• 検索結果がありません。

GENERALIZATION OF AN IMPULSIVE NONLINEAR SINGULAR GRONWALL-BIHARI INEQUALITY WITH DELAY

N/A
N/A
Protected

Academic year: 2022

シェア "GENERALIZATION OF AN IMPULSIVE NONLINEAR SINGULAR GRONWALL-BIHARI INEQUALITY WITH DELAY"

Copied!
20
0
0

読み込み中.... (全文を見る)

全文

(1)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page

Contents

JJ II

J I

Page1of 20 Go Back Full Screen

Close

GENERALIZATION OF AN IMPULSIVE NONLINEAR SINGULAR GRONWALL-BIHARI

INEQUALITY WITH DELAY

SHENGFU DENG AND CARL PRATHER

Department of Mathematics

Virginia Polytechnic Institute and State University Blacksburg, VA 24061, USA

EMail:sfdeng@vt.edu prather@math.vt.edu

Received: 25 August, 2007

Accepted: 23 May, 2008

Communicated by: S.S. Dragomir 2000 AMS Sub. Class.: 26D15, 26D20.

Key words: Gronwall-Bihari inequality, Nonlinear, Impulsive.

Abstract: This paper generalizes a Tatar’s result of an impulsive nonlinear singular Gronwall-Bihari inequality with delay [J. Inequal. Appl., 2006(2006), 1-12] to a new type of inequalities which includesndistinct nonlinear terms.

(2)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page2of 20 Go Back Full Screen

Close

Contents

1 Introduction 3

2 Main Results 5

(3)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page3of 20 Go Back Full Screen

Close

1. Introduction

In order to investigate problems of the form

x0 =f(t, x), t 6=tk,

∆x=Ik(x), t =tk,

Samoilenko and Perestyuk [6] first used the following impulsive integral inequality u(t)≤a+

Z t c

b(s)u(s)ds+ X

0<tk<t

ηku(tk), t ≥0.

Then Bainov and Hristova [2] studied a similar inequality with constant delay. In 2004, Hristova [3] considered a more general inequality with nonlinear functions in u. All of these papers treated the functions (kernels) involved in the integrals which are regular. Recently, Tatar [7] investigated the following singular inequality

u(t)≤a(t) +b(t) Z t

0

k1(t, s)um(s)ds+c(t) Z t

0

k2(t, s)un(s−τ)ds +d(t) X

0<tk<t

ηku(tk), t≥0, u(t)≤ϕ(t), t∈[−τ,0], τ >0

(1.1)

where the kernelski(t, s)are defined byki(t, s) = (t−s)βi−1sγiFi(s)forβi >0and γi >−1,i= 1,2, the pointstk(called "instants of impulse effect") are in increasing order and limk→∞tk = +∞. This inequality was called the impulsive nonlinear singular version of the Gronwall inequality with delay by Tatar [7]. In this paper, we

(4)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page4of 20 Go Back Full Screen

Close

will consider an inequality u(t)≤a(t) +

n

X

i=1

Z bi(t) 0

(t−s)βi−1srifi(t, s)wi(u(s))ds +

m+n

X

j=n+1

Z bj(t) 0

(t−s)βj−1srjfj(t, s)wj(u(s−τ))ds +d(t) X

0<tL<t

ηLu(tL), t≥0, (1.2)

u(t)≤ϕ(t), t ∈[−τ,0], τ >0,

wheren, mare positive integers,βl >0,rl >−1forl = 1, . . . , n+mandηL ≥0 and other assumptions are given in Section2. This inequality is more general than (1.1) since (1.2) hasnnonlinear terms.

