• 検索結果がありません。

豊橋技科大(地盤地震工学) 前田研究室 maedalab Fourier

N/A
N/A
Protected

Academic year: 2018

シェア "豊橋技科大(地盤地震工学) 前田研究室 maedalab Fourier"

Copied!
8
0
0

読み込み中.... (全文を見る)

全文

(1)

フ エ変換と地震 スペクト 分析

Spectrum Analysis of Earthquake and Fourier Transform

* ント 地震動 解析入門 大崎順彦, 鹿島出版会 を元 作成し います:The original of this document was from the above text book.

- 世界最初 強震記録: 強震計 Strong-Motion Acceleration: SMAC

Imperial Valley Earthquake at EL Centro(1940.5.18) 326gal人類初 強震 記録

(Record of the first strong motion due to earthquake in the human history) Arvin-Tahachapi Earthquake at Taft(1952.7.12) 147gal

- 地震波 特長 Properties of Earthquake Wave

対象 す 地盤-構造物系 対し 与え 影響を考え ため 有力 手 最大振幅 maximum amplitude

時間 duration time

包絡曲線 envelope curve : 主要動 principal shock 波数 numbers of wave

振動周期 periods エネ Energy

Duration time Principal shock

Maximum amplitude

Finite Fourier Approximation of Time History and Time Series

and its Formulations

1) Approximation of digital time history data with Tri-angle series

Discrete System:

Δt > 0

: data sampling interval

( t

0

, x

0

)

,

( ) t

1

, x

1 ,

( t

2

, x

2

)

, …,

( t

N1

, x

N1

)

・・…N =(N-1) +1: data: N conditions

Duration Time:

T = N Δ t

(1.1)

Time:

t = m Δ t

(m=0, 1, 2, …, N-1) (1.2) A data point:

x

m

= x ( ) m Δ t

N=16(m=0 – 15) : x0, x1, …….., x15. duration time: T=16×Δt

2) Approximation of digital time history data with infinite tri-angle series

⎭ ⎬

⋅⋅

⋅⋅

+

+

⋅⋅

⋅⋅

+

+

+

+

⋅⋅

⋅⋅

+

+

⋅⋅

⋅⋅

+

+

+

kt

B

t

B

t

B

B

kt

A

t

A

t

A

A

k k

sin

2

sin

sin

cos

2

cos

cos

2 1 0

2 1

0 (2.1)

What is the period Tp of cos(kt)or sin(kt)?

( ) ( ) ⎟

⎜ ⎞

⎝ ⎛ +

=

+

=

+

= k t T kt k t k

kt cos

p

cos 2 π cos 2 π

cos

T

p

= 2 k π

: As k increases, the period Tp decrease (the frequency f=1/Tp increases).

(2)

[ ]

=0

cos + sin

k

k

k

kt B kt

A

(2.2)

replace

t

by

t

T

π

2

or

t

t

N Δ

π

2

=0

⎢⎣ cos 2 Δ + sin 2 Δ ⎥⎦

k

k

k

N t

B kt

t

N

A π kt π

(2.3)

3) Approximation of digital time history data with finite triangle series

Set k to be from 0 to N/2

=

⎢⎣ Δ + Δ ⎥⎦ =

=

⎢⎣ + ⎥⎦

=

2

0 2

0

sin 2

cos 2

sin 2

cos 2

N

k

k k

N

k

k k

m

N

B km

N

A km

t

N

B kt

t

N

A kt

x π π π π

(3.1)

⎭ ⎬

⋅⋅

⋅⋅

⋅⋅

⋅⋅

2 2

1 0

2 2

1 0

,

,

,

,

,

,

,

,

,

,

,

,

N k

N k

B

B

B

B

B

A

A

A

A

A

Here, Number of unknown coefficients is 2(N/2+1) (3.2)

Number of unknown coefficient 2(N/2+1) =N+2 > number of conditions (data) N From partial consideration,

For the case of

k = 0

, 0

cos 2 A

0

1 A

0

N

A π km = =

and 0

sin 2 = B

0

0 0

N

B π km

(3.3) For the case of

k = N 2

, 2

sin 2 = B

2

sin m 0

N

B

N

π km

N

π

(3.4)

