

family

of contact

forms

on M

7- an

isotopy { }

t.co ,,, s. t .

htt

)

Yt

*

I

Go

)

= est V te lo . I ]

.

Theorem

(

Martinet 1971 , Thurston - Winkel n

Kemper

1975 )

Every

closed oriented 3 - manifold admits a contact

structure Problem

.

14

: a closed oriented 3 - manifold

Classify { isotopy Tight structures

IMCont) !!11u

contact

( MOT) onIM M)

} /

- - - or contact om

orphism

.

=

.

(16)

Theorem

I Eliashberg

1989

)

M

: a closed oriented 3 - manifold .

+ OT I M

) / isotopy {

coori . 2.

plane field

on

My

coori .

homotopy

.

Theorem

Tight

I M )

/ isotopy

is classified when

or M =

S3 I Eliashberg

1989

)

M =

I3 I

Kanda 1997 )

Or M =L ( p, 8 )

I

2000

Giroux

, Honda 2000 )

@ M = - -2 ( 2. 3,5 ) I

Etnyre

- Honda 2001 ) . etc .

Theorem

I

Giroux 2002

)

M

: a closed oriented 3 - manifold .

Cont I M )

/ isotopy

I -: I

{

open book

decomp

.'s of 'M

} / positive Hopf plumbing

.

(17)

Definition

Ii ) d : a contact on a closed formoriented 3 - manifold .

Ra

: the Reeb vector field on M

I i)

dd I

Ra , .

)

I O i and

def Iii ) d I Ra ) = I .

121 The Reeb flow

Ea of

L is a flow

generated by Ra

.

2-

Example

n

I il

I

1123 ,

dstd

: -- d z t xd Y

)

.

..

Rasta

=

IT

. .

:

: :

:

> Y

X

"

(18)

(2)

(

S ' , dstd

)

^

:÷:::::÷÷i :: : ÷

.

Lemma

M : a closed oriented 3 - manifold . do .

d , : contact forms on M .

Rao

=

Ra

, Ker do = Ker d , .

isotopic ( Proof )

Gray stability

. A

(19)

§ I

Positive

flow

-

spines

§

2 .

Contact

3 -

manifolds

§

3 .

Main

results

§ 4

.

Tabulation

(20)

M

: a closed oriented 3 - manifold Definition

A

contact structure

}

on M is

supported by

a flow -

spine

Pc M

if I a contact form d on M

St

.

(i )

9

=

Ker

a i and

Ciii P is a

flow

-

spine of

I M ,

Ike

) .

the Reeb flow of d

Remark

We consider

}

modulo

isotopy

.

(21)

Example

Positive

abalone P

c- S3

. . B

if

:÷÷

" : i

.

.

P

withis aa

regular Nbd I

orbits

flow P l whose supports

--formS

spine type

CfiberP.) the;Pofa

5

)i trefoilSeifertthestd .

flow

. fibrationon

S3

(22)

Theorem

(

Ishii - Ishikawa - K. - Nao e

)

I

.

V

positive

flow

spine

P c M ,

a contact structure

5 supported by

P .

2

. P c M : a

positive

flow - spine .

Go . 9, : contact structures on M

supported by

P .

Go = G, .

isotopic 3

.

V contact structures

}

on M .

7- a

positive

flow -

spine

P c M

supporting 5

.

: a closed Moriented 3 - manifold .

{ positive flow

- spines of M

)

Cont l M )

/ isotopy

(23)

Theorem

(

Ishii - Ishikawa - K. - Nao e

)

I

.

V

positive

flow

spine

P c M .

a contact structure

5 supported by

P .

I

Idea )

Constructive .

(

Similar to Thurston - Winkel n

Kemper

's

argument

. )

P c M : a

positive

flow

spine

.

Using

the stratification V CP ) c SCP ) c P c M ,

we define a L - form

7

on M s . t . 7 nd 7 I 0 .

÷

,

I

we use the

positivity

of P here .

)

Y ÷ dz . . :

. . Z

7-

p

: a

"

I . form

"

on P w/

dp

> 0 on P .

(24)

L

§

+ Ry : a

required

contact form on M .

- - I

T I

extension of Sufficiently

P to M large

Why positive

flow -

spine (

l -

type

) ?

vertex

t

region

w

I

✓ 't

7 ÷ d

Y ÷

dw

(25)

Theorem

(

Ishii - Ishikawa - K. - Nao e

)

2

. P c M : a

positive

flow - spine .