(5)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page5of 20 Go Back Full Screen

Close

2. Main Results

Notation: Following [1] and [5], we say w1 ∝ w2 forw1, w2 : A ⊂ R → R\{0}

if ww2

1 is nondecreasing on A. This concept helps us to compare the monotonicity of different functions. Now we make the following assumptions:

(H1) all wi (i = 1, . . . , n +m) are continuous and nondecreasing on [0,∞) and positive on(0,∞), andw1 ∝w2 ∝ · · · ∝wn

(H2) a(t)andd(t)are continuous and nonnegative on[0,∞);

(H3) all bl : [0,∞) → [0,∞) are continuously differentiable and nondecreasing such that0 ≤ bl(t) ≤ t on[0,∞), tL ≤ bl(t) ≤ tL+τ for t ∈ [tL, tL +τ] and tL + τ ≤ bl(t) ≤ tL+1 for t ∈ [tL +τ, tL+1], l = 1, . . . , n+ m and L = 0,1,2, . . . where t0 = 0. The points tL are called instants of impulse effect which are in increasing order, andlimL→∞tL =∞;

(H4) all fl(t, s) (l = 1, . . . , n+m) are continuous and nonnegative functions on [0,∞)×[0,∞);

(H5) ϕ(t)is nonnegative and continuous;

(H6) u(t)is a piecewise continuous function fromR→R+ = [0,∞)with points of discontinuity of the first kind at the pointstL ∈ R. It is also left continuous at the pointstL. This space is denoted byP C(R,R+).

Without loss of generality, we will suppose that thetLsatisfyτ < tL+1−tL ≤2τ, L= 0,1,2, . . .. As in Remark 3.2 of [7], other cases can be reduced to this one.

(6)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page6of 20 Go Back Full Screen

Close

Theorem 2.1. Let the above assumptions hold. Suppose thatusatisfies (1.2) and is inP C([−τ,∞),[0,∞)). Then ifβα>−1p + 1andrα >−1p, it holds that

u(t)≤

















uL,0(t), t∈(tL, tL+τ], uL,1(t), t∈(tL+τ, tL+1],

uk,0(t), t∈(tk, tk+τ] iftk+τ ≤T, uk,1(t), t∈(tk+τ, T] iftk+τ < T, uk,0(t), t∈(tk, T] iftk+τ > T, wheretk≤T < tk+1and

uL,l(t) =

"

Wn−1 WnL,l,n(t)) + Z bn(t)

tL+lτ

(n+m+L+ 1)q−1cqn(t) ˜fnq(t, s)ds

!#1q ,

γL,l,j(t) = Wj−1−1

Wj−1L,l,j−1(t)) +

Z bj−1(t) tL+lτ

(n+m+L+ 1)q−1cqj−1(t) ˜fj−1q (t, s)ds

, j 6= 1,

γL,l,1(t) = (n+m+L+ 1)q−1

"

˜ aq(t) +

n

X

i=1

Z tL+lτ 0

cqi(t) ˜fiq(t, s)wiq(φ(s))ds

+

n+m

X

j=n+1

Z bj(t) 0

cqj(t) ˜fjq(t, s)wqj(ψ(s−τ))ds+

L

X

e=1

q(t)ηqeuqe−1,1(te)

# ,

(7)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page7of 20 Go Back Full Screen

Close

φ(t) =





uL,0(t), t∈(tL, tL+τ], t∈(tk, tk+τ] iftk+τ ≤T, andt∈(tk, T] iftk+τ > T,

uL,1(t), t∈(tL+τ, tL+1]andt ∈(tk+τ, T] iftk+τ < T,

ψ(t) =









ϕ(t), t ∈[−τ,0],

uL,0(t), t∈(tL, tL+τ], t∈(tk, tk+τ] iftk+τ ≤T, andt∈(tk, T] iftk+τ > T,

uL,1(t), t∈(tL+τ, tL+1]andt∈(tk+τ, T] iftk+τ < T,

˜

a(t) = max

0≤x≤ta(x), f˜α(t, s) = max

0≤x≤tfα(x, s), d(t) = max˜

0≤x≤td(x), Wi(u) =

Z u ui

dv wqi(v1q)

