• 検索結果がありません。

水平荷重をうけた多層鉄筋コンクリートフレーム柱の鉛直耐力(第二報) : 各種水平加力プログラムが与える影響(梗概)

N/A
N/A
Protected

Academic year: 2021

シェア "水平荷重をうけた多層鉄筋コンクリートフレーム柱の鉛直耐力(第二報) : 各種水平加力プログラムが与える影響(梗概)"

Copied!
10
0
0

読み込み中.... (全文を見る)

全文

(1)

Architectural Institute of Japan

ArchitecturalInstitute of Japan

Lxt..!,g,,].,,,.,,,,.,.,,,.,,i,,,.,

{OT",r,'.",i..O,1.S.'g".Cft"A'r})a"Nd.93og"21tro':I:ob".,?",g,],n,eering

gpt,g,fizt?im#x,ee,](ffva,g:

'

THE

VERTICAL

LOAD

CARRYING

CAPACITY

OF

THE

COLUMNS

OF

MULTISTORY

REINFORCED

CONCRETE

FRAMES

WITH

THE

EXPERIENCE

OF

HORIZONTAL

LOADING

(PART

2)

-The

effect

of

various

horizontal

loading

by

TAKAYUKI

SHIMAZU'

and

MD.

ALI

AKBAR

MOLLICK"',

Members

of

A.

I.

J.

1.

Introduction

This

paper

is

the

second

presentation

of a

series

of studies

on

the

vertical

load

carrying

capacity

of

the

columns

in

mttltistory reinforced concrete

frames

with

the

experience

of

horizontal

ioading.

In

Ref.

(

1

)

a

theoretical

approach

and one experimental verification

of

it

were

presented.

In

that

approach

an

eiastic

stability

problem

of

a

cbntinuous

bar

built

'in

at

the

base

with multi-rotational springs over

the

height

was

dealt

with,

for

estimating

the

vertical

load

carrying capacity of

the

columns of amultistory weak

beam-strong

celumn

frame

already subjected

to

horizontal

load

up

to

post

yielding

range,

It

was assumed

by

consiclering

the

Testoring

force

characteristics of reinforced concpbte

members

to

be

basically

of

origin

oriented

type

with

degraded

stiffness

that

beam

ends act

as

rotationai springs

possessing

equivalent

elastic

stiffnesses

determined

from

the

maximum

rotations

ever

experienced

under

horizo"tal

loading,

while continubus columns

in

a rnultistery

frame

act as a continuous

bar

having

the

equivalent elastic

flexural

rigidity which

to

be

evaluated simultaneously

from

the

equation

derived

based

on energy rnethod

to

determine

the

value of

its

buckling

load.

Good

agreement was obtained

between

'calculated

resutts and

test

ones.

In

that

stucly,

however,

only one

horizontal

loading

program

was adopted

to

verify

the

validity of

the

proposed

theoretical

approach.

As

the

horizontal

loading

history

is

assumed

to

have

the

most

influence

on

the

vertical

load

carrying capacity of

the

columns owing

to

the

change of

the

horizontal

load

resisting characteristics of a

frame,

fot:us

is,

in

this

paper,

placed

on

the

effect of various

types

of

horizontal

loading

programs.

These

p[ogiams

were selected

to

observe

the

effect

of

the

magnitude of

the

maximum

total

deflection

angle,

the

number ef

loading

cycles and

the

history

of applied amplitudes.

Jn

this

study

the

better

correlation

between

the

model

test

structures and

prototype

was also made

by

selecting

the

strength

distribution

of

the

beams

over

the

height

of

the

test

structures

and makiitg

the

additional arrangement of constant

gravity

load

on each

floor

beam

than

in

the

study of

Part

1.

'

'

It

has

been

taken

into

consideration

to

study

the

advantageous

peints

of

the

limit

state

design

method oyer

the

currently used elastic

design

method, although

in

this

regard much more studies are reqttired

for

a

genera!

cenclusion.

The

abstract

of

this

paper

was

already

reported

in

Ref,2.

2.

Experimental

Program

2,

1

Test

Structures

:

A

single-bay

six-steried

reinforced

concrete

interior

frame

designed

following

the

AIJ

Building

Code

as shown

in

Fig.3

of

Part

1

was

also

used

as a

prototype

to

select

the

test

structures

of

this

study.

These

teststructures

were

plane

frames

with

the

number ofstories reduced

to

four

for

the

simplicity of

the

app2ication of

loads

as

in

Part

1,

The

configuration of a

typical

model

test

structure with overall

dimension

and reinLforcement

details,

was

the

same as

presented

in

Fig.s

of

Part1.

i

Professor,

University

of

Hiroshima,

Dr.

of

Eng,

#

G[aduate

Student

University

of

Hiroshima,

Mr.

of

Eng.

(Manuscript

received

Jan"ary

S,

1988)

(2)

-46-Speeimcl-wmCl.Ifft2cl-gH]Cl-M{4

'C3-laHlC3-wrl2c]-ma・C3."H4HoOPSaStirrvps

H{rrm)1700 10 eCum)BOO soe

F60'

H de1um

・5,83-4e1"'Qlec/c

9-F42HF9

'

'mF40-rT-o

U7 ers

'

L'

±

.2-2.]ab

aF40-;T"-uF40HrTIO

'".Her-O@10ctc

notsets

-dig,ll2-3.2"li-sp8-

oEe4oHFT latv -o

'

uttsL)L3-3,2e

'eaF4DH`.'-iFfinlier-'eHaoH-lfinEE

2-3.201.3.2fp'

Table1

,L

Mechanical,

Properties

t.

tt

of

MFterials

,

Test'StFuetures'Concrete

E.(xlOf)Fc'

/t'-//

'

'

Cl--iL2,4235T.O

Ct-VH22.60,370.2

Reinforeement,

cL--la2.qG346.9'Dia.ff/xloE,(xloeq(xto5

Ct--1142.43335.T6.0-'4.43tS96.50

C3-Vlll2."346,84,oe4.6T1.995.99

C3-Vlt22.'4l332.3'

/t3,2

¢

5102l.99G.22

C3・VtS32.34202,42.3

¢

5.a3-1.991・.Ol・

C3--t42.31'31T,O1,Oip:.t5.XIO'5.52.

