• 検索結果がありません。

ON AN APPLICATION OF THE GROUPRING THEORY TO A COMPLETE NON-SINGULAR ALGEBRAIC CURVE OF GENUS g≧2

N/A
N/A
Protected

Academic year: 2021

シェア "ON AN APPLICATION OF THE GROUPRING THEORY TO A COMPLETE NON-SINGULAR ALGEBRAIC CURVE OF GENUS g≧2"

Copied!
8
0
0

読み込み中.... (全文を見る)

全文

(1)

      、

ON AN APPLICATION OF THE GROUPRING

THEORY TO A COMPLETE NON.SINGULAR

    ALGEBRAIC CURVE OF GENUS g≧2

    BY

S別SHI WADA

  ㎞tmduc60n. Let C be a complete non−singular algebraic curve of genus g≧2with it,$ Jacobian variety J. Let k be a◎ommon field of definition of C and J. In§1 we consider a special part of the endomorphism ring A(」)of 」, in order to get oerta血criterions for simplicity or non−simplicity of J, and show that if(x,夕)satis丘es k(C)=k(k, y)an《張 ∫()cl, vi)=Owhere∫(X, y)is in k[X,γ]irreduCible in k[X, y]and l is any餌me rationa1. integer other than the characteristic of k, then J is non−simple. In§2, we・treat・an血volution of the group血g R=2(G) by the 9roup血9 theoretic’ manner, different to the general theory of algebra【司.   h1§3, we 9ive 1inearly equivalent relations of divisors of C, when R”of Corollary 2 of’ Proposition l is a quarternion diVision ring of the丘rst kind of the sense of Albert[5].   §10n a group血g 2(G) Let Po=(xl, x2,....,xn)be a representative ofPill an a缶ne representative of C and put P6=(κf, xS,....,x紘)fbr an elementσof G. Then・P8 is a・ sp㏄ialization of Po over k, and over this there is an unique extended specialization Pσof P.Forσandτof G, we have(Pσ)τ=Pστ. We take a subgroup H of G such that H == (σ∈GlPσ=P), and take a set(S of diVisors of C which are linearly equivalent to some た一rational divisors of C.   We takeαof Z(G), that is,α=Σ侮σwith侮∈Zandσ∈G. And we put Pα=Σ aσPσ. 1£tR, be a subset of R such that R,=(α∈RlPma∈(5 for some positive m of Z). Then、 we get       9      >

LEMMA 1. R’肋吻加永鋤1邨R励α励丑」〃η吻品・

 PRooF. We easily see that R, is a right ideal of R since Pt「τ is a specialization of Pσ over Io and over k, and by Lemma 10 of【2.2】. For the latter assertion, we t丞e a醐so品of’ C×C which has a generic pOint P×Pσ over k. Then by NO 24 of[2.1], we have Xa(戸)= P7(σ)’「,〃』Xe(Xr(P)=P7《σ)’〆τ)where no is the odrer of H. For a of R, andβof R, we take positive integers m, n such that〃叱r and nβare in Z(G). If〃7α=Xaσσ十27 bττandi

〃β=Σα5σ十Σb:τwhereσare llot血五r andτare血刀∼we take a divisor抑=Σaa

*Received June 10, 1975 9

(2)