, u >0, ui >0,

cα(t) =t1pα+rα−1

Γ(1 +p(βα−1))Γ(1 +prα) Γ(2 +p(βα+rα−1))

1p ,

forL = 0,1, . . . , k−1, α = 1,2, . . . , n+m, l = 0,1, andi, j = 1, . . . , n where

1

p +1q = 1forp >0andq >1, andT is the largest number such that (2.1) WjL,l,j(t)) +

Z bj(t) tL+lτ

(n+m+L+ 1)q−1cj(t) ˜fjq(t, s)ds ≤ Z

uj

dz wjq(z1/q), for all t ∈ (tL, tL+τ], all t ∈ (tk, tk +τ] if tk +τ ≤ T and all t ∈ (tL, T] if tk+τ > T asl = 0, or allt∈[tL+τ, tL+1]and allt ∈[tk+τ, T)iftk+τ < T as l= 1wherej = 1, . . . , n,l = 0,1andL= 0,1. . . , k−1.

(8)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page8of 20 Go Back Full Screen

Close

Before the proof, we introduce a lemma which will play a very important role.

Lemma 2.2 ([1]). Suppose that

1. allwi (i= 1, . . . , n)are continuous and nondecreasing on[0,∞)and positive on(0,∞), andw1 ∝w2 ∝ · · · ∝wn.

2. a(t)is continuously differentiable intand nonnegative on[t0, t1),

3. allblare continuously differentiable and nondecreasing such thatbl(t)≤tfor t∈[t0, t1)

where t0, t1 are constants and t0 < t1. If u(t) is a continuous and nonnegative function on[t0, t1)satisfying

u(t)≤a(t) +

n

X

i=1

Z bi(t) bi(t0)

fi(t, s)wi(u(s))ds, t0 ≤t < t1, then

u(t)≤W˜n−1

"

nn(t)) + Z bn(t)

bn(t0)

n(t, s)ds

#

, t0 ≤t≤T1, where

γi(t) = ˜Wi−1−1

"

i−1i−1(t)) +

Z bi−1(t) bi−1(t0)

i−1(t, s)ds

#

, i= 2,3, . . . , n, γ1(t) =a(t0) +

Z t t0

|a0(s)|ds, W˜i(u) = Z u

ui

dz

wi(z), ui >0, T1 < t1 andT1 is the largest number such that

ii(T1)) +

Z bi(T1) bi(t0)

i(T1, s)ds ≤ Z

ui

dz

wi(z), i= 1, . . . , n.

(9)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page9of 20 Go Back Full Screen

Close

Proof of Theorem2.1. Sinceβα >−1p + 1andrα >−1p forα = 1, . . . , n+m, by Hölder’s inequality we obtain

u(t)≤a(t) +

n

X

i=1

Z t 0

(t−s)p(βi−1)sprids

1p Z bi(t) 0

fiq(t, s)wiq(u(s))ds

!1q

+

m+n

X

j=n+1

Z t 0

(t−s)p(βj−1)sprjds

1p Z bj(t) 0

fjq(t, s)wjq(u(s−τ))ds

!1q

+ X

0<tL<t

d(t)ηLu(tL)

≤a(t) +

n

X

i=1

ci(t)

Z bi(t) 0

fiq(t, s)wiq(u(s))ds

!1q

+

m+n

X

j=n+1

cj(t)

Z bj(t) 0

fjq(t, s)wqj(u(s−τ))ds

!1q

+ X

0<tL<t

d(t)ηLu(tL) where we usebα(t)≤tand the definition ofcα(t). Now we use the following result [4]:

IfA1, . . . , Anare nonnegative forn ∈N, then forq >1, (A1+· · ·+An)q≤nq−1(Aq1+· · ·+Aqn).