Consequently, Eq.(3.1) is reduced to

( )

N

m

A N

N

B km

N

A km

A

x

N

N

k

k k

m

2

cos 2

sin 2

cos 2

2

1 2

1

0

+ ⎢⎣ π + π ⎥⎦ + π

=

=

(3.5) For convenience

( )

N

m

A N

N

B km

N

A km

A

x

N

N

k

k k

m

2

cos 2

2 2

2 sin

cos

2

2

1 2

1

0

+ ⎢⎣ π + π ⎥⎦ + π

=

=

(3.6)

⎭ ⎬

⋅⋅

⋅⋅

⋅⋅

⋅⋅

1 2 2

1

2 1 2 2

1 0

,

,

,

,

,

,

,

,

,

,

,

,

N k

N N k

B

B

B

B

A

A

A

A

A

A

N/2+1+N/2-1=N (3.7)

Therefore,

Numbers of unknown coefficient N = Condition Equation N (3.8)

4) Determination of A

k

and B

k

with orthogonal property of triangle functions

三角関数 ?/ Why do we use triangle functions for Fourier approximation? 三角関数系 直交性を利用す (We utilize orthogonal property for Triangle Functions)

( α β ) ( α β )

β

α ⋅ cos = cos + + cos

cos

2

(a)

( α β ) ( α β )

β

α ⋅ sin = cos + − sin

cos

2

(b)

( α β ) ( α β )

β

α ⋅ sin = − cos + + cos

sin

2

(c)

α

α 1 cos 2

cos

2

2

= +

(d)

α

α 1 cos 2

sin

2

2

=

(e)

( ) ( ) { ( ) }

sin 2

sin 2

2

cos 1

1

cos

2

cos

cos

cos

β

β β

α

β

α

β

α

β

α

α

N

N

N

⎟ ⎠

⎜ ⎞

⎝ ⎛ +

=

+

+

⋅⋅

⋅⋅

+

+

+

+

+

(f)

( ) ( ) { ( ) }

sin 2

sin 2

2

sin 1

1

sin

2

sin

sin

sin

β

β β

α

β

α

β

α

β

α

α

N

N

N

⎟ ⎠

⎜ ⎞

+

=

+

+

⋅⋅

⋅⋅

+

+

+

+

+

(g)

if

α = 0

, summarize the results.

sin 2

sin 2

2

cos 1

cos

1

0

β

β β

β

N

N

m

N

m

− ⋅

=

=

(h)

sin 2

sin 2

2

sin 1

sin

1

0

β

β β

β

N

N

m

N

m

− ⋅

=

=

(i)

⎪ ⎪

⎪ ⎪

=

⎩ ⎨

= =

⎩ ⎨

= =

=

=

=

1

0 1

0 1

0

2 0

2 cos

sin

0

2 2

2 sin

sin

0

2 2

2 cos

cos

N

m N

m N

m

N

km

N

lm

l

k

l

k

N

N

km

N

lm

l

k

l

k

N

N

km

N

lm

π

π

π

π

π

π

(j)

(3)

For Ak

たとえ Akを求める / For example, we calculate the factor Ak,

( )

N

m

A N

N

B lm

N

A lm

A

x

N

N

l

l l

m

2

cos 2

2 2

2 sin

cos

2

2

1 2

1 0

π

π

π +

⎥⎦ ⎤

⎢⎣ ⎡ +

+

=

=

(4.1)

1)上式の両辺に

cos ( 2 π km N )

を掛ける / Multiplication of

cos ( 2 π km N )

to Eq.(4.1).