’ 董10

S.WADA

Xa十πo(Σゐ:)∠1 where∠is a diagonal of C×C. Then we get Xp(P)=PnP’H. As獅(Pρ) tis a specialiZation of Xβ(P)over the spedalization血om P to Pρover克, we get Xp(P抗α)= 」助ψ互癩.If 1)is a鳶一rational divisor of C such that P功α∼1), then by Theoreme 40f【2.1], ’there is aた一rational numerica1 function q on C such that Xp(D十div(g))is defined and       り 一1「β(D十(五マ(切)∼Xβ(pmα). Hence we get the proof.(ρ.E.D.)   Next, we a§Sume that k is algCbraically closed. Let C be a complete non−singular alge− Lbraic curve de丘ned overたsuch that L=丘(P)f()r a generic po血t P of∂over友. Let @ be .a set of divisors of e which are 1inearly eqUivalent to some k−rational divisors’ of e. Then ’we get   LEMMA 2. Me assume k=k. Let R,=(α∈Rl.Pmα∈(きノ∂r some positiye mげZ). :77ien・R’is a〃ideal of R,αη∂α耳∈R’lff HaH∈R’.   Proo£As∬=(σ∈GlPσ=P)=1, we㎞ow that R/is an ideal of R. We take a nat一        エ       噸ral nlap∫丘om C to C such thaげ(P)=Pand with it’s graph 1}. Then we get‡乃(P)= .!−1(P)=ΣPτ=PH and f−1(Pσ)=PHa.lfαH∈R’, then fbr a suitable positive integer         τε亙 Jn and a k−rational divisor 1)of C, we get、PmaH∼1). By Theoreme 40f[2.1】, there is a k− ratiOnal numerical function《g on C such thatプー1(1)十div(g))is de丘ned and linearly equiv_ ・alellt to∫−1(pmaH)・Henoe pHmaH∈㊦. SoαH∈R, means HaH∈・颪,. Conversely, if HαH ・∈Rノ,then there is a suitable positive血teger刀and丘一rational divisor万such that戸砿αH∼        コ .D. And there is a瓦一rationa1 numerical血nctionψ on C such that 1}(万十divω)is defined .and 1祖early equivalent to rf(PnHαH)=no、PnαH. So we complete the proof.(ρ. E. D)   R=0(G) is a regulaロing of the sense of Neumann and a semi−simple ring. We加t N       パ .R=HLRL[. As(H/no)2=珂〃o, R is alsO a regular and simple血g, genetated by 7(σ)over 2. If we de◎ompose R into a d丘㏄t sum R, and R”, and decompose into a direct sum of 」∼ノ

・孤d互”th・t iS, R=R’θR”=R’(D互”, w・g・t∈丑哀’丑Φ頭・五=艮・e互〃.

Forαof R and a sU table positive血teger m.such that uα∈Z(G), we putγ(mcr)=XρεHmaH

ρ=HmcrH qnd take a divisor Xma of C×Csuch that為α(P)=P抗αH. Then we know

that we may rewrite為αas掲伽めsince it depends only onγ伽の, and〃』Xア伽α)αγ(πβ)(P))= p,(悟α).7(犯β)=noXγ(mα)γ(nβ)(p), since γ(吻)●γ(nβ)==γ(〃叱どH・、Hnβ). By correspondin9 .ζγ伽のof A(」)tσ,17(mの, we getζア伽α)・ζア(πβ)=ζ7(mの.γ(πβ). If we putεア(の=(1加)ζγ伽α), then we getε7(のεγ(β)=ε7(d).γ(β)whereγ(α)=HαH=(1/mγ(微). Moreover we easily       パ :getεγ(の・γ(β♪=ε7(α)十εア(β). Hence we have a homomorPhism from R into Ao(の. If        N       ロ ,εア(α》=0,we get aH∈R’apd so 7(∋∈R,(since R’=R’for the case k=た). Thus we get       N       N         PRoposrHo)cf 1・ If we assu〃te k t k‘mdput R’・=HR/Htnid Rノ’=HR”H/br R, cmd .反,f of Lenznza 2(R=R’∈DR”), then there is an iniectiohノ}ro〃1五”into Ao(」).       −      A■ COROLLARY 1. Ifk=kand R〃is not a読?砧,o〃ring, theπ」 is n.onrsimple.   PRooF. Under these conditiolls, there are two non−zero eleme亘tsξandηof、4(」)such 電hatξ・η=0. Hellce J is non−shnple.(ρ.E.1).)