Sincetk ≤t≤T < tk+1, we have uq(t)≤(1 +n+m+k)q−1

"

aq(t) +

n

X

i=1

cqi(t) Z bi(t)

0

fiq(t, s)wiq(u(s))ds

+

m+n

X

j=n+1

cqj(t) Z bj(t)

0

fjq(t, s)wqj(u(s−τ))ds+

k

X

L=1

dq(t)ηqLuq(tL)

# .

(10)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page10of 20 Go Back Full Screen

Close

We note that˜a(t)≥a(t),d(t)˜ ≥d(t)andf˜α(t, s)≥fα(t, s)and they are continuous and nondecreasing int. The above inequality becomes

uq(t)≤(1 +n+m+k)q−1

"

˜ aq(t) +

n

X

i=1 k−1

X

L=0

cqi(t) Z tL+1

tL

iq(t, s)wiq(u(s))ds

+ cqi(t) Z bi(t)

tk

iq(t, s)wiq(u(s))ds

!

+

m+n

X

j=n+1 k−1

X

L=0

cqj(t) Z tL+1

tL

jq(t, s)wjq(u(s−τ))ds

+ cqj(t) Z bj(t)

tk

jq(t, s)wqj(u(s−τ))ds

! +

k

X

L=1

q(t)ηqLuq(tL)

# . (2.2)

In the following, we apply mathematical induction with respect tok.

(1)k = 0. We note thatt0 = 0and we have for any fixed˜t∈[0, t1] (2.3) uq(t)≤(n+m+ 1)q−1

"

˜ aq(˜t) +

n

X

i=1

cqi(˜t) Z bi(t)

0

iq(˜t, s)wiq(u(s))ds

+

m+n

X

j=n+1

cqj(˜t) Z bj(t)

0

jq(˜t, s)wjq(u(s−τ))ds

#

fort ∈[0,˜t]sincecα(t)are nondecreasing.

Now we considert˜∈ [0, τ] ⊂ [0, t1] andt ∈ [0,˜t]. Note that 0 ≤ bj(t) ≤ t so

−τ ≤bj(t)−τ ≤0fort ∈[0,˜t]. Sinceu(t)≤ϕ(t)fort∈[−τ,0], we have uq(t)≤z0,0(t), t∈[0,˜t],

(11)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page11of 20 Go Back Full Screen

Close

where

(2.4) z0,0(t) = (n+m+ 1)q−1

"

˜ aq(˜t) +

n

X

i=1

cqi(˜t) Z bi(t)

0

iq(˜t, s)wiq(u(s))ds

+

m+n

X

j=n+1

cqj(˜t) Z bjt)

0

jq(˜t, s)wjq(ϕ(s−τ))ds

# . It implies that

(2.5) u(t)≤z0,0(t)1/q, t ∈[0,t].˜ Thus, (2.4) becomes

(2.6) z0,0(t)≤(n+m+ 1)q−1

"

˜ aq(˜t) +

n

X

i=1

cqi(˜t) Z bi(t)

0

iq(˜t, s)wqi(z0,01/q(s))ds

+

m+n

X

j=n+1

cqj(˜t) Z bjt)

0

jq(˜t, s)wjq(ϕ(s−τ))ds

# . By Lemma2.2, (2.6) and (2.1), we have

z0,0(t)≤Wn−1

"

Wn(˜γ0,0,n(t)) + Z bn(t)

0

(n+m+ 1)q−1cn(˜t) ˜fnq(˜t, s)ds

# ,

˜

γ0,0,j(t) = Wj−1−1

Wj−1(˜γ0,0,j−1(t)) +

Z bj−1(t) 0

(n+m+ 1)q−1cj−1(˜t) ˜fj−1q (˜t, s)ds

#

, j 6= 1,

(12)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page12of 20 Go Back Full Screen

Close

˜

γ0,0,1(t) = (n+m+ 1)q−1

"

˜ aq(˜t) +

n+m

X

j=n+1

Z bjt) 0

cqj(˜t) ˜fjq(˜t, s)wqj(ψ(s−τ))ds

#

sinceψ(t) = ϕ(t)fort ∈[−τ,0].