( km N ) A N km

x

m

π cos 2 π

2 2

cos =

0

=

⎢⎣ + ⎥⎦

+

21

1

cos 2

sin 2

cos 2

cos 2

N

l

l

l

N

km

N

B lm

N

km

N

A π lm π π π

( )

N

km

N

m

A

N

π N 2 π

2 cos

cos 2

2

+

2 (4.2)

2)

m = 0

から

m = N 1

ま 総和を る / Summation from m=0 to m=N-1 in Eq. (4.2)

( )

N=10

cos 2 = 2

0mN=10

cos 2

m

m

N

A km

N

km

x π π

( -> 0 )

∑ ∑

=

⎢⎣

=

⎥⎦

+

21

1 1

0

cos 2

cos 2

N

l l N

m

N

km

N

A π lm π

∑ ∑

=

⎢⎣

=

⎥⎦

+

21

1 1

0

cos 2

sin 2

N

l l N

m

N

km

N

B π lm π

( -> 0 )

( )

N

km

N

m

A

N

π N 2 π

2 cos

cos 2

2

+

2 ( -> 0 ) (4.3) 1st term, 3rd term and 4th term in right formula =0 with account for the orthogonal

( ) ∑ ∑

N=01

cos 2 =

Nl=211 l

⎢⎣

mN=01

cos 2 cos 2 ⎥⎦

m

m

N

km

N

A lm

N

km

x π π π

(4.4)

2 0

0

2 0

2 cos

cos

1 2 21

1 2

1 1

0

+

⋅⋅

+

+

⋅⋅

+

+

⎥⎦ =

⎢⎣ ⎤

=

∑ ∑

= k N

N

l N

m

l

A

A N

A

N A

km

N

A π lm π

(4.5)

N

x km

A N

N

m m k

π

cos 2

2

1

=1

=

(4.6)

⎪ ⎪

⎪⎪ ⎬

⋅⋅

= ⋅⋅

=

=

=

=

=

1

2

,

,

2

,

1

2

,

1

2

,

,

2

,

1

,

0

sin 2

2

cos 2

2

1

1 1

1

N

k

N

N

k

N

x km

B N

N

x km

A N

N

m m k

N

m m k

π

π

(4.7)

=

=

1

0

0

1

2

N

m

x

m

N

A

: mean value (4.8)

3)時間関数

x ( ) t

の近似: Fourier Approximation

t

m

t = Δ

,

t

m t

= Δ

(4.9)

( ) t A A N kt t B N kt t A N ( ) N t t

x

N

N

k

k

k

+ Δ

⎢ ⎤

+ Δ

+ Δ

=

2

cos 2

2 2

2 sin

cos

2

2

1 2

1 0

π

π

π

(4.10)

(4)

5) Spectrum Properties

( ) t A A N kt t B N kt t A N ( ) N t t

x

N

N

k

k

k

+ Δ

⎢ ⎣

+ Δ

+ Δ

=

2

cos 2

2 2

2 sin

cos

2

2

1 2

1 0

π

π

π

(5.1)

1)周波数 周期 Frequency/Period

T

k k

t

k

N π π

ω = 2 Δ = 2

(5.2)

k

T

N

k

T T

k k

= Δ

=

= ω 2 π

,

T

N

k

T

k

f T

k

k

= 1 = = Δ

(5.3)

k = 0

,

0

0

=

= f

f

k : 直流成分(Cascade Component)

=

=

1

0

0

1

2

N

m

x

m

N

A

全体 ゼ 点 (5.4)

k 0

,

0

f

k :

2 / 1 2 / 2

1

f f

N

f

N

f < < ⋅⋅

<

,

T

1

> T

2

> ⋅⋅ T

N/21

> T

N/2 (5.5)

-分解す 周波数 トビトビ Discontinuity of Decomposed Frequency

t

f N

f

f

k k

= Δ

Δ

+1

1

(5.6)

2)基本振動数(Fundamental Frequency)

T

N

T

f T

= Δ

=

= 1 1 1

1

1 (5.7)

3)ナイキスト振動数(Nyquist Frequency) 分解能:Resolving power

検出可能 高周波数 限界値 /: Limit value of detection possible high frequency

T

f T

N

N

= = Δ

2

1

1

2

2 (5.8)

01

.

= 0

Δt

(sec.) →

f

N

50 Hz

01

.