(3)

ON APPHCATION OF THE GROUP RING THEORY

1蟄・  CoRoLLARy 2. 」ゲ五=1, then R”of R=R,∈D R,’〃tay be considered to be containeグ

inA。(」).      .…

 PRooF. ff H=1, then we have L=k(P). So we may consider C=C and so we nc ee(1{ nOt to aSsUlne k==k.      (e.E.1).)  LEMMA 3. 〃’k(C)=k(p)=k(x,ア)and Lo= kCソ),・then R, eontains an element− G=Σσ.       一 「   PRooF. As Pσ=Σ Pσ is kO,)−rational since it is not changed by any T of G, Sψ(PG)=ΣqA       σεθ (、Pσ)is also a k(夕)−rationa1 point of J, where pa is a canonical map from C into 」. Hence we− get a k−rationa1 map f from a rationa1 curve r defined over k into/such thatノ’(p)=Sg・ (Pσ).By Theorprn 8 of【2.2],f(y)is a fixed point of.. 」. By tak口ig a specialization from(._,. Pσ,....)to(....,ρσ,....)over丘where all Cσ are k−rational points of C, we see・ that f(ン)is a k−rational point of J. Hence R’contains G. ‘        (e.E.D.)・  LEMMA 4. If the genus 9≧2and if there are伽o elementsσ,τq〆Gぷ〃ch’肋’στ一1奄…、ぼ 功θ〃σ一τ庄R’.       ●   PRooF. If there is a k−rational divisor 1)of C such that Pσ一Pτ∼1), then Pρ一P∼Ef()r ρ == aT−1 and some k−rational divisor E of C, by Lernrna IQ of[2.2】. We take a generic point J P/over k(P)of C, then as、P is a generic point over k of C, by taking a specialization(P’, P”)of(P,Pp)over k, we get P”−Pノ∼E∼Pp 一一 P. Hence we get P’十Pp∼P十P”..

This means l(P十PP)≧2. But we have l(P〆十P)=2−g十1十1(x−P,−PP). But.

as l(x−−P,一、PP)=’g −2. So we get 1(P十PP) =1.This is a contradiction. Hence we

know thatσ一τeC R’.      ・      (ρ.E.1).〉

LEMMA 5. Le’Gb㊨吻12吻e l be a輌’』l integer other than’乃θ』c−一

’eristie ofk, and let G be genera彪d by two e∼ementぷσ,τぷ〃c力吻’♂=τ1=1αη4στ=τσ.. If we a∬醐e吻’五=1,功εη」‘ぷηoη一ぷ」〃rple.  PRooF. As G is abelian and H=:1, R is a direct sum of fields, and R’and R”are ideals、 of R. If l is simple, R”must be a field F finite over C, by Coro皿aries of Proposition 1. We・ decomposeσandτasσ=eσ十ぷandτ=eτ十t Where eσ and er are in R’, andぷand’・ are in亙We get 5』tl=1’ for the unity 1 of F. ff vve take a p血ritive 1・th root e of unity 1, we getぷ=ζa and t=ζb for some integers a, b. lf a=0, then we haveσ一1∈R’and this、 contradicts to Lemma 4. Henee a is pOsitive and s顕皿er than 1. By也e s㎝e㎜er,か is also positive Smaller than 1. Hence there is a positive rational integer m such that s = tm. This means thatσ一Pm∈R,. But (n ’mキ1=耳『since G is generated byσandτalld is. of order 12. Hence by Lemma 4, we get a contradiction.’