Go . 9, : contact structures on M

supported by

P.

Go = 9,

isotopic

-

(

Idea )

Go =

Ker

do , es,

= Ker di .

Using

7 , we find a I -

parameter family {

at

}

te I 0,1 ) of

contact

forms

on M .

The conclusion

follows from Gray Stability

. I

(26)

Theorem

(

Ishii - Ishikawa - K. - Nao e

)

3

.

V contact structures

}

on M .

7- a positive flow -

spine

Pc M

supporting

9 .

I Idea )

}

an open book de comp. of M

supporting

G .

[ Giroux 2000 ]

a

positive

flow -

spine

supporting

G . a

(27)

The

positivity

condition for flow -

spines

is

really

essential ?

. . . Yes !

Theorem

(

Ishii - Ishikawa - K. - Nao e

)

M : a 3 - manifold

admitting

a

tight

contact structure .

I a non -

positive

flow -

spine

P of M s. t .

lil P does not

support any

contact structure ; or

Iii ) P

supports

two non -

isotopic

contact

structures

.

(28)

§ I

Positive

flow

-

spines

§

2 .

Contact

3 -

manifolds

§

3 .

Main

results

§ 4

.

Tabulation

(29)

M

: a closed oriented 3 - manifold

}

: a contact structure on M

Definition

C I M .

5)

f

min

f

# of vertices of P I

Psuipsp.at?nogsitgive

flow - spine

)

Recall

c ( M , 9) = I I M . 9) =

(

S3, esstd )

(30)

CIM , } ) = I CCM . es ) = 2

a. .

( S? Esta ) double br.

cover

•&

my

along a singular

f

fiber I unknot )

P

Be •

( S3. esstd )

I

E. IT ' ' 12-2 )

) I

E, -1112-27

)

( double br .

cover

along a regular

••

( 43,2 ), } tight )

f.) &

, fiber I trefoil )

g)

.

• . . #

g

Be •

(

E. IT '' 12-2 )

) I

I , -111527

) I

E. IT '' 12-2 )

) I

E, -111527

)

I

fiber

wise

.

(

IRP ? estight)

Seifert fibration of S3 " coil "

surgery

•.

with a

regular

fiber a trefoil .

µ #

.. .

(

E. IT '' 12-2 )

) I

E, -1112-27

)

(31)

CIM .es )

I

(

S3, Esta )

( 112133,

Hight

)

Z

(

L I 3,2 ) , estight

)

(

L 13.1 ) , estight )

(

L 14,3 ) , estight )

* to be confirmed

3

(

L

15,2 Remark

# of

§ tight

IRP ? contactL 13,1)( I113,2(structures) )L,

2.3.31

14,1est,ight)

Hight )

onL)14.31

lens

115.1spaces) 45,2I)upLto15.4isotopy) - ) :

I I 2 I 3 I 4 2 I

(32)

Theorem

(

Ishii - Ishikawa - K. - Nao e

)

The

complexity of

the link of

singularity

of

f-

I x , Y , 2- ) = x ' t y 3 + zn

with the contact structure given

by

the

complex tangency

is at most n .

It is

exactly

n if n E 5 .

参照

関連したドキュメント

One-dimensional Gibbs measures, on the other hand, are fields determined by simultaneous conditioning on past and future.. For the Markovian and exponentially continuous cases

DRAGOMIR, A converse result for Jensen’s discrete inequality via Grüss’ inequality and applications in information theory, Analele Univ.

Since both models involve a dependence of the inelastic state of a material point on the (history of the) inhomogeneity of the glide-system inelastic deformation, their

In the preceding section we extended some “standard” pseudo-differential algebras to the pa- rameter-dependent variant, namely the algebra on a “closed” smooth manifold M with

Narutaka OZAWA Joint work with Nicolas Monod.. Geometry and Analysis, Kyoto University, 16

In Subsection 1.2 we prove the existence theorem under an assumption on the boundary data g that is reminiscent of the compatibility conditions in the theory of 1st

Denis [5] and more recently Bally [1] and Kulik [10; 11] also obtained some regularity results when q is singular, using the drift and the density of the jump instants, see

Those which involve FIOs and ψ dos are consequences of the Composition Theorem 7 while the results about the composition of FIOs of Type I and Type II will be needed in particular