• 検索結果がありません。

(4) 横断面形調査要領では メッシュの中心点と 中心点を通る等高線が内接円に交わる 2 点を結んだ 2 直線の山麓側の角度 ( メッシュの中心点を通る等高線がない場合は 中心点に最も近接している等高線から類推する角度 ) を計測し 10 度括約で求める とされている 横断面形の概念図を図 4.4

N/A
N/A
Protected

Academic year: 2021

シェア "(4) 横断面形調査要領では メッシュの中心点と 中心点を通る等高線が内接円に交わる 2 点を結んだ 2 直線の山麓側の角度 ( メッシュの中心点を通る等高線がない場合は 中心点に最も近接している等高線から類推する角度 ) を計測し 10 度括約で求める とされている 横断面形の概念図を図 4.4"

Copied!
6
0
0

読み込み中.... (全文を見る)

全文

(1)

(4) 横断面形 調査要領では、「メッシュの中心点と、中心点を通る等高線が内接円に交わる

2

点を結ん だ

2

直線の山麓側の角度(メッシュの中心点を通る等高線がない場合は、中心点に最も近接 している等高線から類推する角度)を計測し、

10

度括約で求める」とされている。横断面 形の概念図を図

4.4

に示す。 図 4.4 横断面形の概念図 本手引書(案)では、

DEM

データからメッシュの水平曲率を求め、凹地形、等斉斜面、 凸地形に分類する。

10mDEM

を使用する場合の横断面形と水平曲率との関係は、以下のと おりである。 ア)水平曲率 ≦

-0.05

・・・凹地 イ)

-0.05

< 水平曲率 ≦

0.05

・・・等斉斜面 ウ)

0.05

≦ 水平曲率 ・・・凸地形 【参考】曲率について 曲率とは、地形の凹凸の指標として用いられるもので、曲線の任意の点における曲がり具合 に相当する円の半径の逆数で表される。平均曲率は、曲面上のある点を通る全ての測地線(曲 面上で2点間を結ぶ最短距離の曲線)の曲率の最大値と最小値の平均として定義される量であ る。 図 4.5 平均曲率の算出イメージ図 凹地形 (~150°) 凸地形 (211°~) 等斉斜面 (151°~210°) 算出式

(2)

(5) 土層深 調査要領では、「土壌図等の既往の資料及び現地調査により、地形、傾斜等を勘案して

0.5

m単位で調査する」とされている。本手引書(案)では、これらの調査が困難な場合には、 表

4.5

に示された値を参考とすることもできる。 表 4.5 地質分類別、横断面形別土層深の推定表 (6) 齢級 調査要領では、「森林簿等の既往の資料により、樹冠占有率の最も高い林分の齢級を調査 する」とされている。本手引書(案)においても、原則として森林簿を使用することとする。 注)竹林の齢級は、メッシュ内又はその周辺の他の樹種の齢級とする。 無立木の齢級は、

1

齢級とする。 (7) 危険度の判定 調査項目(1)~(6)の危険度点数を合計し、メッシュごとに山腹崩壊危険度点数を算 出する。調査要領に基づき、山腹崩壊危険度点数に応じて表

4.6

に示す区分により各メッシ ュの山腹崩壊危険度を判定し、山腹崩壊危険度区分図を作成する。 表 4.6 山腹崩壊危険度判定表 危険度高 危険度低 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 凹型 2.0 2.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 平坦 2.0 2.0 2.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 凸型 2.0 2.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 凹型 0.5 1.5 1.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 3類 平坦 0.5 1.5 1.5 1.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 凸型 0.5 1.5 1.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 凹型 1.0 1.0 1.5 2.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 4類 平坦 1.0 1.5 1.5 2.0 1.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 凸型 1.0 1.0 1.5 2.0 1.0 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 凹型 1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 5類 平坦 1.0 1.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 凸型 1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 凹型 0.5 0.5 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 6類 平坦 0.5 0.5 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 凸型 0.5 0.5 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 凹型 1.0 1.5 1.5 2.0 2.0 2.5 2.0 2.0 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 7類 平坦 1.5 1.5 2.0 2.0 2.5 2.5 2.5 2.0 2.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 凸型 1.0 1.5 1.5 2.0 2.0 2.5 2.0 2.0 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0 6 11 17 22 27 31 35 39 42 45 48 50 52 54 56 58 60 地質分類 横断面形 等高線本数 傾斜(度) 1類 2類 ※平成 17 年度山地災害危険地区危険度判定手法調査報告書(財団法人林業土木コンサルタンツ、2006)より抜粋、加筆 多雨地域 非多雨地域 A 135以上 125以上 B 125~135 115~125 C 100~125 100~115 山腹崩壊危険度 色区分 点  数