' uoit:

k.sl.cm

unit:

kg/c-tt/

'

Fig.1

LMIt:mm

CToss-section

Properties

of

Members

of

Test

Structures

BasedonLimitState

.DesigriMethod・Basecl'onCu[crentlyUsedElast

DestgrilrE2thod

±c

ttO,]4

tO.66

8,pa

O,66O.99

'

U

go.lt,

ees

O.66' O.66

O.9

,11cl'e

.11c3"

Testtructarres Cl.vatlCl-UMI CITwn2Cltunt2 Cl-maC3-rm Cl-val4C]-LH4 lb-±zotalLoeding Prograns 2,oe'tl.OO o.so1 o.oo O.50 1.oe 2.oo a68 T

,.Cycl/es

].DOe.eo1.oo

ttt

tt

Tttttt

ttt

ttt

ttttt

ttt

tt

tt

tttt

ttt

2.00 e.oo 2.002,OO].ooo.soO.SDt.oo2.00

'

---

----.--

--

---

----

--

....-,--

---.-

--

---

![

...t

t/

tTotRi DcfLcctien'Aiigle{:')'

.

+Tensile Retnforcenent Ratio(m'

.

Fig.3

Loading

Programs

Us.ed

in

Horl'zontal

Loading

Test

Fig.2

Modification

of

Bearn

Stre]gth

Ratios

frpm

Prototypes

to

Models

./

'

tt

t

tt

The

total

.pumber

of

test

structures

was-eight.

The

member cross s,ectional

properties

of all

the

eight

test

structures

are

illust[ated

in

Fig.

11

The

moelificg.Fipn of

the

b,e4m

strength ratios

frorrl'piototype't.o

rpodel

is

illustrated

in

Fig,

2.

Four

.test

st'fuctures in

Cl

series,

the

same as

the

test

structure

C63-41H

of

Part1,

were

designed

basicaily

according

to

the

liniit.state

desigp

methocl.

Th6

bther

four

test

structures

in

C3

series were

designea

basically

according

to

the

currently used elastic

design

method.

They

were simila[

to

the

test

structure

C63-42H

of

Part

1,

having

not sudden

but

gradual

clec'rease

of strength of

the

beams

from

top

to

bottom

ov'er'

the

height

of

the

frames.

The

summation'of

strength

of

the

beams

over

t;

the

height

of

frames

of

6ach

series

was

the

same

to

bring

them

in

Teasonable

:aObMuPiaatr;301n

TTahbeleMie.ChrniCai

PIORertlf.S

Of

the

Matenal used

for

the

fonsEructio?.gf

ell

the

tr?t

structures afe

'

2,2

Horizontal

Loading

P'rograms

:

Four

horizontal

loading

programs

charhcterized

by

the

magnitude of

deflection

amplitude, number'of cycles ancl

the

histery

of

tipplied

amplitude

were

used

for

this

study as summarized

'

in

Fig.

3.

Two

test

structures, one

from

each series, were

tested

under

each

horizointal

loading

program.

In

these

programs,

an ultimate

total

interstory

deftect{on,angle

induced

by

severe earthquakes was assumed

to

be

2.

0

percent

'

(3)

-47-Architectural Institute of Japan

ArchitecturalInstitute of Japan

.

with

H3

program

being

assumed

to

be

induced

by

extreme earthquakes.

Among

the

four

programs,

the

first

one

(H

O,

the

same

one as

that

used

in

Partl,

was considered

to

represent

one

response of

the

severe earthquakes

that

may

occur

one

time

in

the

life

time

of a

bttilding.

The

second one

(H2),

of

multi-cycles reversals at a constant amplitude, represents

one

respense of

the

moderate earthquakes

that

may

occur

several

times

in

the

life

time

ofa

buliding.

The

third

one

(H3),

also of multi-cyeles reversals at a constant amplitude,

represents

one

response of

the

extreme

earth-quakes

that

may occur

less

than

one

time

in

the

life

time

ofa

building.

The

last

one

<H

4),

the

reversed

type

of

the

first

one, aiso represents

one

response

of

the

severe

earthquakes

that

may occur as of

H1

and

is

similar

to

responses

mestly caused

by

actual

earthquakes

as characterized

by

higher

amplitudes

in

the

initial

stage and

lower

amplitudes

in

the

iater

stage

of

their

excitations.

2.

3

Testing

and

Measurernent

:

All

the

eight

test

strue-tures

were

tested

under

the

displacement

controlled

statical-ly

applied

reversed

horizontal

loading,

during

which a

pw A 1oo Cl-"lr 100

-]o

-2e

-o

lo legtm) +t..-hL

..p

t;

200

i-i

]oo?cigJ]co c]-"e2oeleo

-le-lo

t.1ooPID"lte,'s-P20"dCMM)

t-''s

1oo:'f ]eoP{ig)]oe1co cl-"U100

・]o-2

le]ooptm-

-rLie-]--100:1!]oe Ptig rm zco cl-"tG l

.10

-f2}ig,.