Since (2.5) is true for anyt∈[0,t]˜ and˜γ0,0,j(˜t) = γ0,0,j(˜t), we have u(˜t)≤z0,0(˜t)1/q ≤u0,0(˜t).

We know that˜t∈[0, τ]is arbitrary so we replace˜tbytand get (2.7) u(t)≤u0,0(t), fort∈[0, τ].

This implies that the theorem is true fort∈[0, τ]andk = 0.

For t ∈ [τ,t]˜ and ˜t ∈ [τ, t1], use the assumption (H3) and then we know that bα(τ) =τ andτ ≤bα(t)≤t1fort∈[τ, t1]andα= 1, . . . , n+m. Thus,

0≤bα(t)−τ ≤t1−τ ≤τ

sinceτ < t1−t0 =t1 ≤2τ. Using this fact, (2.3) and (2.7), we get uq(t)≤(n+m+ 1)q−1

"

˜ aq(˜t) +

n

X

i=1

cqi(˜t) Z τ

0

iq(˜t, s)wiq(u(s))ds

+

n

X

i=1

cqi(˜t) Z bi(t)

τ

iq(˜t, s)wqi(u(s))ds

+

m+n

X

j=n+1

cqj(˜t) Z τ

0

jq(˜t, s)wjq(ψ(s−τ))ds

+

m+n

X

j=n+1

cqj(˜t) Z bjt)

τ

jq(˜t, s)wqj(u(s−τ))ds

#

(13)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page13of 20 Go Back Full Screen

Close

≤(n+m+ 1)q−1

"

˜ aq(˜t) +

n

X

i=1

cqi(˜t) Z τ

0

iq(˜t, s)wiq(u0,0(s))ds

+

n

X

i=1

cqi(˜t) Z bi(t)

τ

iq(˜t, s)wqi(u(s))ds

+

m+n

X

j=n+1

cqj(˜t) Z τ

0

jq(˜t, s)wjq(ψ(s−τ))ds

+

m+n

X

j=n+1

cqj(˜t) Z bjt)

τ

jq(˜t, s)wqj(u0,0(s−τ))ds

#

≤(n+m+ 1)q−1

"

˜ aq(˜t) +

n

X

i=1

cqi(˜t) Z τ

0

iq(˜t, s)wiq(φ(s))ds

+

n

X

i=1

cqi(˜t) Z bi(t)

τ

iq(˜t, s)wqi(u(s))ds

+

m+n

X

j=n+1

cqj(˜t) Z bjt)

0

jq(˜t, s)wqj(ψ(s−τ))ds

#

:=z0,1(t),

where we use the definitions ofφandψ. Thus,

(2.8) u(t)≤z0,11/q(t), t ∈[τ,˜t].

(14)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page14of 20 Go Back Full Screen

Close

Therefore,

z0,1 ≤(n+m+ 1)q−1

"

˜ aq(˜t) +

n

X

i=1

cqi(˜t) Z τ

0

iq(˜t, s)wqi(φ(s))ds

+

n

X

i=1

cqi(˜t) Z bi(t)

τ

iq(˜t, s)wqi(z0,11/q(s))ds

+

m+n

X

j=n+1

cqj(˜t) Z bjt)

0

jq(˜t, s)wjq(ψ(s−τ))ds

# . Using Lemma2.2, (2.1) andbα(τ) =τ, we obtain fort∈[τ,˜t]

z0,1(t)≤Wn−1

"

Wn(˜γ0,1,n(t)) + Z bn(t)

τ

(n+m+ 1)q−1cqn(˜t) ˜fnq(˜t, s)ds

# ,

˜

γ0,1,j(t) = Wj−1−1

Wj−1(˜γ0,1,j−1(t)) +

Z bj−1(t) τ

(n+m+ 1)q−1cqj−1(˜t) ˜fj−1q (˜t, s)ds

#

, j6= 1,

˜

γ0,1,1(t) = (n+m+ 1)q−1

"