@    (e.肌㍉

PRoPosmoN 2. Lθ’Cゐθα’ω〃!plete non−sing〃lar atgebraic cur昭げ8iθ〃〃s g≧2. Lと’た一

(4)

12

S.WADA

、 ㊨ε伯砲ωげ晒ゴtion・and(x,ア)ゐθαη〃αぴぷ励吻τ克(C)=克(x,夕).聯c励痂M餌〃z− itive 1−th roO’ζq〆〃η∫カノ}vhere l is a pri,〃te ra’io〃α1 Z〃teger other than功θcharacteri,ぷtic ofk, イZ〃d ifJacobia〃Varieり「」ρノ’CisぷZ〃rρle, then Wθhaye丘(X,ア)=丘(xZ,ア)or k(LAcl,ア)=k イ)cl,アリ.   PRooF. Any isomorphismρof k(xz, yl)over k(xl, yl)sends(x,γ)to(ζax,ζby) for some血tegers a, b. Hence k(x, y)is a Galois extension’of k(ltl,アリ, since k containsζ. lf k(x,夕)早k(xz, y)2k(xz,アリ, k(x,ア)and k(xz, y)are cyclic extensions of degree 1 of k イx膓,ア)and k(xz,アリ, respectively. The Galois group G of k(x,γ)/k(lvl,ア‘)is generated byσ, andτsuch that(x,ア)σ=(ζax,ア)and(x,ア)τ=(ζbx,ζ⑲)with rational integersα, b and c. We see that(x,γ)στ=(ζa+bx,ζcy)=(x,γ)τσ, that is, dr=τσ. As♂=τ1=1, by hemma .5,we know that 」 is non−simple. This is a con仕adiction.且ence we get k(x,γ)=k(xz,ア)

◇rk(xl, y)=た(xl,アり.      、..    ・ ‘  (ρ.E.D.)

   PRoPosmoN 3. L¢’(]. J, k and l be the same aぷ仇Pr卿ぷZ’ion 2.ザ〃(C)=た(x,γ) .a〃4(x, y)ぷa’isfies an equationプ{x膓,アリ=O where f(Xiコη)垣〃丘【X, y],かrε吻c茄彪よ〃泥 ¶x.γ],then・J・is・no〃一ぷ伽ple.   PRooF・If J is simple, then by Proposition 2, there are functions F and F/in k(X,、Y) ・such that x=:F(bel, y)orγ=」F”(xl,γi). But any pair(ζαx,ζbア)stay on the curve off(Xl, yt)=0. So we getζx=F(xl,ア)ixorζγ=F,(xz,夕り=γ. These are false. Hence J rmust be nOn−s血}ple・       (e.、E.1).)

  ExAMpLE. A curve】声…=F(X2)where F(X)is of degree>2and is not a square

・of any polinomial of k[X]corresponds to it’s birationally equivalent and complete non− s血gular curve C With non−simple Jacobian variety」」,proVided−that k has not the charac一 寸e]tlstic 2. t

  §2.On皿血vol岨on of a group ring、R飾r a curve We know that any group ring

・de丘ned over the rational number field has a positive hlvolution. But, fbr a group ring R, −we can constmct an祖volution by sp㏄ial calculations and deVices and can use it as we )use the positive one・1£t RI be a㎜血1al ideal of R. Let頁be a division』ring such that ・R1=;: Kczμ with a center 9. We takeα=Σa‘σi of R and put a=Σai 6i−1. W・猛・w丘・m。g。噸・h。。ry、in[5]・h。・皿i。。。1。ti。。0’。fK、面㏄, th。,e1。、i。n ,b−1〆b=臼br anyぷof」ζ and a fixed unit b of R1. Now, we can defme aρ一linear ahd(∼一

・valued丘mctiona1σO on R byσ(α)=a1 forα=al十a1σ2十...,a,碗∈ρ,σi∈G.

Forαandβ=:Xbjσ」, we haveαβ=Xa吻σ吻=(Σ aibji)1十....,where刀satis丘es

・6t6it=1and is uniquely deten血ed by i. By this刀we can representβasβ=Σ函εσ宛. So ・we haveβα=Σゐゴ硫(萢σ元=(Σ「bdiai)1十.....Hence we have U(αβ)=σ(βα). Clearly σ(α十β)=σ(∋十σ(β).Forぷof」9, ss’== sbSb−1. if s∈Ω,∬’=sS, since S is again in the t・e・t…fR・廿・m・α一食・姦=・3飴・al1・・fR、.W・g・t良、一(alR、∋。)三R、,、in㏄・A。i、、

(5)

i

ON APPLICA”ON OF THE GROUP RING THEORY

13 aminimal ideal of、R again and cr∂=(Xai 6i)(;aiσi−1)=(Σα…)1十....キ0.ifα≒0.