H'e

Ttttij'de:s,t/,ilsl'.11tt/'i,,lil・itV'I・l・,;・,'

',C:;iittt.

[ttt

tttt'tttttt

ttt

'tttttt"

,R

'

ll.s.g-1/trl・/1;t/t:1/ttttt・,y...f.tt.,1.,/,.t・ls.::1/t/tt.=>-tras.

.tttttt-ttt

.tttttttttsc:...ttX{9..'.t...tt.tt:

tttttttt..rolle

t 1-.'i・・1ilV・:1/'//11'iii'/li・1//,1,/L`ll-f-tttLt-'--tttFle--t

'tttt

,

tt-ttttttttt-ttt.

Idtemib:acts

ttli-;itEil/1,'/・P.'i,.ltt-11ll,:,i.111,x.o-tttttttttttt

:

tttt

>.Stmaf

1::・:1 ncL.C. D,T,Displaoenwittransducers w,s.g,wirestiraingage L,C.LnadCell

Fig.4Set

up

for

Loading

and

Measurement

-lo

]O

eq("m)

C]・zaL]]co2oo LOO ) 'Fm) 1

-l;:)

IOl -FL

i..

4-g,i-F

Fig.5

Hysteresis

Leopsunder

-r-HH."t'r zoo;:・l ]ooPtig)3co100 e]-"-100

-)eT2

' 1 ]N(ta"1

-r-"-+e

rm

'

3co

HorizentalLoading

(4)

-48-Table2

Experimental

Results

of aLl

the

Test

Structures

Vndertlori2ontalLuad

UnderYerticalLoad

Test

Pu(Kg)

Sutl{mtn)

-fi4it[<mm)

StructufesPes.Heg.Ave.Pes.Nes,Rfil・1(tum)Wu(Lon)

[lSl.l(mm)

CI-VHI325.D305.5315.233,93L,4-ST,T20.LO-3D,3-Ba.o

Cl-VIL22B5,O2TO,O27T,5bT,1T7.0-2,22T,93-1.t-t2.0

Cl--ll3312,5250.02SL,33-,O33,9-20.514.ql-3e,6-se.o

cl-vllq313,e275.0294.034.030,2-n,720.9L-21.7.96.0

C3-VM31o,e290,O300,D31.034.0-2e.tLT.BO-33,4-4T,O

C3-Vl12265,a26o.e262,5'IT.O16.4-a.324.52-Lg.6-50.0

C3-VH32S5,O252,5268,T34.03a.1-26.1It.al-ql.o-42.0

C3-V"4292,O285,O2BB.534.02D.9+O.2],j.2030.754.0tt +

.t-Pd-b

PPd.]1.-

ttP,P.t.L

t?4 ; ti/

'

y'

'

-

tt

1'

'

r

'

1 15to

x

tslo

xx

×

':t

EL

,:"a:,;t{ , "AL the End l of Cvcle No/1

:

Yso

'S

5

/

4

Vs

ill3

/i

rCl-wH]

za

-40 -30-20-10O

l

1

P],lui]

Nti NS xl N.1 Ni Nl xN NL NI Ni 1: 11 Lt

lo

2e 3o 4ocmm)

Ri,i,

i

,i dJi tt itJ t lt tl fl lllJ tl"r tlti/

Cl-WH4

-40-]O-20-10

15le

IO5l

xs

x

SH SN

×

hs

"

O 10s4.3 t i''tt 20

]O

40

{mmn)

1105110Stl

t

t

' ' ' ltt i C3-WH] tG

Cl-WH3

cl.wn4

C3-WH3

Fig.6

Crack

Patterns

under

HorizontaL

Loading

-40 -co -20-ro

O 10ro so

co

(mm}

Fig.7

Deflected

Shape

under

Horizontal

Loading

constant vertical

load

of

wr12

FlbD=O.

2

{

;l4=5.

04

ton)

was under application on

the

tops

of columns with agravity

load

of

120

kg

on each

floor

beam

applied as

two

points

loading

although

the

12e

kg

on each

floor

was a

little

lower

than

design

level,

At

the

end of

the

last

cycles of reversed

horizontal

loading,

the

vertical

loading

test

wa$

performed

by

monotoneus

increment

of

the

vertical

load

on

the

columns up

to

the

occurrence of

frame

failure.

Ten

displacement

transducerS

were

installed

and wire strain

gages

were attached on

twenty

strategic

points

on

the

test

structures

for

the

measurement of various response of

the

test

s.tTuctu[es

during

the

test.

However,

all

the

test

results are not

presented

in

this

paper.

Fig.4

illustrates

the

testing

arTangement.

The

vertical

loading

apparatus was

designed

in

such a way

that

the

top

of

the

tesit

structures could move

freely

in

its

vertical

plane.

3.

Test

Results

D

The

Behavior

under

Horizontal

Loading

All

the

eight

test

structures show

the

failure

mechanism

by

yielding

under

bending

at

the

column

bottorn

of

the

first

stery and

beam

ends of

the

second

to

fifth

stories under

the

reversed cyclic

horizontal

loading

to

demonstrate

the

hy'steretic

response characteristics of

ductile

type.'

The

relations

between

story

force

and

top

displacement

during,the

reversed

horizontal

loading

for

all

the

test

structures are shown

in

Fig.5.

The

maximurn response values

for

horizontal

load

with respective

horizontal

displacement

and residual

h'orizontal

displacement

are

tabulated

in'

the

left

part

of

Table

2.