˜ aq(˜t) +

n

X

i=1

Z τ 0

cqi(˜t) ˜fiq(˜t, s)wiq(φ(s))ds +

n+m

X

j=n+1

Z bjt) 0

cqj(˜t) ˜fjq(˜t, s)wjq(ψ(s−τ))ds

# .

(15)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page15of 20 Go Back Full Screen

Close

Since (2.8) is true for anyt ∈[τ, t1]andγ˜0,1,1(˜t) = γ0,1,1(˜t), we have u(˜t)≤z0,11/q(˜t)≤u0,1(˜t).

We know that˜t∈[τ, t1]is arbitrary so we replace˜tbytand get (2.9) u(t)≤u0,1(t), t∈[τ, t1].

This implies that the theorem is valid fort ∈[τ, t1]andL= 0.

(2)L = 1. First we considert ∈(t1,˜t],wheret˜∈(t1, t1+τ]is arbitrary. Note that τ < t2−t1 ≤2τ. (H3) givesbα(t1) = t1 andt1 ≤bα(t)≤t1+τfort∈(t1, t1+τ] so t1 −τ ≤ bα(t)−τ ≤ t1 for t ∈ (t1, t1 +τ]. By (2.7) and (2.9), (2.2) can be written as

uq(t)≤(n+m+ 2)q−1

"

˜ aq(˜t) +

n

X

i=1

cqi(˜t) Z τ

0

+ Z t1

τ

iq(˜t, s)wqi(u(s))ds

+

n

X

i=1

cqi(˜t) Z bi(t)

t1

iq(˜t, s)wqi(u(s))ds

+

m+n

X

j=n+1

cqj(˜t) Z τ

0

+ Z t1

τ

jq(˜t, s)wjq(u(s−τ))ds

+

n

X

j=1

cqj(˜t) Z bjt)

t1

jq(˜t, s)wqj(u(s−τ))ds+ ˜dq(˜t)ηq1uq(t1)

#

≤(n+m+ 2)q−1

"

˜ aq(˜t) +

n

X

i=1

cqi(˜t) Z t1

0

iq(˜t, s)wqi(φ(s))ds

+

n

X

i=1

cqi(˜t) Z bi(t)

t1

iq(˜t, s)wqi(u(s))ds

(16)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page16of 20 Go Back Full Screen

Close

+

m+n

X

j=n+1

cqj(˜t) Z bjt)

0

jq(˜t, s)wjq(ψ(s−τ))ds+ ˜dq(˜t)ηq1uq0,1(t1)

#

:=z1,0(t),

where we use the definitions ofφandψ so

(2.10) u(t)≤z1,01/q(t), t∈(t1,t].˜ Thus,

z1,0(t)≤(n+m+ 2)q−1

"

˜ aq(˜t) +

n

X

i=1

cqi(˜t) Z t1

0

iq(˜t, s)wiq(φ(s))ds

+

n

X

i=1

cqi(˜t) Z bi(t)

t1

iq(˜t, s)wiq(z1/q1,0(s))ds

+

m+n

X

j=n+1

cqj(˜t) Z bjt)

0

jq(˜t, s)wqj(ψ(s−τ))ds+ ˜dq(˜t)ηq1uq0,1(t1)

# . By Lemma2.2, (2.1) andbα(t1) =t1, we obtain fort∈(t1,˜t]

z1,0(t)≤Wn−1

"

Wn(˜γ1,0,n(t)) + Z bn(t)

t1

(n+m+ 2)q−1cqn(˜t) ˜fnq(˜t, s)ds

# ,

˜

γ1,0,j(t) = Wj−1−1

Wj−1(˜γ1,0,j−1(t)) +

Z bj−1(t) t1

(n+m+ 2)q−1cqj−1(˜t) ˜fj−1q (˜t, s)ds

#

, j6= 1,

(17)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page17of 20 Go Back Full Screen