So』}1(‡R20f R=R1ΦR2 and良1=R1. Thus we haveσ(∬り=σ(ぷの=Xal.>O fbir

.∫∈Ω,ifぷ=』≒0.’I hus we have next Lemma 6.   LEMMA 6. Let K be a diyisio〃ring ovεr whichαminimal ideal・RI is expre∬e∂αぷαtotal ma〃江r晦, R=Ri O R2,.R1=XKCaμ. T7ien there is an involution ’O’on K cind a e−linear

¢−valued吻c伽al・UO in R・励’吻ぷ峨cψrぷキO ・f the center 9・f K U(∬う>0・

M・re・vεr,カγ卿θたmθπ’ぷげF=(ぷ1ぷ∈Ω,ぷ’=ぷ),’伽・加ηρθ4θ泥〃2θη’αガFぷ〃c乃 吻’σ(s)= TrF/e(αs).   PRooF. As R is of finite rank over e, so F is also of血rite rank over e. Hence we may take Fto be an algebraic number field. We take solne base(ω1,ω2,....,ω彿)of the ring 《)fintegers of F over Z, a皿d consider equationsσ(ω‘)=2らxi(TrR/Q(ωゴωε)・Si.nce the d÷ tem血ant l TrFlQ(ωゴωi)lis not O, we can solve them and get solusiolls(刈in¢. So we put α=X xj (oi∈Fand getσ(ω♂)=Xj TrF/g(ηωゴωD=TrF/g(αωε). So by linearity, we haveこlr(s)=TrF19(αぷ)fbr a皿ぷofΩ. This completes the proo£      (⊆∼・E・1)・)   We have next well known theorem for the involution of Lemma 6.   THEOREM. Let K, 9, Faud O/bθα加1診〃㎜6・MenΩis a totally im. a. 9inαrツ extension ofdegree l or 20fF, and F is a totally real algebraie number/ield・   PRooF. As O/is an anti−automorphism in K of order 1 or 2, it is an automorphism ofΩ of order l or 2. Hence[Ω:珂=10r 2. IfΩキF, then there is an element s of 2, not conta血一 ed in」亘Andぷis a root of .12−(ぷ十ぷつX十5〆:=0. By replacing s byθ=ぷ一(1/2)(ぷ十  ・ め,we get an equatio且θ2−(1/4)(α2−4b)=、O With a=ぷ十s’and b=∬ノ. That is,θis a root .of Y2==β∈Fand∀=…一θ. For a血yぷ’of F, we have TrFiQ(ct s2)=σ(ぷ2)=σ(Ss,) >0,ifぷキ0. ifF has a non−rea1 conjugate丘eld」Fi over e, then 1㌦is dense in the◎om・ pl6x number丘eld C.   We select some’of Ffb皿owingly.(case 1)If a co可ugateα10fαin Lemma 6 has a posi− tive real p征rt, then we take such’tllat it’s conjugate t1血Fi has’a very large imaginary part. {case 2)ff ai has a negative rea1 part, we take such t that t1 haS a very large rea1 part.(case 3)Ifα1=±Ui With u>0, then we take such t that t1=v±vi. with largeγ. After these selections of t of F, we apply the valuation theory to our three cases. That is, we take such ぷof」Fresi)㏄tively in above three cases thatぷis very dose to’at a valuation V correspondmg to the conjugate field Fi ofFover e, and thatぷis vely close to O at other v瓠uations・Then, as Fi and it’s complex Conjugate丘eld correspond to the same valuatio11, we have]rrE!g {αぷ2)<0.Hence if we had a non−rea1 Conjugate field Fi ofFover e, we had a contradiction O>TrFIQ(αぷ2)>Oδ Theref()re Fmust be a tota皿y rea1 algebraic number丘eld. By the sa血e way, ifαhad a negative co司ugate conta血1ed血aconjugate丘eld F2 of F over e, we take suchぷof Fthat it’s conjugate in F2 is very −large and it’s other conjugates are very close to O.Then we get TrFiQ(αぷ2)<0. But TrRiQ(tr s2)=U(ぷ2)=U(∬う>0. So・ct must be totally