0

2

1

2

=

= ⋅

(5.9)

4)振幅 位相角(Amplitude/Phase Angle) 情報 2

( ) ω t + ( ) ω t = X ( ω t + φ )

A

k

cos B

k

sin

k

cos

(5.10)

2 2

k k

k

A B

X = +

(5.11)

⎟⎟⎠ ⎞

⎜⎜⎝ ⎛−

=

k k

A

1

B

φ tan

(5.12)

4) 振幅 スペクト (Fourier Amplitude Spectrum/ Fourier Spectrum)

X

k

T

2

dimension:

[ ][ ] X

k

sec .

(5.13) 5)パワ スペクト (Power Spectrum): Invariant Value

N=10 2

Δ =

02

+ 2

Nk/=211 k2

+

N22

m

m

t T C T C T C

x C

k: 複素数フ エ振幅 (5.14)

-8 - - - 8

PI-83m, NS-component

Acc., (gal)

Time (sec.)

8 -

- - - -

Kushiro West port, NS-component

Acc., (gal)

Time (sec.)

8 -

- - - -

Sanriku Harukaoki, NS-component

Acc., (gal)

Time (sec.)

0.1 1 10

1 10 100

Kushirooki Harukaoki PI-83NS

Fourier Amp, (cm/sec)

Period, (sec.)

(5)

6) Finite Fourier Approximation with Complex Number

ib

a

c = +

:

c

: complex number,

a

: real part,

b

:imaginary part,

i = 1

(6.1)

2

2

b

a

c = +

: absolute value (6.2)

*

c

2

c

c =

,

c

*

= a ib

: conjugate complex number (6.3)

( θ θ )

θ

cos i sin

e

±i

= ±

: Euler’s Formula (6.4)

( )

( )

=

+

=

θ θ

θ θ

θ

θ

i i

i i

e

e

e

e

2

sin 1

2

cos 1

(6.5)

Approximation with Complex Number

( ) ( )

[ ]

( ) ( )

[ ]

+

=

+

=

N km i N km i

N km i N km i

e

e

N i

km

e

N e

km

/ 2 / 2

/ 2 / 2

2

1

sin 2

2

1

cos 2

π π

π π

π

π

(6.6)

Finite series

=

=

1

0 N 2

k N i km

k

m

C e

x

π

,

m

=0, 1, 2,..., N-1 (6.7)

2

k k k

iB

C = A

,

k

=0, 1, 2,..., N-1 N (6.8)

Determination of

C

k

=

=

1

0

1

N 2 m

N i km

m

k

x e

C N

π

,

k

=0, 1, 2,..., N-1 N (6.9)

k N

k

C

C =

: folding frequency

f

N

t

= Δ

2

1

2 (6.10)

( ) ( )

=

=

k k

k k

C

B

C

al

A

Im

2

Re

2

,

k

=0, 1, 2,..., N/2 (6.11)

7) Fast Fourier Transform FFT

C

0

C

1

C

2

C

3

C

4

C

5

C

6

C

7

1×8

一回分割

C

0

C

2

C

4

C

6

2×4

C

1

C

3

C

5

C

7

2回分割

C

0

C

4

4×2

C

2

C

6

C

1

C

5

C

3

C

7 3回分割

C

0

8×1

C

4

C

2

C

6

C

1

C

5

C

3

C

7

-計算時間(Time for Fourier Coefficient Calculations):

T

cal Fourier Transform(FT)

T

cal

N

2

Fast Fourier Transform(FFT)

T

cal

N log

2

N

Comparison for Cal. Time

N Factor Ratio for

T

cal

4094 2×23×89 12.9 4095 32×5×7×13 3.9

4096 212 1

4097 17×241 28

4098 2×3×683 77

4099 - 460

4100 22×52×41 6.3

-後続 ゼロ(Trailing Zero):

N 2累乗 を後 N=3000 → N=3000+1096=4096=212 ン 効果(Link Effect)を解消

(6)

8) Link effect

(a) Periodic Function: earthquake motion transformed by Fourier series (b) Non-periodic function: real earthquake motion

Link Effect in Fourier transform

9) Fourier Integral: Discrete system / Continuous System

Time

Frequency or Period

Spectrum

Time Domain Frequency Domain

Fourier Transfom

(Fourier Integral)

Fourier Inverse Transfom

∑ ( )