The

hysteretic

response characteristics of reversed

horizontal

loading

test

of

the

structures under

the

four

different

loading

programs

are naturally

different

but

the

response characteristics of

two

test

structures under

・the

same

loading

prograrns

are almost

the

same,

However,

the

rate of

degradation

of stiffness

during

the

same

horizontal

loading

history

is

a

little

largeT

in

the

test

structures

in

C

3

series

than

in

the

C

1

series.

The

horizontal

strength of

the

test

strdctures

C

1-WH

1

of

this

study and

the

same

one,

C

63-41

H

of

Part

1

also

showed

nearly

the

same

values,

indicating

that

a

constant

gravity

load

on each

floor

has

little

influence

on

the

final

collapse mechanism against

horizontal

loading.

(5)

-49-Architectural Institute of Japan

ArchitecturalInstitute of Japan H"1 }Ltl"lit2 -1

'

r

/tt

kN)t2 Hi/1woil H]12d

'-t'

Ct-enl4

eFlsss

aaltL..JEtsP-'''''''''''''

-

--so

-go

-]o

-2o

-]o

:e

l

B8

8

×

x

t'ttth

tt,tt

'

?s

Y-l2 5 4] 2 G cl-vallvli11

Cl-wn2

cl-wre fi;11 HltZ -J/t "Vtu,n 2 Flt]t2 Flt]li ±

tt

J 1:t/

'

i

'

'

・i--'

'

'

)

"

'

[C-Nl

C3-IME C3-wrl] C]-an14 O 10 5 4 ] G y -2b 10 tmob

;

th/

-se

-no

Fig.9-30

-20

-10

Deflected

Maximum

-o

lo 2o ]e (ntql

Shape

at

the

Vertical

Load

Fig.8

Crack

Patterns

under

Vertical

Loading

W(tan)

W(ton)

3e

20Cl-rm

10

W(ton)

30

2eCl-WH2

la

3o

W(tan)

20Cl-wrl3

10

30

20Cl-;H4

10

W(ton)

-so-6o-4o-2oo2o4o6oso-4o-2oo2o4e6e-6o-4o

UlaL.aclvn

30

W(ton)

20C3-Lut1

10

tnt;W{ton)

30

'Heli,L't

20c3-vel2

10

-20O2040-80-60-40-20O2040GH<im)

30

30

20

20

c3-wn3C3-wn4

10

10

.

W(ten)

-60-40-20O20"80-6o-4o-2oo2o4oso-60-40-20O204060-60-40-20O2040'

6H

<nrn)

Fig.10

Load-Deflection

Curves

under

Vertical

Loading

The

cragk'

patterns

of

three

from

eight

test

structures observed

under

horizontal

loading

are

illustrated

in

Fig,

6,

Fig.7

illustrates

the

deflected

shape of

these

test

structures

at

the

peak

and at

the

end of

different

cyc],es under reversed

horizontal

loading,

It

should

be

neted

that

there

is

little

evidence

of residual

deflection

caused

by

horizontal

loading

in

case of

H4

program

though

remarkable

deflections

are

found

to

remain

in

ca$e of

H1

and

H3

programs

having

the

same value of

given

maxlmum amplitude

{2

×

10J'

rad,

)

with

that

in

H4,

The

H4

program

was

selected

to

be

the

typical

one of actual responses

to

earthquake rnotions,

ii)

The

Behavior

undet

Vertical・

Loading

Fig.

8

shows

the

crack

patterns

of all

the

test

structures

developed

under

vertical

loading

applied after

horizontal

loading

test,

Among

eighttest structures,

four

(of

H

1,

H4)

failed

at

the

third

floor

bearn-column

joints,

two

(of

H

2)

failed

at

the

second

floor

beam-column

joints

and

the

rest

two

(of

H3)

showed overall

buckling

failure.

This

difference

of

failure

patterns

can

be

diTectly

related with

the

given

horjzontal

loading

pTogTams.

Fig.

9

s/hows

the

(6)

-50-'

Tabte3

CorfelationofExperlmentedandCalculated

VaLues

of

Ultimate

Horizontal

Load

and

the

CalculatedValuesofCoefficients

Hax.Ilori2ontalLoafl

Test'StructuresallpExp・<kg)Cal.<kg>ExprCal(ratio)

Cl-VHIO.33i,oo'315,2289,ql.09

Ci-Wll2o.srJO.TB27?.5'291.qo.grJ

Cl-WT13O,33'[.oe281.3289.0O.9T

cl-wllqO.33t.eo294,O290.21.01

C3-VlltO.35・O.98300.0285,O1.05

C3-Vl)2O.64O,69262,5282.4O.93

C3-Vlt3O,35O.9B26B.7285.q'o.gq

C3-Vll4O.3TO.962B8.5286,e1.01

Table4

Distribution'of

fu.

in

Interster{es

ef

a

Typical

Test

Structure

Frame

TestStru

¢

tufe:Cl-WHI-s

R(xiOcad.)

AtthePeakofCycleNo.

StoryLevet

1(O.'25X)T(2.0X)

4

2.74(1.14)22.84(I.11)

3

3.08(1.28)24.55(1.19)

2

2.35(O.98)23.16(I.12)

1

1.q8(O.61>11.90(O.58)

Average2.4t(1.00)20.61(1.00)

deflected

shape at maximum vertical

load.

'

'

The

maximum response values

for

vertical

load

with respective

horizontal

diEplacement

and

residual

displachinent

are

tabulated

in

the

right

part

of

Table

2.

Vertical

load

versus

horizontal

displacement

for

all

the

test

structures

are shown

in

Fig.