Close

˜

γ1,0,1(t) = (n+m+ 2)q−1

"

˜ aq(˜t) +

n

X

i=1

Z t1

0

cqi(˜t) ˜fiq(˜t, s)wqi(φ(s))ds +

n+m

X

j=n+1

Z bjt) 0

cqj(˜t) ˜fjq(˜t, s)wqj(ψ(s−τ))ds+ ˜dq(˜t)ηq1uq0,1(t1)

# . Since (2.10) is true for anyt ∈(t1,˜t]and˜γ1,0,1(˜t) =γ1,0,1(˜t), we have

u(˜t)≤z1,01/q(˜t)≤u1,0(˜t).

We know that˜t∈(t1, t1+τ]is arbitrary so we replace˜tbytand get (2.11) u(t)≤u1,0(t), t∈(t1, t1+τ].

This implies that the theorem is valid fort ∈(t1, t1+τ]andL= 1.

We now consider t ∈ [t1 +τ,˜t], where ˜t ∈ [t1 +τ, t2] is arbitrary. Again, by (H3) we havet1 +τ ≤ bα(t) ≤ t2 fort ∈ [t1 +τ, t2]andbα(t1 +τ) = t1+τ so t1 ≤bα(t)−τ ≤t2−τ ≤t1+τ sinceτ < t2−t1 ≤2τ. Obviously, by (2.7), (2.9) and (2.11), (2.2) becomes

uq(t)≤(n+m+ 2)q−1

"

˜ aq(˜t) +

n

X

i=1

cqi(˜t) Z t1

0

iq(˜t, s)wqi(u(s))ds

+

n

X

i=1

cqi(˜t) Z bi(t)

t1

iq(˜t, s)wiq(u(s))ds

+

m+n

X

j=n+1

cqj(˜t) Z t1

0

jq(˜t, s)wjq(u(s−τ))ds

(18)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page18of 20 Go Back Full Screen

Close

+

m+n

X

j=n+1

cqj(˜t) Z bjt)

t1

jq(˜t, s)wjq(u(s−τ))ds+ ˜dq(˜t)η1quq1,0(t1)

#

≤(n+m+ 2)q−1

"

˜ aq(˜t) +

n

X

i=1

cqi(˜t) Z t1

0

iq(˜t, s)wqi(φ(s))ds

+

n

X

i=1

cqi(˜t) Z bi(t)

t1

iq(˜t, s)wiq(u(s))ds

+

m+n

X

j=n+1

cqj(˜t) Z bjt)

0

jq(˜t, s)wqj(ψ(s−τ))ds+ ˜dq(˜t)η1quq0,1(t1)

#

:=z1,1(t), that is,

(2.12) u(t)≤z1,11/q(t), t∈[t1+τ,˜t].

Thus,

z1,1(t)≤(n+m+ 2)q−1

"

˜ aq(˜t) +

n

X

i=1

cqi(˜t) Z t1

0

iq(˜t, s)wiq(φ(s))ds

+cqi(˜t) Z bi(t)

t1

iq(˜t, s)wqi(z1,11/q(s))ds +

m+n

X

j=n+1

cqj(˜t) Z bjt)

0

jq(˜t, s)wqj(ψ(s−τ))ds+ ˜dq(˜t)ηq1uq0,1(t1)

# .

(19)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page19of 20 Go Back Full Screen

Close

Using Lemma2.2, (2.1) andbα(t1+τ) =t1+τ, we obtain fort∈(t1,t]˜ z1,1(t)≤Wn−1

"

Wn(˜γ1,1,n(t)) + Z bn(t)

t1

(n+m+ 2)q−1cqn(˜t) ˜fnq(˜t, s)ds

# ,

˜

γ1,1,j(t) = Wj−1−1 h

Wj−1(˜γ1,1,j−1(t)) +

Z bj−1(t) t1

(n+m+ 2)q−1cqj−1(˜t) ˜fj−1q (˜t, s)ds

#

, j6= 0,

˜

γ1,1,1(t) = (n+m+ 2)q−1

"