(6)

14

S.WADA

positive・Next,鐙Ω≒・呪we have TrR/9(evθ2s2)=一σ(θθ’sSi)〈o For any s of F. lf e2 has a positive c叫lugate, then we select such s of F that is vgry close to t of F which has a very large absolute value at the valuation corresponding to this conjugate, and which is very close to O at other valuations. For thi∬, we have TrF/e(αθ2ぷ2)>0. This is a contradiction and soθis totally血1aginary.       (9.E.1).)   By chapter 10 of NbertTs Structure of a lgebra[5], K, 9 and F are classified as following.、 type 1. type 2. type 3. type 4.

K=Ω=F

Kis a quarte血on division dng over 2=五K(〔×))F」R=M2(R), where 1∼is the real nunlber丘eld. Kis a quarternion division rhlg over 9=。F such that、K⑧R=H(H is the division血g of real qua“㎝ion). 9キF and K is a cyclic algebra(L, S,γ), where L is a血aximal commutative separable extension ofΩin K, and cyclic overΩ(a splitting丘eld of K). And L=i£⑧F9, where ee is a cyclic extension of F with Galois group(1, S,ぷ2テ

… ,ぷカー1).Moreover K=L十〃L十....十un−1 L,γn∈9;z〃=uzs for

all z of L;[L:9]=n and【K:Ω】=〃2;andγγ,=ハ函F(v)for some v of Ce.   ln our theory of group血g 2(G)of curves, we wM treat K of type 2 and 3 in reference to・ special algebraic equations hl the next paragraph.   §3. On a㏄血in di▼ision r血オg of type 2 and 3  Let K be a division ring of type 20r 3; generated by elements of丘nite order over the rational number丘eld e,、K=Σあ0,4=1. For an example, if the Jacobian Va亘ety J is simple and石r=1,then by corollaries of Pro− position 1, R”of Coro皿田y 20f Proposition l is g㎝αa城』1㎝ents of鈍te order over ¢.   First, we treat type 2. We denote the real numbe西eld by丑.

晒s・cas・細・・Xw・p・・’一(9多)・a・b〃e・d∈R・W・…・t・−i−(6?)f・・

some integer ・N, and denote as 6(t) the dete血hlant of’. Th㎝加m〆v≡i, we haVe 6(t)

一土1・(da・e・fδ(・)=1)W・p・…一・禄“・・we・av・t・一ド㌫㌦∼竺1).

……

E’・一

h=π一2砺]竺一:一,),w…e・we・・』r・・一・一・一・.

ぷo=1.

As we easny㎞ow IV=1 or 2 for the case be=0, we assume●cキ0. The吐om棚=

』闘・w・』銅一・,sN−1…w・g・・sN−一・−1, sN−・一一1,蛭

一slsN_2=・一 S v_3=ぷ1, and so on. Ifハr=2ア十1, th㎝we get, as a last relation, sr+1−

slsr=−sr_1=sr, Hence we have sr_1十sr=Ofbr N=2r十1, If N=2ちthen we

get, as a last on島sr+1−slぷナ=一ぷト1=sr_1, that is, we have sr_1=Ofor∧r=2’.   By us口1g these, we getぷ2=sr−1, s3:=s鍵一2ぷ1, alld so on. And we can prove the next relation by血duct三〇n:

・・一呼一云1・r・+…+(−1)・(”一肋+2…@−2k+L’ ・?一・・

(7)

ON AP肌ICA皿ON OF THE GROUP RING THEORY

IS

十....(Case ofδ(’)=−1)As we have IV=10r 2 for the case bc =. Q, we assume

・h・・わ・≒・・g血.…・hav・’・一ピ緒一・㌶認.,}, w…ew・p・t’

ぷ’

F1=ぷ’

Pぷ’F2+ぷ’%_3,ぷ’1=S=a+d, S”O=1・

…M・・N−1−(;?)・・(’)−lf・・N−・・+1・w・h・v・・’2H−・f・・N−・・a・di

ぷ’

Qr÷1十s’2r−1=Ofbr N=4r十2.、By induction we have

・三軒〃

ァ! SI・ 一・2+…・+(n−−k)(〃+2!◆’・(≡+1)・{n−・・1−

  Next, we treat the case where K is of type 3.   血1this case we take t of k such〆v=1,’=aoi十coノ十ゐヴ;⑳, bo, co, do,∈R. Here i2=i2=−1andヴ=一刀. If we put’π+1=an十bni十cn,ノ十dni ’,,血en by induction we 9・t砺=⑭・一・一(bl.+c3+ば8)・炉・, bn=わ・・…n=c・…d・=d・en・whe・e・・〒an−・ 十⑳en_1. Hence by induction, we get en=elen_1−e炉2,el=2αo,θo=1. Therefore by rewriting en by sn, we get an equation of the same type as that of K of type 2 and bc キ0.   By these, we have the next proposition.  PRoPoslTloN 4. 、」rfa division ring K is oft7pe 20r 3, then/b7’ofKsuch tha”」v=10f K,there are such polyno〃iials T(X)andτ,(X)that 1て’十’−1)=0,τ,(’一’−1)=0,」Here T and T’αrθノわ〃bwings.(T/appears only in the case where K is邨り7pe 2 and 6(’)=−1・) (1)1ζ(ゾリ,pe 2;τ(X)=ぷγ(X)十Sr_1(X)ノbr N=2γ十1. τ◇r)=・ぷ2r_1(X)and T,(X)==5/2r_1(X)プbrハr=4r,δ(’)=:±1・ T(X)=ぷ2r◇r)and T’(X)=ぷノ2夕+1(X)十ぷ’2r_1(X)ノbrハr=4r十2,δ(’)=± 1 (2) Kロfり,pe 3;τ(X)=ぷr(X)十Sr_1(X)ノbrハr==2r十1.       T(X)=ぷr−1(X)ノbrN=2r・ For(1)and(2), Sn(X)and’ s6(X)haγe next/brms∫

・炸xn−(n−−1

@1∫)xn−・+…・+(−1)・(h−k)(1!一=一1kg−=−iSl)!’”(’t 一 2k+1)       xn−2iC十...

…(X)一糾(1i;1)X・一・+・…+(n−k)(〃+2プ( 2〃+1)

      xn『2k+....,and Si(X)=ぷ’1(X)=X, So(X)=〆o(M=1・

』F・・…瓦・(’)−1,w・h・v・・+・一・一(a古da♀、)…’+’一・−2・・

・e・pec・i・d・f…一

i96)・・’一・・+b・・+・・ノ+励・・w・p・…一・+・…F

・⑳,・h・nw・h・…h・・es岨・s.・F・・δ(’)一一1ca・e・・’一(Z 9),w・・av・’一・一(一ぎ一髪} ・nd・・’一’一・一

iα吉da♀、)…w・h・v・・h・・e・U・・s・  (鋼)

  PRoPosrlloN 5. 〃’weα∬〃〃le that Jaeobian varietyノのf a complete〃o〃−singular alge一 ・

(8)