(3)

4.2

森林の土砂崩壊防止機能の評価

4.2.1. 解析手法 崩壊の発生規模を低減させうる土砂崩壊防止機能が高い森林とは、信州大学北原曜教授らの 研究成果から次のように考えられている。 山地災害危険地区調査における山腹崩壊危険度の判定では、齢級が評価因子の一つとなって いるが、地形・地質的な素因が主たる評価因子であり、上記のような森林の土砂崩壊防止機能 に関連する詳細な情報は含まれていない。治山事業において流木災害の発生源対策を検討する 場合、森林の土砂崩壊防止機能を適切に評価した上で、森林の整備により災害に強い森林に誘 導していくことが重要と考えられる。このことから、本手引書(案)では、樹木根系の引き抜 き抵抗力に関する既往の研究成果に着目し、土砂崩壊防止機能に関連性が大きいといわれてい る『樹種』、『立木密度』、『胸高直径』を評価因子として、森林の土砂崩壊防止機能を評価 する。メッシュサイズについては、立木間隔と樹木根系の崩壊防止力に関する研究(図

4.6

) より、

1

本の樹木根系の崩壊防止機能が及ぶ距離は最大

10

m程度と想定されることから、半径

10

mの円が内接する

20

×20

mとする。 図 4.6 立木間隔(m)と崩壊防止力(⊿C(KN/㎡)の関係 (出典:矢下、北原、小野 「ミズナラ、コナラ天然林における崩壊防止機能の評価」中森研 No.59【論文】2011) 森林の土砂崩壊防止機能は、山腹崩壊危険度判定で設定した

100m

メッシュを

20m

メッ シュに細分し、樹種、立木密度、胸高直径を評価因子として点数を設定し評価する。 ミズナラ y = 80.77x-1.44 コナラ y = 51.12x-0.53 カラマツ y = 128.7x-2.17 0 10 20 30 40 50 0 2 4 6 8 ΔC ((((k N /m 2)))) 立木間隔(m) 立木間隔(m)立木間隔(m) 立木間隔(m) ミズナラ コナラ カラマツ

【土砂崩壊防止機能が高い森林】

①根系の引き抜き抵抗力が大きい樹種からなる森林

②立木密度が

1,000

1,200

/ha

程度の森林

③胸高直径が大きい樹木からなる森林

(4)

4.2.2. 森林の土砂崩壊防止機能の評価因子の把握方法 評価因子の数値は、森林の土砂崩壊防止機能の評価単位である

20

mメッシュにて集計する。 (1) 現地調査 ① 森林調査は、代表箇所に標準地を設けてその立木等を調査する標準地調査とする。調査 方法としては、面的な区画とする面的調査法とし、面積は

100m

2

400m

2を標準とする。 ② 面的調査法では、一定面積の標準地を設けるコドラート法が広く活用されている。標準 地の形は、方形と円形があるが、航空レーザ測量データを用いた解析では、円形とした 方が、

GIS

上での形状の誤差が小さく、現地調査結果とレーザ測量成果との整合がとり やすい利点がある。現地調査では、標準地の中心に

GPS

を設置し、中心点の座標値を記 録する。 ③ 航空レーザ測量データを用いた森林情報の解析から、広域の森林情報の推定を行うため には、解析結果と現地調査結果との相関式を求める必要がある。そのため、現地調査に おける標準地の設定にあたっては、森林簿の齢級等を参考に、主要な樹種ごとに樹高、 胸高直径、立木密度が可能な限り偏ることがないように配置することが望ましい。 森林の土砂崩壊防止機能の評価因子とする「樹種」、「立木密度」、「胸高直径」は、現 地調査データをもとに航空レーザ測量成果を活用した解析により把握する。 現地調査は、航空レーザ測量データを用いた解析結果との相関を求め、広域の森林情報の 推定を目的に実施するもので、森林を形成する立木の樹種、樹高、胸高直径、立木密度等を 定量的に調査する。

(5)