˜ aq(˜t) +

n

X

i=1

Z t1 0

cqi(˜t) ˜fiq(˜t, s)wqi(φ(s))ds +

n+m

X

j=n+1

Z bjt) 0

cqj(˜t) ˜fjq(˜t, s)wqj(ψ(s−τ))ds+ ˜dq(˜t)ηq1uq0,1(t1)

# . Since (2.12) is true for anyt ∈(t1,˜t]and˜γ1,1,1(˜t) =γ1,1,1(˜t), we have

u(˜t)≤z1,11/q(˜t)≤u1,1(˜t).

We know that˜t∈[t1 +τ, t2]is arbitrary so we replacet˜bytand get u(t)≤u1,1(t), t∈[t1+τ, t2].

This implies that the theorem is valid fort ∈[t1+τ, t2]andL= 1.

(3) Finally, suppose that the theorem is valid fork, then fork+ 1we redefineφand ψ by replacingkwithk+ 1. In a similar manner as in steps (1) and (2), we can see that the theorem holds fort∈(tk+1, T]⊂(tk+1, tk+2].

The proof is now completed.

(20)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page20of 20 Go Back Full Screen

Close

References

[1] R.P. AGARWAL, S. DENG AND W. ZHANG, Generalization of a retarded Gronwall-like inequality and its applications, Appl. Math. Comput., 165 (2005), 599–612.

[2] D.D. BAINOV AND S.G. HRISTOVA, Impulsive integral inequalities with a deviation of the argument, Math. Nachr., 171 (1995), 19–27.

[3] S.G. HRISTOVA, Nonlinear delay integral inequalities for piecewise continuous functions and applications, J. Inequal. Pure Appl. Math., 5(4) (2004), Art. 88.

[ONLINE:http://jipam.vu.edu.au/article.php?sid=441].

[4] M. MEDVED, A new approach to an analysis of Henry type integral inequalities and their Bihari type versions, J. Math. Anal. Appl., 214 (1997), 349–366.

[5] M. PINTO, Integral inequalities of Bihari-type and applications, Funkcial. Ek- vac., 33 (1990), 387–403.

[6] A.M. SAMOILENKO AND N.A. PERESTJUK, Stability of the solutions of differential equations with impulsive action, Differential Equations, 13 (1977), 1981–1992 (Russian).

[7] N.E. TATAR, An impulsive nonlinear singular version of the Gronwall-Bihari inequality, J. Inequal. Appl., 2006 (2006), 1–12.

参照

関連したドキュメント

Henry proposed in his book [7] a method to estimate solutions of linear integral inequality with weakly singular kernel.. His inequality plays the same role in the geometric theory

Wu, “Positive solutions of two-point boundary value problems for systems of nonlinear second-order singular and impulsive differential equations,” Nonlinear Analysis: Theory,

Chu, “H ∞ filtering for singular systems with time-varying delay,” International Journal of Robust and Nonlinear Control, vol. Gan, “H ∞ filtering for continuous-time

Wang, Existence and uniqueness of singular solutions of a fast diffusion porous medium equation, preprint..

In this paper we prove the existence and uniqueness of local and global solutions of a nonlocal Cauchy problem for a class of integrodifferential equation1. The method of semigroups

For a higher-order nonlinear impulsive ordinary differential equation, we present the con- cepts of Hyers–Ulam stability, generalized Hyers–Ulam stability,

As a special case of that general result, we obtain new fractional inequalities involving fractional integrals and derivatives of Riemann-Liouville type1. Consequently, we get

The aim of this paper is to establish a new extension of Hilbert’s inequality and Hardy- Hilbert’s inequality for multifunctions with best constant factors.. Also, we present