16

S.WADA

braie curve i,∬imple and・the〃orη吻∬zθr lv(H) ofHhas an ele〃昭ntσs〃c乃伽舳θ.cla∬of. σZ〃N(H)/H is oforderハr≧3,α724ぴ・Rどで㎡1∼o is q〆’type 20r 3タ1vhere 1∼o is a 8・roup ring over O genera彪d ZワaU elements ofN(H),吻τ玩Ro=e(N(旬)、 then we・have T(σ2+σw−2) ∈R’,where T(x)=ぷ,(M+ぷ。−1(x)プbr∧r=2r十1 and T(1り=Sr_1(X)ノbr N=2r,㎡ Proposition 4     PRooF. For Ro==0(N(H)), we easily see that R/and R!, of Ro are ideals of Ro and are contaihed in R, and R”of R=ρ(G). Hence if J is simple, then R”of Ro must be a divi− sion ring. Ifwe putσ=t十〆where ・t∈R”and〆∈Rノ, then fromσN∈EI and gN−1∈ R,,we get tN=1,where l is the unity of Rノノ. As t2N=1,we haveδ@2)=1for R”,of type ・・H・ncew・g・・t・+t−・−

X:)f・…m・・s…R・ifk〃・・…yp・2…t・+t−…in・h・

center of R”. We get the same result fbr the case where R”is of type 3. Hence we get a inatriX type equation T(t2十t−2)=0. As N≧3, we need not to consider the case bc=O in the proof of Proposition 4. And asσw−2=σoσ一2 fbr someσo of」既we haveσw−2=t−2 十ηf()rsomeηof R「. Therefbre we get T(σ2 十 uN−2)∈R’.        (e.E.1).)

  ExAMPLE. For N=5, T(X)=X2十XL1, and T(σ2十σ3)=σoσ十σ4十2σo十σ2

十σ3 −1.Fromσo−1is in Rノ, we get 1十σ十σ2十σ3十σ4∈Rノ. For N=6, T(X)

=X十1and 1十σ2十σ4∈R,t. For IV ==8, T(X)=X and 1十σ4∈R,.

  Here we assumed that the Jacobian variety 」 is simple and、R”of Ro=2(N(H))is of type 20r 3.

『 」REFERENCES

{1]A.WeH:Foundation of algebraic geometry(revised and enlarged edition) [2】  ”  :Courbes alg6briques et vari6t6 ab61ie皿es(1971) ・[2.1] ”   :Theorie ele皿entaire des correspondancβs sur une gourbe(P.28 in[2】) 正2.2] ”  :Vari6t6 ab61ie皿es et courbes alg6briques(P.87 in【2D I3】M. Hall:T血e theory of groups(1959) [4】M.Eichler:EinfUhrung in die theorie der algebraischen zahlen und fUnktionen(1963) 江5] A.Albert:Stucture of algebra(1961, revised edition)

参照

関連したドキュメント

For a line bundle A on a projective surface X, we use the notation V A,g to denote the Severi varieties of integral curves of geometric genus g in the complete linear series |A| = P H

We develop a theory of convex cocompact subgroups of the mapping class group M CG of a closed, oriented surface S of genus at least 2, in terms of the action on Teichm¨ uller

As an application, in a neighborhood of a non-degenerate periodic solution a new type of step-dependent, uniquely determined, closed curve is detected for the discrete

algorithm for identifying the singular locus outside of type G 2 could also be used by showing that each Schubert variety not corresponding to a closed parabolic orbit has a

As a special case of that general result, we obtain new fractional inequalities involving fractional integrals and derivatives of Riemann-Liouville type1. Consequently, we get

Applications of msets in Logic Programming languages is found to over- come “computational inefficiency” inherent in otherwise situation, especially in solving a sweep of

Shi, “The essential norm of a composition operator on the Bloch space in polydiscs,” Chinese Journal of Contemporary Mathematics, vol. Chen, “Weighted composition operators from Fp,

Variational iteration method is a powerful and efficient technique in finding exact and approximate solutions for one-dimensional fractional hyperbolic partial differential equations..