10.

The

highest

or

lowest

vertical

load

carrying capacity was observed

in

case of

the

test

structure

experienced

i'n

the

horizonial

loading

of

H

2

or

H

3

program

respectively,

The

vertical

load

carryi'ng

capacity

and

the

buckl'ipg

mode of

the

'test'stru'ctures

with

the

expelien'ce of'Hl

program

were nearly

the

same as

those

of'the

test

Structures

of

H4

program.'

This

shows

that

the

'vertical

load

carrying capacity

is

determined

only

by

the

eve'r

experienced

maximum

amplitude

regardless

of

the

loading

history,

indicating

the

va[idity

of

the

equiv'alent

elast-ic

stability

theory

method

proposed

in

Part

1.

With

the

expetience of

the

stime

horizontal-lotiding

program,

the

ultimate

'

'vertical

lpad

carrying

capacity

of

the

test

structures

in

C

1

series'is

always

a

little

higher

than

in'the

C

3

serie's.

The

vertidal

load

carrying capacity of

the

test

structure

C

1-WHI

of

this

study'was ne'arly

the

same as

that

of

C

63-41

H

of

part

1

which

was'the

identical

sPecimen.

This

may

be

clue

to

the

developmentbf

the

same rotational stiffness under

the

action of

horizontal

loadihg.'

On

the

other

hand,

the

vertical'

lead

carrying capacity of

the

test

structure

C

3-WH

1

of

this

study shows much

greater

value

than

C63-42

H.of

Part

1.

This

may

be

da'e

to

the

gradtial

arrangement ef

'

'

stfe'ngth

distributibn

of

the

beams

over

the

height

of

framek

of

this

study.'

'

'

'

4.

Discu$sions

i)

Maximurn

Strength

unqer

Horizontal

Loading

Table

3

shows

the

comparison

between

test

results and calculated values

for

the

maximum strength of eight

test

'

structures under

horizontal

loading.

Thes'e

calculated values were obtained

by

assuming simple equilibrium conditien on a

frame

as

defined

by

Eq.

(17)

in

Part

1,

Table

3

also showg

the

results of' a. and

l9

defined

in

Part

1

for

the

test

structuTes of

this

study.

These

values

indic.ate

that

all

the

test

structures except

H2

loading

program

ones

'

'

'

t

t

tt

Table5

Correlationef

Experimented

and

Calcutated

Ultimate

Vertical

Load

Car[ylng

Capacity

and the

Values

of

-

'

the

Coefficients

and t'he

Shape

Function

'

Max,YertiealLead

TestStructuresT

avmExp.(Lon)Cal.(ton)ExpXCal<ratLo)

C]-VHIo.snO.T3I.6520.10]9.2q].06

Cl-VH2O.B6O,481.E527,9328.02O.99

Cl-V"3'O.56O.841.6514,4115,qlD.93

[1-VIMO.89o.6eL.6520.9119.T4L.06

C3-WHIO.T9'O.802[251?.80IT.69].o]

C3-Vtt2O,82O.522,SO24.522q.r2le.99

C3-VH3O.35O.93zieLl.41n.6]lo.gs

C3-VH4O,82O,742.30i9.20I7.5511.09

t/

littt...i---t.'Atl'

'''''ltA

'''

/

'tttttltt'

//

.t-.J.'-'

/6thi PointA!Highestj

'HorizontalIoad

PeintA=ItwestHoi ±zcrntallaad T=Pg-C!gNeEQChighest)

'

Fig.

1'1

Deterrnination

of

'the

VaLue'

of

r

(7)

-51-Architectural Institute of Japan

ArchitecturalInstitute of Japan

T1.0

O.7

o,s

o.

Werwcu1

lt3

O

O・Ol

O・02

O・03

O・04

eav.(rad)

1/3

1av

Fig.12

The

Decrease

of

Strength

under

fforizontal

Fig.

13

Determination

ef

the

Calculated

Values

of

Wcr

Loading

with

the

Increase

of

NumbeT

of

Cycles

reach

the

horizontal

strength

of

collapse mechanism

(fi

==0.

It

can

be

seen

from

the

table

that

the

measured values

of

maximum strength under

horizontal

loadings

have

good

agreement with calculated values,

It

ean

be

also observed

that

both

the

experirnental and calculated values of

the

maximum strength under

horizontal

loading

for

the

test

strllctures

in

C1

series are

a

little

greater

than

for

their

counterparts

in

the

C3

series.

This

might

be

due

to

the

variation

of

the

strength

properties

of

concrete,

relating

to

flexural

strength

at

the

bottom

of

columns.

ii)

Maximum

Strength

under

Vertical

Loading

The

analytical approach made

in

Part

1

was rnodified especially on

the

equivqlent

rotational stiffness of

beam

enCEs

by

introducing

the

rotational stiffness recluction ratio

7

during

horizontal

loading.

This

modification was made

due

to

the

employment of various

horizontal

loading

programs

in

this

study

partieularly

by

taking

into

account

the

effect of

H

3

horizontal

loading

program.

Thus,

equivalent rotational stiffness

becomes

7.M.,1enma.,

The

value of

r

has

been

defined

as

the

ratio

of

the

lowest

to

the

highest

loads

at

the

ever

experienced

maximum

arnptitude

in

horizonthl

Ioading

history

as shown

in

Fig.

11,

Table

4

lists

the

distributions

ef

a.,.

over

the

height

of a

frame

for

a

typical

test

structure at

the

peak

of

the

lst

and

the

7th

cycles of

the

horizontal

loading

program.