(2) 樹種 オルソ写真の判読により、樹冠の形状、色調等から樹種の区分を行う。オルソ写真による判 読例を図

4.7

に示す。 図 4.7 オルソ写真の判読例 航空レーザ測量の成果として、レーザ反射強度のデータがある場合は、この反射強度と樹冠 高、樹冠形状に関する情報から、判読画像(レーザ林相図)を作成し樹種を識別することが可 能である。この画像には次のような特徴がある。 植生の識別に効果がある近赤外波長(

1,064nm

)のレーザパルスの反射強度を用いている ため、空中写真よりも植生の差異を識別しやすい。 樹冠の凹凸やテクスチャを識別できるので、広葉樹と針葉樹の識別がしやすい。 同じ樹種でも樹高が異なれば色調も異なるため、林相の差異をより鮮明に識別することが 可能である。 レーザ林相図による判読例を図

4.8

に示す。 図 4.8 レーザ林相図判読例 樹種は、航空レーザ測量時に同時取得されるオルソ写真の判読、現地踏査による確認等に より把握し、林相区分図を作成する。 広 広広 広 スギ 広葉樹 ヒノキ ヒノキ ヒノキ 広葉樹 広葉樹 ヒノキ ヒノキ スギ ヒノキ 広葉樹 スギ スギスギ スギ スギ スギ スギ スギ スギ スギ 広葉樹 その他 広葉樹 その他

(6)

(3) 立木密度

1) 樹冠高データ(DCHM;Digital Canopy Height Model)の作成

航空レーザ測量データのファーストパルスの点群データを用いて樹冠表層面の高さ(標高値) のモデルである樹冠表層高データ(

DCSM

Digital Canopy Surface Model

)を作成する。さ らに地盤標高データ(

DEM

)との差分により、樹冠高データ(

DCHM

Digital Canopy Height

Model

)を作成する。

DCHM

の作成のイメージを図

4.9

に示す。 図 4.9 樹冠高データ(DCHM)の作成のイメージ 2) 立木密度の推定(計測密度(4点/m2)のレーザ測量データがある針葉樹林の場合) 計測密度(

4

点/

m

2)のレーザ測量データがある場合は、樹冠形状が明瞭な針葉樹(スギ、 ヒノキ、マツ類等)については、樹冠高データ(

DCHM

)から凸部となる樹頂点を抽出し、単 木の樹高の推定および樹頂点の個数から立木本数を推定することが可能である。 針葉樹の樹頂点抽出方法の一例を以下に示す。 ①

DCHM

(図

4.10(1)

)から樹冠形状指数(図

4.10(2)

)を計算する。樹冠形状指数とは、 樹頂部の凸凹を、尾根谷度をベースに角度で表す指数で、凸部ほど高い値になり凹部 ほど低い値をとる。樹冠形状指数は、樹高の大小に関わらず樹頂点は一定の値をとる ため、樹頂点の抽出に適している。 ② 樹冠形状指数を用いて、樹冠部(図

4.10(3)

)を抽出する。動的に決められる閾値以上 のまとまりが樹冠部として抽出される。 立木密度は、林種やレーザの照射密度に応じて、レーザ測量データ解析による単木の抽出 またはレーザ測量成果と現地調査結果との相関のうち、最も適切な手法を用いて推定する。 樹冠表層高データ(DCSM) 地盤標高データ(DEM) 樹冠高データ(DCHM) DCSM-DEM=DCHM DCSM-DEM=DCHM DCSM-DEM=DCHM DCSM-DEM=DCHM

参照

関連したドキュメント

め測定点の座標を決めてある展開図の応用が可能であ

絡み目を平面に射影し,線が交差しているところに上下 の情報をつけたものを絡み目の 図式 という..

都市中心拠点である赤羽駅周辺に近接する地区 にふさわしい、多様で良質な中高層の都市型住

本検討で距離 900m を取った位置関係は下図のようになり、2点を結ぶ両矢印線に垂直な破線の波面

※2 Y zone のうち黄色点線内は、濃縮塩水等を取り扱う作業など汚染を伴う作業を対象とし、パトロールや作業計 画時の現場調査などは、G zone

ストックモデルとは,現況地形を作成するのに用

供試体の寸法は、高さ 100mm,直径 50mm である。図‑2 はペデスタ

④改善するならどんな点か,について自由記述とし