=−∞

=

=−∞

=

k

T i kt

k k

T i kt

k

e TC e T

C

t

x ( ) 1

2

2π π

: for Discrete System (9.1)

( )

= 1

TT22 i2Tkt

k

x t e dt

C T

π

,

k

(9.2)

T

f

k

= k

,

f T

f

f =

k1

k

= 1

Δ

+ (9.3)

⎪ ( )

⎪ ⎪

⎪⎪ ⎪

=

Δ

function

continuos

f

F

discrete

TC

T df

f

T f

k

T

k

: :

1 0

(9.4)

( )

( ) ( ) ( )

( ) ( ) ( )

⎪ ⎪

⎪ ⎪

⎪⎪

⎪ ⎪

=

=

=

=

=

Δ

∑ ∫

−∞

=

dt

e

t

x

f

F

dt

e

t

T x

TC

df

e

f

F

t

T x

e

TC

t

x

function

continuos

f

F

discrete

TC

T df

f

T f

k

T

ft T i

T T i kt

k

ft i

k

T i kt

k k

π π π π

2 2 2

2

2 2

1

) 1

(

:

:

1 0

(9.5)

Fourier transform(Fourier integral):

( ) ( ) ( )

=

T k

TC

f

F

t

x lim

(9.6) Fourier inverse transform:

F ( ) f x ( ) t

(9.7) Fourier Spectrum:

T C

k

(

k k

)

k

A iB

TC = T

2

(9.8)

k k k

k

X

B T

T A

C

T 2 2

2

2

+ =

=

(9.9)

(7)

10) Smoothing / Filters

a) Data Window b) Spectral Windouw

c) Lag Window

0.01 0.1 1 10

0

10

20

30

40

50

Number of Data=2048, Nyquist Frequency=1/(2*0.01) Spectrum Window, Parzen's Filter

Band=0.0Hz

F o urier Amp, ( cm/sec )

Period, (sec.)

0.01 0.1 1 10

0

10

20

30

40

Number of Data=2048, Nyquist Frequency=1/(2*0.01) Spectrum Window, Parzen's Filter

Band=0.5Hz Band=1.0Hz Band=2.0Hz

F o urier Amp, ( cm/sec )

Period, (sec.)

(8)

地震による建物の被害と地盤の関係 : Relation between the damage of the

building by the earthquake and ground condition: おもしろジ テク 技報

Complete collapse

rate of buildings Wooden building Storehouse

Ocean, water front

Reclaimed Land Alluvial Land

Dilluvial Land

東京のウ タ フロントの経緯 埋立て事業の経緯: Process of water- front and Reclamation in Tokyo-bay

Tokyo Bay

Reclaimed Land Alluvial Land

Dilluvial Land Recent time

1923

1855

推薦図書 Recommendation Text and Papers

1) 地震動 スペクト 解析入門 大崎順彦, 鹿島出版会 2) スペクト 解析 日野幹雄, 朝倉書店

3) エ解析 大石進一, 岩波書店 理工系 数学入門コ ス

For examples

1) “The Fourier Integral and Its Applications”, papoulis, A.(1962), McGraw-Hill

2) “Random Data: Analysis and measurement Procedures”, Bendat, J.S. and Piersol, A.G.(1971), John Wiley & Sons.

参照

関連したドキュメント

(実被害,構造物最大応答)との検討に用いられている。一般に地震動の破壊力を示す指標として,入

Since severe damage to residential land was caused in Kashiwazaki,City, Kariwa Village, Izumozaki City and Jouetsu City by this earthquake, an official earthquake

データベースには,1900 年以降に発生した 2 万 2 千件以上の世界中の大規模災 害の情報がある

東北地方太平洋沖地震により被災した福島第一原子力発電所の事故等に関する原

活断層の評価 中越沖地震の 知見の反映 地質調査.

Key words: Kumamoto earthquake, retaining wall, residential land damage, judgment workers. 1.は じ

東京都北区地域防災計画においては、首都直下地震のうち北区で最大の被害が想定され

区部台地部の代表地点として練馬区練馬第1観測井における地盤変動の概 念図を図 3-2-2 に、これまでの地盤と地下水位の推移を図