Except

the

lst

story

level

one,

the

values of

e,...

do

not vary with

their

average value

da..

significantLy allowing

to

use

the

average value

tza.,

for

a representative

index.

Fig.12

shows

the

correlation

between

the

values of

r

and

the

yalues of

da..

whilch we/re

obtained

from

deflected

shape of

Fig.7.

This

figure

indicates

how

the

values of

7

decrease

with

the

successive

loading

cycles without

increasing

the

average

beam

end rotation

th...

Also

in

this

figure

two

lines

are

plotted

with

the

data

available

in

case of all

the

test

structures,

indicating

the

decrease

of

7

with

the

increase

of

da..

in

the

second and

in

the

tenth

cycles.

Fig,

13

shows

the

deterrnination

of

the

calculated values of

VVI,.

from

the

intersection

between

the

curve

by

Eq.

(12)

in

Part1

and

WL.IWL.-a.

curve

for

eight

test

structures of

this

study.

The

comparison

between

measured and calculated values

for

the

vertical

load

carrying

capacity

of columns

is

listed

in

Table

5.

This

table

also shows

the

values of

flexural

rigidity reduction ratio of columns

during

vertica],

loading

(a.),

constant used

for

the

shape

function

of columns

(m)

as well as rotational stiffness reduction ratio of

beam

ends

during

horizontal

loading

<7),

It

is

seen

that

there

is

good

agreement

between

the

calculated and experimented values

,of maximurn strength under vertical

loacling.

All

the

test

structures under

limit

state

design

method show

the

values of

Vli}.

a

little

higher

than

those

under currently used elastic

design

method.

Figure

9

in

the

above section

shows

the

comparison

between

the

measured

and

calculated

deflected

shapes at maximum vertical

load

in

case

of all

the

test

structures,

which show

the

idientical

eonfiguration

each

other.

Fig.

14

shows

the

experimented and calculated vertical

load

earrying capacities of columns as

the

strength ratio

(8)

-52-wdr2FEit5i5D

1.

L

o.s

es(Exp.)h

es(Cal.)

es(Exp.)

es(Cal.)

(Exp.)

(Cal.)

s---

---L

.--.-.

---

t

h'=--==e

oo

1

2

3

Fig.

14

Cornparison

of

Experimented

and

Calculated

Vertical

Loa

Including

those

in

Part]

4・

5

'

6max

(xioe

)

Y・H

d

Carrying

Capacity

ofall

the

Test

Structures

acrlE =

VliLrf2

Er

bD

versus

amaxlr'H

where

a.a.IH

is

the

ever experiencecl maximum

deflection

angle of a

frame.

It

is

fovnd

t.hat

a..IF:,

decreases

into

the

one' narrow strip as

Oma.lr.H

increases,

regardless

of

strength

distribution

of

beams

over

the

height,'

number of stories and

program

of

horizontal

loading.

The

trend

of

this

figure

shows

the

necessity of

imposing

sorne

reistrictions on

the

probable

values of maximum

deformation

angle

induced

by

'

earthquakes

or

the

design

level

of

long-term

axial

force

for

columns

in

aseismic

design

of

btrildirigs,

It

has

been

generally

recognized

that

the

higher

seisrnic strength a

building

has,

the

sinaller

the

maximum

deformation

angle

induced

by

earthquake

becomes.,

If

sufficient

seismic

strength

is

provided

with

hffective

seismic elements;

such

as shear walls

for

a

building,

the

maxirnum

deformation

angle will

be

small, may

be

within

1.

0

×

10'Z

rad. even

during

extreme earthquakes.

In

this

case

there

occur no

seFious

problems

on

the

vertical

load

carrying capacity of columns after earthquakes

judging

from

the

figu;e

14.

0n

the

other

hand

if

a

building

consists

of only

frame

systems which are

expected

to

have

much capability of

deformation

with relatively

low

strength,

the

maximum

deformatio4

angle may reach

2

×

10'!rad.

or more

during

major or extreme

earthquakes,

In

this

case

strong restrictions are need

for

the

'

design

level

of

long-term

axial

force

for

columns at

the

stage of aseismic

design

of

builclings,

for

instance,

about

115th

'

to

116th

of

LbD

to

secure

the

safety

factor

of

3

on

the

premise

of

the

eontinued serviceability of

buildings

after major or extreme earthquakes.

Based

on

the

findings

at

this

stage

the

following

approach may

be

suggested.

The

maximum

deformation

angles

induced

by

earthquakes

may

be

estimated

by

the

proposed

methods, one of which was reported

in

Ref.

3,

derived

from

the

dynamic

analysis results

on

single

degree

of

freeclom

systems.

Using

these

methods and

taking

into

account

the

tre'nd

of

Fig.

12,

the

way of

determining

the

design

level

o

£

long

term

axial

load

of columns

from

the

trend

of

Fig.

14

will

be

established although-more experimental results should

be

added

for

making

the

final

'

'

conclusions.

'

'

5.

Conclusions

The

following

statembnts can

be

made

from

the

study.

1)

Experimental

works were conducted on eight

IAoth

scaled

plane

frame

strudtures

of

single-bay, multistdry reinforced concrete weak

beath-strong

column

type

to

study

the

effect

of

the

different

patterns

of reversgd

horizontal

loading

on

the

vertical

load

carrying capacity

of

col,ulnns.

Four

different

patterns

of

horizontal'loading

program,

characterized

by

maximum

deflection

angle, number of

loading

cycles

and

the

history

of applied amptitude were employed.

'

2)

For

the

response・analysis

under

vertical

loading,

the

characteristics of

the

degradation

of stiffness of

frames

'

obtained

under

horizontal

loadipg

were

applied

into

the

theoretical

appraach.presented

in

Part

1.

It

was

found

that

(9)

-53-Architectural Institute of Japan

Arohiteotural エnstitute  of  Japan

this

 

modified

 method  

gives

 

good

 

predictions

 

of

 

the

 ve 【

tical

 

load

 carryi11g  capacity  of 

the

 columns  of multistory  

plane

frame

 structures  

Qf

 weak  

beam

strong  column  

type

 even  wlth  

the

 experience  of 

different

 

types

 of 

horizontal

 

loading

  3

 

It

 was  

found

 

from

 

all

 

the

 

test

 results  of 

frames

 

including

 

those

 of 

Part

 

l

 

that

 

the

 reduced  values  of 

the

 vertical

load

 

carrying

 

capacity

 

can

 

be

 

closely

 related  

with

 

the

 

ever

 

experienced

 maximum  

deflection

 angle  

divided

 

by

 

the

stiffness

 

degradation

 

ratio

 under  

horizontal

 

loading

 regardless  of sttength  

dist

τ

ibution

 of 

beams

 over  

the

 

heigh

number  of stories  and  

program

 of 

hoizontal

 

loading

t

 was  

also

 

found

 

that

 

the

 

proposed

 

limit

 

state

 

design

 

method

gives

 

higher

 values  

of

 

safety

 

factor

 against  

gravity

 

load

 

for

 multistory  

frames

 with  

the

 experience  of 

h

(〕rizontal

loading

 

than

 

the

 

currently

 used  elastic  

design

 method

  4

 

Further

 

studies

 

a

e

 required  

to

 

get

 

general

 

conclusions

 about  

the

 

stability

 of continuous  coLumlls  of weak

beam−

strong  colu 皿n 

type

 of 

frames

 regarding  

the

 aseismic  

design

 of 

buildings

 

6.

Acknowledgements

 

T

揃sstudy  

has

 

been

 conducted  at 

the

 

Structural

 

Engineering

 

Depart

皿ent  of 

the

 

University

 of 

HiroshiIna

 

The

authors  would  

like

 

to

 

thank

 

H ,

 

Araki,

 research  associate  of 

the

 

Earthquake

 

Engineering

 

Laboratory

 

The

 authors acknowledge  

the

 cooperation  

of

 

H .

 

Ohtani

 and  

Y .

 

Kakita

, 

graduates

Reterences

D

 

Shimazu

 

T .

 and  

Mohit

 

S.

 

M .

P.

The

 

Vertical

 

Load

 

Carryng

 

Capacity

 ef 

the

 

Colu

皿ns of 

Multistory

 

Reinforced

 

Concrete

 

Frames

 wi 山 出e 

Experience

 of  

Horizontal

 

Load

五ng

 

Jo

腫mal  of  

Structural

 a皿

d

 

Construction

 

Engineering

Transaction

 of 

AIJ

 

No

360

 

February

1986

 

pp

119

131

2

MoHick

 

M

A

A

Shimazu

, 

T

 and 

Mohit

 

S

 

M

 

P

: 

The

 

Vertieal

 

Lead

 

Carrying

 

Capacity

 of 

the

 

Colurnns

 of 

Multistory

 

Fra

皿es with  

theExperience

 of 

Horizon

ヒal  

Loading

 

Part

 

3

The

 

Exper

血ental  

Study

 of  

Single

Bay

 

Multistory

 

Frairtes

9

 

Summaries

 of  

Technical

 

Papers

 of 

Annuai

 

Meeting

 of 

Architectilral

 

lnstitute

 of 

Japan,

1986

 

Struct

皿τe

 

pp

373

374

3

 

U

皿em 訂 a

 

H

Seismic

 

Design

 of 

Structures

From

 

Timber

 

Structures

 

to

 

High

Rise

 

Bundings

 

Revised

 

Editien

 

Koz

ai

 

C

且ub

 

1976

 

pp

42

56

   

UDC :624

012

45

624

072

31 :539

3

日本 建 築 学 会 構造系詭 夊 報 告 集 第 392 号

昭和

63

年 10 月

重 を う

け た

鉄筋

ク リ

レ ー ム

耐 力 (

報 )

各種

加 力 プ

ラ ム

え る

影 響

 

員 正 会 員

   

   孝    

Md

 

Ali

 

Akbar

 

Mollick

* *

 

におい て

荷 経

験 を もつ はり

降 伏 型

多 層

フ レ

ム の

連 層

につ いて, そ れの鉛

耐 力

め る た

理 論 を展 開

し, かつ この

理 論

有 効

か め る た めに

実 施

し た

験 的研

告 を

っ た。

 

こ の

理 論

多層

フ レ

ム に おいて,

は り の

端 部 回

転 剛 性 を 等 価 線 形

Ke

と し, かつ

連 層 柱

線 形 断 面 剛 性

EI

。q

す る

弾 性

仮 定

そ ’

学  教授

* “ 広 島 大 学   大 学 院生

工 修   〔昭 和 63 年 1 月

8

日原 稿 受 理 ) れの

座 屈 耐 力

め る

の であ る。 こ こ に

Ke

重 載 荷

経 験

した はり

端 部

回 転

最 大 値

に よっ て

,一

EI

ee は 理

方 程 式 を解

くこ

に よっ て,

耐力

ら れ る もの で あ る

で この理

有 効 性

を み る た めの

実 験

い, こ の理

耐 力 実 験

測で き るこ と を 示 し た

実験

と し て は

4

層 お よ

2

の フ レ

試験体

え た

水平荷重 載荷

はフ レ

ム の

平 均 層 間 変 形 角

2.0

×

10−

2rad にな る

での

振 幅 段 階 的 増 加 型 正 負 繰 返

加 力

1

の み で あっ た

54

(10)

 

本 報

同 様

4

層 試 験 体

い た

実 験 的 研 究

す る も のであ る が

各種

載 荷

歴 の

調

い るQ

 

水 平 荷 重 載 荷

によっ

1

r

平 均 最 大 層 間変

形 角 を 第

分の

1

×

10

”  rad に し た 場

の鉛

直 耐 力

はど う か

建 物

限 中 数 回 は

っ て く る と

え られ る

強 震

程度

地 震 を

対象

に し た もの

平 加 力 実 験

で は

定 振 幅

20

正 負 繰 返

を 与

える

H2

加 力 プ

ロ グラ ム

 

えるべ き

最 大 変 形 角

2

×

10

rad とし て こ の

振 幅

か な りの

多 数 回

正 負 繰 返

水 平 荷 重 を加

え た

場 合

はど うか

。一

大 振 幅

多 数 回

繰 返

え ると

水 平 耐 力

しく

低 下

する ことが予

され る

その

結 果

連 層 柱

鉛 直耐 力

う な る か

こ の

加 力 プ

ロ グ ラム は か な りの

レベル の

地 震 動

え てい るこ と に な る

H3

加 力 プ

ログ ラム

 

っ た よ

段 階 的

水 平 変 位 振 幅

やし て ゆ くの で は な く

逆 に

は じ め に

大 振 幅

そ れ か ら

々 に

振 幅

ら して

場 合

連 層柱

鉛 直

耐 力

は ど う か

の 地

震 動

は は じ めに

主 要 動

存 在

す る場 合 が 多い ことが観 測 され て いる が

こ の加 力

ロ グ ラ ム は こ の よ う なこと

し た もの であ る

H4

加力

ロ グ ラム

 

以 上

3

種 加 力

ロ グ ラム に

の もの

H1

加 力

ロ グラ ム

) を 加

4

加 力 プ

グ ラ

ム につ いて

たに

4

層 骨 組

8

試 験 体 を

験 を

っ た

今 回

方 向

の は りの

強 度

につ い ても

変更

さ らに

は りに は

常 時 荷 重

え た

鉛 直 荷 重 (

) を付 加

した

  実験

誘 導

し た

連 層 柱

耐 力

め る

理 論

このた

各種 水

力 プ

ラムに

し て も

本的

な もの であ ること が

ら か と なっ た。 す な わ ち

水平荷

載荷

経験

し た

大変

お よ

その

振 幅

で の

耐 力 低 下 率

に よっ て,

鉛 直 耐 力

めら れ る

な お

H4

加 力

プロ グラ ムを う けた フ レ

ム の

連 層 柱

水 平 荷 重 載 荷 後

において,

水 平 残 留 変 形

は ほ と ん ど

じて お

ら ず

鉛 直 耐 力

Hl

加 力 プ

ロ グ ラ ム の もの と

じ で あっ た。 こ の ことは,

地 震 後

建 物

被 害

外 観

には

れて お

らず

連 層 柱

耐 力

き く

低 下

して いる

可 能 性

ること

を示

して い る

 

14

結 果 も含

め,

連 層 柱

鉛 直 耐 力

ま と めて

示 す

水 平 荷 重 載

経 験 変 位 最 大 値 と

その と ・・

耐 力 低 下 率

δ  γ

H

・ よ

・ て

・ 理

・ ・ と

を 表

・ て い る

 

こ の

傾 向

か ら,

建 物

耐 震 設 計 を行 う 際

に,

地 震

後 も建 物

使 用

す ること を

前 提

に して

地 震

に よっ て

じる

形 角 ある い は

の長

期 軸

力 レ ベ ル につ い て

え ね

な ら ない こ と が

か る。

地 震 時

建 物

じ る

最 大

す る

3

さ れ て い る が

基 本 的

に は

物の強

レ ベ ル

保 有 耐 力 )

考 慮

すべ

地 震 動

レベ ルお よ び

物 総 高

によっ て

ま る よ う で あ る。 し た がっ て こ の

よ う

に して

め た

最 大

形 角 と

であれ ば

12

耐 力 低

を 考

して

14

傾 向

設 計 時

長 期 軸 力

レベ ル

制 限

す ることに

る。

か しこ の

制 限 値

につ いて は

今後

施 中

分 布 加 力実 験

の デ

を 行っ てゆ きた いと

え て い る

55

Fig. 14 Cornparison of Experimented and Calculated Vertical Loa

参照

関連したドキュメント

Amount of Remuneration, etc. The Company does not pay to Directors who concurrently serve as Executive Officer the remuneration paid to Directors. Therefore, “Number of Persons”

出す タンクを水平より上に傾けている 本体を垂直に立ててから電源を切 り、汚水がタンクの MAX 印を超え

These two kinds of oil behave similar characteristics, but it can be shown that the difference of the pressure increasing rate or P-T curves are come from the difference of

補足第 2.3.1-1 表  自然現象による溢水影響 . No  自然現象 

補足第 2.3.1-1 表  自然現象による溢水影響 . No  自然現象 

点検方法を策定するにあたり、原子力発電所耐震設計技術指針における機

検討対象は、 RCCV とする。比較する応答結果については、応力に与える影響を概略的 に評価するために適していると考えられる変位とする。

西山層 椎谷層 上部寺泊層